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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

This work develops a method to learn an effective PDE from data, even in cases where the 

data does not originate from a PDE. The first step is to learn effective spatial coordinates, 

which is accomplished via diffusion maps. In this step, the authors treat the time series of 

each agent (or mesh point) as a point in a high-dimensional space, and apply the diffusion 

maps method to the collection of time series, thereby grouping similar time series together 

in the diffusion map coordinates. The diffusion map coordinates thus smoothly 

parameterize the time series. In the second step, the authors learn a PDE for the data, 

where the right-hand-side is a function of derivatives with respect to the diffusion map 

coordinates, and well-documented methods are used to learn the right-hand-side. The 

authors show that modeling transient solutions in this way results in good short- and long-

time predictions. 

There are some interesting ideas here. The authors show that they can learn a PDE from 

data that originates from a PDE, as well as from data that does not originate from a PDE 

with their unique approach to finding "emergent" spatial variables. On the other hand, the 

application examples are relatively simple, the present work is largely a logical extension of 

prior studies from the authors, and the presentation is often unclear. Ultimately, I do not 

view the work as a substantial enough advance to warrant publication in Nat Comm. 

Comments: 

1. This paper combines previous work to learn effective spatial coordinates (ref. 9) with 

well-known work to learn the right-hand-side of a system of ODEs, and is essentially a 

logical extension of ref. 9. 

2. Solving a PDE is typically expensive; can the authors give an example where solving a 

PDE is less expensive than the original system of oscillators? How do the costs compare for 

the Stuart-Landau example? Moreover, a common way to solve PDEs is to project onto 

some finite basis. Why not go directly to this finite representation instead of going through 

a PDE? What are the benefits of going through a PDE? 

3. Related to the previous point, the dynamics in the two examples are simply limit cycles. 

For such simple dynamics, I think it would be better to go straight to a very low-

dimensional representation of the dynamics instead of going through a PDE. Does the 

method work for more complicated dynamics? An example with more complicated dynamics 

would be beneficial. 

4. The authors mention interpretability as a benefit or possible feature of learning a PDE, 

but I find this to be an unlikely feature when the effective spatial coordinates are learned 

from data. In the two examples in the paper, the authors were only able to interpret the 

diffusion map coordinate because they already knew the answer or had a very small set of 

possible answers. 

5. More information is needed about the parameters used in the two examples so that 

readers could recreate the data if they wanted to. Also, it would be useful to explain why 

the authors chose the parameters values (and initial and boundary conditions) that they 

did. Was this simply to get limit cycle behaviour? I also thought that the Methods section 

was a bit opaque, and think it needs to be expanded and made more explicit. 

6. The way boundary conditions are dealt with seems like a rather large weakness to me. 



This is especially the case for the Stuart-Landau example. From fig. 3d, we can infer that 

nearly all of the oscillators lie in a range of phi1 values in the boundary corridor illustrated 

in fig. 3b. The PDE is only learned in the interior region, which ostensibly contains very few 

oscillators. So, it seems that a PDE is being learned in order to replace very few oscillators, 

which would be rather wasteful. Is there a way to learn effective boundary conditions 

instead of the current way of dealing with them? 

7. Are the values of the diffusion map coordinate always between -1 and 1, or have they 

been rescaled and shifted? Of the many potential diffusion map coordinates, how do the 

authors know which one to pick? How do the authors know how many effective spatial 

coordinates are needed, and how do they pick the appropriate diffusion map coordinates? 

Also, what do the authors mean by “independent” (line 231)? Will mixed derivatives show 

up, and why are they not considered in eq. 7? 

8. What advantages do diffusion maps offer for finding the "emergent" spatial variable? It 

is commented that if it is helpful this can be thought of similarly to keeping the leading 

component of PCA. Would PCA work? Would other dimension reduction methods work like 

tSNE, LLE, Isomaps, undercomplete autoencoder, etc.? 

9. It would be helpful to more explicitly explain the fixed boundary conditions. It sounds 

like the boundary conditions are just fixed to some value and this effects the interior points 

through the derivative calculations. What happens when the boundary conditions are not 

enforced, do solutions blow up? This constraint seems unnecessary with a good 

approximation of f. 

10. The examples explored are no more complicated than periodic orbits. Would this 

method work for chaotic datasets? The authors mention swarms; agent-based models for 

these are simple to code up. How about looking at this case? 

11. Why is the projection onto the leading modes from SVD important? Does this smooth 

out higher frequency behavior that causes solutions to blow up with the neural network 

model? 

12. The authors show that they are able to learn an effective local PDE for globally coupled 

oscillators. Although this seems contradictory, certain types of local PDEs do exhibit global 

solutions (e.g., parabolic PDEs like the heat equation). Something to this effect should be 

added to the manuscript. 

13. How necessary is it to provide derivatives to the neural network? It would be useful to 

compare the performance when no derivatives are supplied, then the first, and the second. 

No derivatives is also useful because it shows the effect of learning the "emergent" spatial 

variables. 

14. In addition to showing the distance between the transient and the true attractor (fig 

2f,3c,5d) it would be helpful to see the distance between the true transient and the model 

to judge how well short-time tracking performs. 

15. For the two "emergent" spatial variables why are derivatives with respect to both 

variables not needed? 

16. There should be another figure like 5a showing lambda, or it could be made into a 3D 

figure to show lambda. 

17. The description of the grid for the two "emergent" spatial variables is very unclear. Why 



is this region selected? How can interpolation be done in the bottom right corner where no 

data points exist? Why are a majority of the omega values dropped? 

18. I find the abstract to be too indirect. It would be nice if it were made more clear that a 

neural network is used for the model and diffusion maps are used to reorganize the data. It 

seems like the key points ought to be: 1. systems of coupled oscillators have no obvious 

spatial relation 2. "emergent" spatial variables are discovered via diffusion maps 3. in this 

emergent space partial differential equations are approximated with neural networks. 

19. Some typos: “keepinging” on line 140, “knowing knowing” on line 145, "n_{train}=1" 

looks like it should be "n_{test}=1" on line 426 

Reviewer #2 (Remarks to the Author): 

The authors present a methodology for learning/describing the evolution of a discrete 

system through neural networks that use as inputs discrete approximations of PDE kernels. 

The paper contains several original ideas by the authors (many pioneered and presented by 

the authors in previous studies) on how to accelerate fine scale simulations by discovering 

an effective coarse grained PDE. The new "twist", as the authors clearly explain, is the 

identification of a previously unknown independent variable. 

I find the presentation of these ideas as a very interesting read. 

However right from the start it is clear that they do not learn a PDE but rather a neural net 

representation of discrete approximations of PDEs. Even more they "help" the NN learn the 

terms of the PDE that is clearly linked to the respective discrete approximation. 

So there is limited hope that this methodology may work when such information is not 

available (as it would not be available on most agent based simulations). What if the 

"wrong' derivatives had been fed to the NN ? Would the method still work? My estimate is 

that it would not as after all the NNs can only interpolate and not discover dynamics. 

Furthermore, I am disappointed to see that despite the authors claiming important 

advances to fields ranging from chemistry to quantum mechanics and fluid flows the results 

involve a 1D example with rather smooth solutions. The authors claim "dramatic" savings in 

computation "if" this idea is successful, but I do not see any of these claims being 

supported by the 1D example presented in this paper. 

Despite my concerns with the approach I believe that the paper will gain importance (and I 

hope that it would prove me wrong) by showcasing a problem that is in one of the following 

categories: 

1. 2D or 3D in space and with complex boundary conditions 

2. has complex and non-smooth/decaying solutions (see figure 3c on what is the actual and 

learned) 

3. is truly agent based and a discretization of a PDE that is in the end "rediscovered" 

Perhaps ideas deserve as much attention as proof that they work. Hence I would not object 

to the publication of this paper if it is decided by the journal. 

In summary, I am not convinced that this idea would work to anything beyond smooth 

solutions duet to to the issues I outline above. If this is the case what is the value of this 

new approach over existing methodologies (machine learning and/or other coarse graining 

procedures). 

At the same time, I will be happy to stand corrected and would be glad to see a a revised 



version of the paper that addresses my concerns and most importantly that it tackles 

problems in one of the the 3 categories described above. 

Reviewer #3 (Remarks to the Author): 

I appreciate what the authors are trying to do here: take the dynamics from a set of 

coupled agents whose equations of motion are _unknown_, and then use this to derive a 

data driven PDE to describe the resulting dynamics. For such an approach to be useful, the 

dynamical laws that are so derived must (i) apply accurately within the domain upon which 

the model was trained (eg initial conditions), and ideally (ii) also generalize to unseen 

parameters. 

I'm concerned that the choice of model problems (+ parameter ranges) that are chosen in 

this manuscript are too simplistic, and for that reason the idea doesn't deliver on its 

promise. The first example where $x$ is the coordinate is especially simplistic -- the 

original PDE already exists in these variables. The second one (Stuart) is getting closer to 

the complexity where something interesting could be found. 

The approach that the authors take is sensible and interesting: they use a data driven 

method (kernel based PCA) to derive modes from data and then try to use the leading 

components as a coordinate system to derive the equations. I like this approach very much. 

There is however a straw man: we could take the modes, which eg in the 2nd Stuart 

example (Fig 3d) the authors demonstrate 

a 1-1 mapping between phi_1 and omega_i. Given this mapping could we not directly derive 

a PDE for W(phi_1,t) by simply plugging it back into equation 4? The coupling term 

(K/N\sum_....) induces derivatives in the \phi_1 coordinates. The resulting PDE is on the 

surface close to that of Eqn 5 except that instead of using neural networks it can be derived 

directly from the equations. It also has the advantage that the parameter variation in this 

equation is clear -- so it is more generally applicable. Presumably this equation will give 

rise to the birfucations explored in Fig 4. 

Other comments: 

--The fact that all the analysis of the paper is close to a bifurcation point is worrisome. 

Would it make sense of a system where the dynamical behavior was much more 

complicated--so that perhaps 2 principle components or more are actually needed? For 

example a simple challenge is to redo the PDE example in eqn 1 for either the KS equation 

or for Lorenz 96 model, which shows truly chaotic behavior. 

--One major issue with the simplicity of the dynamical systems explored here is that it is 

unclear how much of what is being demonstrated is memorization. Can you demonstrate 

that the models work on out of distribution test examples? Choosing different random 

initial conditions of these models in these regimes does not accomplish this--given the 

simplicity of the dynamics what happens is highly constrained/has low entropy and hence 

agreement=memorization. 

--Agent based models with complex dynamics abound, much more complicated than those 

outlined here. For example one area the authors might wish to explore are covid -agent 

based models (eg VaTech, Northeastern,...). The rules for the agents can be quite 

complicated, and there is an obvious low order dynamical system at the core. Could the 

present approach actually be useful in that regard--deriving effective dynamics that are 

predictive for out of distribution examples? 



The "dream" behind this work is quite beautiful--but I'm afraid at this point the results 

could be made much more convincing by choosing better examples.



























REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

Many issues of detail that were brought up in my original review have been addressed. But 

the main issues I raised in the original review still remain. 

Because the authors are not learning boundary conditions, they are using simulation data 

from near the boundaries as the BCs for the learned PDE. But if the data is time-periodic for 

example, then they are applying a periodic forcing to their PDE and it's no surprise that 

their PDE gives a periodic solution. Furthermore, the model has no predictive capability 

since we need data near the boundary to find the solution. So (as with any problem 

governed by a PDE), for a complete *predictive* formulation the boundary conditions are 

necessary too. 

In my review of the original submission I asked about examples with dynamics more 

complex than time-periodic. Although the authors added an example in the revision, it also 

has time-periodic dynamics. In their response, the authors write that "Using chaotic 

examples would render the comparison between the learned model and the true dynamics 

even more complicated, because one would have to check that the predicted trajectories 

diverge with the right Lyapunov exponent and that, at the same time, the attractors of both 

systems coincide." The authors are correct, but nevertheless other studies exist in the 

literature that do make comparisons between chaotic data and data-driven models thereof. 

That could be done here as well. 

So as noted originally, there are interesting ideas and methods here. But at this point the 

formalism is incomplete and most importantly not predictive, and even so has only been 

applied to problems with simple temporal dynamics. I don't see it as appropriate for Nat. 

Comm. 

Reviewer #2 (Remarks to the Author): 

The authors have provided further (interesting) discussion of their methodology and one 

more application example. I appreciate the extra effort even though the example does not 

belong into any of the categories that I asked in my first review. Certainly the complexity of 

the examples can be argued in many different ways. However, I maintain my reservations 

about the application domains of this methodology. I still find the paper strong in ideas but 

weak in terms of demonstrating their feasibility to advance the solution of complex 

problems. 

In summary, I recommend publication to Nature Communications on the merit of the ideas 

presented in the paper. Perhaps applications can follow by these authors or others if this 

paper gets traction in the community.



 

Dear Reviewers, 

Thank you very much for the feedback on our manuscript “Learning emergent PDEs in a 
learned emergent space”. 

We feel we have addressed the point raised by the reviewers by incorporating an example where the 
dynamics -as requested- is spatio-temporally chaotic (and has periodic boundary conditions, so there is 
no issue to either learn BC or apply our “narrow corridor” approach). This dynamical state, so called 
spatio-temporal intermittency, appears in the complex Ginzburg-Landau equation for a suitable set of 
system parameters. Again, this is not an oscillator or multi-agent example, but we treat the recorded 
time series obtained from simulations, for illustration purposes, as time series from a discrete ensemble, 
where the dynamics at each grid point corresponds to a single agent. 

As we describe in more detail in the article, we can recover that these  agents” can be systematically 
embedded in a one-dimensional periodic emergent domain, and we can successfully learn the effective 
PDE in this emergent domain. Note that in doing so, we 

1. show that we can capture chaotic dynamics with our PDE learning approach, as it can 
be observed in the new Figure 2, 

2. and that, due to the periodic nature of the domain, we do not have to worry about providing 
and additional information for boundary conditions (diffusion maps in this case showed us that 
the domain is periodic, see Figure 2). This means that at least here the dynamics are not slaved 
to any boundary dynamics. 

3. Also confirmed that the discovered domain is one-to-one with the original scramble one, 
thus providing another small validation step for the approach. 

We completely agree that the issue of machine learning boundary conditions (in effect, determining 
what boundary/initial data make a problem well-posed) is an important direction for future research. We 
are actively working on it – but respectfully, this is an entire research world by itself. Here we learned the 
space and the equation; we are also working on determining what initial/boundary conditions make the 
problem for this emergent space/operator pair well posed. We do mention in the Discussion, older initial 
work by our group (Ref. 43, the “baby-bathwater” scheme) on designing computational experiments to 
explore how many initial conditions might be necessary). 

Again, we are very grateful for the review received, and the ideas and suggestions provided. We hope 
with the previous inclusion of the network example, and with the current inclusion of a spatio-
temporally chaotic example you will consider the paper worthy of publication. 

With best regards,  

Yannis Kevrekidis 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

With the inclusion of the example with chaotic dynamics, I am satisfied that the authors have 

addressed my comments. I recommend publication. 

Reviewer #2 (Remarks to the Author): 

I appreciate the discussion added by the authors. I consider the paper acceptable for publication.



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

With the inclusion of the example with chaotic dynamics, I am satisfied that the authors have 
addressed my comments. I recommend publication.

Reviewer #2 (Remarks to the Author):

I appreciate the discussion added by the authors. I consider the paper acceptable for publication.

We appreciate the positive feedback provided by the reviewers, and the constructive feedback 
that we received during the whole review process.


