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Supplementary Note 1. Fundamental assumptions and modeling of CLIP 

 
Supplementary Figure 1: CLIP image acquisition. a Two-plane parameterization of the light field. The 

spatial axis (x) is on the sensor plane, and the angular axis (u) is on the lens’ aperture plane. b Sub-

aperture images (P1-P4) of the same scene from different views L1-L4 with exaggerated image disparities 

for illustration. Note that the ‘smiling face’ object is at infinity. Its disparities among different apertures 

are negligible, whereas the disparities for a close object are much more apparent, illustrating the depth-

dependence of the disparity. c In photographic applications, the numerical aperture at the object side is 

typically small, leading to uniform light intensity across the angular range spanned by the lens. 

 

Using the two-plane light field parameterization shown in supplementary Fig. 1a, we established 

a local coordinate 𝑥′ (in green) for each sub-aperture image behind the lens and chose the image 

of a point source at infinity as its origin (indicated by the dashed blue lines). The local image 

coordinate of a point source at [𝑥0, 𝑦0, 𝑑] in the object space is then: 

{
𝑥′ =

𝑎

𝑑
(𝑢 − 𝑥0)      (𝑎)

𝑦′ =
𝑎

𝑑
(𝑣 − 𝑥0)       (𝑏).

      (1) 

Indexing view k in the angular coordinate as (𝑢𝑘, 𝑣𝑘), the location of a point source in the sub-

aperture image can thus be related to that in a reference sub-aperture image via a shear operation 

in the ray space: 
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{
𝑥𝑘
′ =

𝑎

𝑑
(𝑢𝑘 − 𝑥0) = 𝑥0

′ +
𝑎

𝑑
(𝑢𝑘 − 𝑢0) = 𝑥0

′ +
𝑎

𝑑
𝑢𝑘 = 𝑥0

′ − 𝑠𝑢𝑘    (𝑎)

 𝑦𝑘
′ =

𝑎

𝑑
(𝑢𝑘 − 𝑥0) = 𝑦0

′ +
𝑎

𝑑
(𝑣𝑘 − 𝑣0) = 𝑦0

′ +
𝑎

𝑑
𝑣𝑘 = 𝑦0

′ − 𝑠𝑣𝑘     (𝑏),
      (2) 

where 𝑠 = −
𝑎

𝑑
 is a depth-dependent shearing factor. 𝑢0 = 𝑁𝑟𝑒𝑓𝑥 and 𝑣0 = 𝑁𝑟𝑒𝑓𝑦 are the indices 

of the reference sub-aperture, and they are assumed here to be 0 (the central view) for simplicity 

but can be arbitrary values for viewpoint synthesis. Supplementary Figure 1b shows the depth-

dependent disparity between the sub-aperture images.  

      To relate the sub-aperture images to each other, one also needs to establish the intensity 

relationships besides the location correspondence for every object point. When the lighting 

conditions are known, the reflected light distributions from an object can be calculated with its 

BRDF (Bidirectional Reflection Distribution Function), for which several models exist. In 

photographic applications (Supplementary Fig. 1c), an object renders approximately the same 

image intensity across different propagation angles (hence sub-apertures) because the angular 

range covered by the lens system is typically small. For example, given an image magnification of 

0.01 and f-number of 2.0 (a fast lens in photography), the NA at the object side is 0.0025, spanning 

an angle of only 0.045 degrees. Except for mirror-like specular objects that show highly directional 

BRDF, the recorded light intensity variations along different angles are negligible compared to 

that induced by the lens’ vignetting effects. In sum, ignoring the edge pixels that may lose 

correspondence among sub-aperture images, the image 𝑝(𝑥, 𝑦, 𝑢𝑘, 𝑣𝑘)  observed from view 

(𝑢𝑘, 𝑣𝑘) can be related to a reference sub-aperture image 𝑝(𝑥, 𝑦) by: 

𝑝(𝑥, 𝑦, 𝑢𝑘, 𝑣𝑘) = 𝑝(𝑥 − 𝑠𝑢, 𝑦 − 𝑠𝑣),      (3) 

which can be represented by an invertible matrix 𝐁𝐤 as 𝐡𝐤 = 𝐁𝐤𝐡, with 𝐡𝐤 and 𝐡 denoting the 

vectorized sub-aperture image 𝑝(𝑥, 𝑦, 𝑢𝑘, 𝑣𝑘) and reference image 𝑝(𝑥, 𝑦), respectively.  

      The implicit assumption of uniform angular intensity can also be valid in microscopic imaging. 

For instance, the fluorophores used in fluorescence microscopy emit light in an omnidirectional 

manner, with a uniform intensity distribution across all directions. For scenarios where this 

assumption becomes invalid, CLIP can still correctly recover the scene geometry but with 

inaccurate intensities, preventing quantitative image analysis. We show in Supplementary Note 3 

that such implicit assumptions are common in computational cameras that attain a subset of light 

field imaging capabilities. 

       

 

Supplementary Note 2. CLIP working flow 

We summarize CLIP’s working flow of light field processing in Supplementary Fig. 2. The core 

capability of a light field camera is post-capture refocusing—other functionalities such as 

extending depth of field (eDOF) and depth retrieval are built upon it, and their associated 

processing algorithms are well documented in the literature.  

a) Refocusing is done by regenerating the system model F(d) for a specified shearing factor s and 

then performing image reconstruction.  

b) Viewpoint synthesis is achieved by changing the reference sub-aperture (𝑁𝑟𝑒𝑓𝑥 , 𝑁𝑟𝑒𝑓𝑦) during 

generation of the system model F(d). The reference sub-aperture (𝑁𝑟𝑒𝑓𝑥 , 𝑁𝑟𝑒𝑓𝑦) can be a virtual 

one and not necessarily of an integer number, allowing CLIP to synthesize novel viewpoints not 

present during data acquisition. 
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c) Computationally extending the depth of field is similar to conventional light field cameras: by 

refocusing onto different depths and extracting for each pixel the sharpest feature, CLIP can 

assemble an all-in-focus image1 to extend the depth of field. 

d) Depth retrieval. While the nonlocal acquisition of implicit light field data in CLIP prevents 

disparity information from being directly extracted from the measurement data for depth extraction 

(such as forming an epipolar image), the same end can be achieved by the depth from focus (DfF) 

method2. As in conventional approaches, this requires the images to show enough texture/features 

to make depth retrieval feasible. 

       

 
Supplementary Figure 2. Working flow of CLIP. The core is to regenerate the system’s forward model 

F(d) when the refocusing parameter s and/or reference sub-aperture (𝑁𝑟𝑒𝑓𝑥 , 𝑁𝑟𝑒𝑓𝑦) are changed (for 

novel view synthesis). Afterward, the image is reconstructed. Depth estimation and extending depth of 

field (eDOF) need to refocus on n different depths (for a depth resolution of n) to generate a focal image 

stack. The depth yielding the maximum focus measure (a measure of image contrast) is identified across 

the focal stack on a pixel basis. Assembling the sharpest feature into a single image leads to an extended 

DOF while assigning each pixel with its detected depth renders a relative depth image. 

 

 

Supplementary Note 3. CLIP with 2D area sensors 

Light field imaging with 2D sensors without compromising image resolution is well studied, with 

a wealth of techniques including coded aperture3 and wavefront coding4 exist. Recovering a full 

4D light field (Na, Na, N, N) from a densely sampled 2D image (N, N) has also been achieved by 

the compressive5 and diffuser-encoded light field camera6,7. Here, we show that dealing with a 

sparse 2D sensor becomes more demanding that makes most existing designs inadequate. 

Additionally, the coded-aperture, wavefront-coding, and diffuser-based methods can be unified 

into the CLIP framework, as the assumption of uniform angular intensity proves to be the sufficient 

condition for their validity.  
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Supplementary Figure 3. CLIP with 2D area detectors. a Computational cameras with coded aperture 

and wavefront coding. The light field is parameterized with the spatial axis x on the sensor plane and the 

angular u axis on the aperture. A complex-valued mask is inserted in the aperture plane to modulate the 

light field. b When the 2D sensor is sparsely packed, the PSF needs to be larger than the pixel pitch such 

that all the scene information is encoded into the measurement, which is a down-sampled convolution of 

the scene and system PSF. c The PSFs at different depths for the coded-aperture camera. Note that for any 

amplitude code in the aperture, the PSF is a Dirac function at s=0. d The PSF at different depths for 

wavefront-coding with a cubic phase plate. The PSFs are approximately depth-invariant as the cubic 

phase plate is designed to extend the depth of field. e Diffuser camera uses a thin scattering medium for 

lensless imaging. The PSF is a random caustic pattern that remains shift-invariant on an image plane 

within an angular range determined by the memory effect. The PSF is scaled at different imaging depths. 

SM: scattering medium. PSF: point spread function; s: refocusing parameter. 
 

      In coded aperture and wavefront coding methods, an amplitude or phase mask is placed at the 

aperture to modulate the light field, as shown in Supplementary Fig. 3a. More generally, the mask 

can be a complex-valued function to modulate both the amplitude and phase of the transmitted 

light, as does by a scattering medium. Without loss of generality, we confine the light field analysis 

to 2D (one spatial axis and one angular axis) and assume the system to be shift-invariant such that 

the imaging process is convolutional with a system kernel 𝑟(𝑥, 𝑢) in the ray space. Denoting the 
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light field as 𝑝(𝑥, 𝑢), which is essentially a sub-aperture image observed from an infinitesimal 

patch around u on the aperture, the sensor measurement can be written as8: 

𝑖(𝑥) = 𝑟(𝑥, 𝑢) ∗𝑥,𝑢 𝑝(𝑥, 𝑢) 

= ∫𝑟(𝑥, 0 − 𝑢) ∗𝑥 𝑝(𝑥, 𝑢)𝑑𝑢 

= ∫𝑟(𝑥, −𝑢) ∗𝑥 𝑝(𝑥 − 𝑠𝑢)𝑑𝑢 

= ∫𝑟(𝑥, −𝑢) ∗𝑥 𝑝(𝑥) ∗𝑥 𝛿(𝑥 − 𝑠𝑢)𝑑𝑢 

= 𝑝(𝑥) ∗𝑥 ∫𝑟(𝑥,−𝑢) ∗𝑥 𝛿(𝑥 − 𝑠𝑢)𝑑𝑢 

= 𝑝(𝑥) ∗𝑥 ∫𝑟(𝑥 − 𝑠𝑢,−𝑢)𝑑𝑢 

= 𝑝(𝑥) ∗𝑥 𝑔(𝑥, 𝑠) ,                    (4) 

where ∗𝑥  and ∗𝑥,𝑢  denote convolution along the x-axis and in the 2D ray space, respectively. 

𝑔(𝑥, 𝑠) = ∫ 𝑟(𝑥 − 𝑠𝑢,−𝑢)𝑑𝑢 is the system’s PSF at the depth indexed by s. Note that the uniform 

angular intensity assumption 𝑝(𝑥, 𝑢) = 𝑝(𝑥 − 𝑠𝑢) = 𝑝(𝑥) ∗𝑥 𝛿(𝑥 − 𝑠𝑢) has been applied during 

the derivation. The sensor measurement is, therefore, the convolution of the reference image with 

a depth-dependent PSF. The model reduces to CLIP in the discrete domain: 

𝑖(𝑥) = ∫ 𝑟(𝑥,−𝑢) ∗𝑥 𝑝(𝑥) ∗𝑥 𝛿(𝑥 − 𝑠𝑢)𝑑𝑢
𝑢𝑁

𝑢0

 

= ∑∫ 𝑟(𝑥,−𝑢) ∗𝑥 𝑝(𝑥) ∗𝑥 𝛿(𝑥 − 𝑠𝑢)𝑑𝑢
𝑢𝑘+∆𝑢 2⁄

𝑢𝑘−∆𝑢 2⁄

𝑁−1

𝑖=0

𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑡ℎ𝑒𝑜𝑟𝑒𝑚
→                

= ∆𝑢∑ 𝑟(𝑥, −𝑢𝑘) ∗𝑥 𝑝(𝑥) ∗𝑥 𝛿(𝑥 − 𝑠𝑢𝑘)

𝑁−1

𝑘=0

 

= ∑ 𝑟′(𝑥, −𝑢𝑘) ∗𝑥⏟        
𝐀𝐤

[𝛿(𝑥 − 𝑠𝑢𝑘) ∗𝑥 𝑝(𝑥)]⏟              
𝐁𝐤ℎ

𝑁−1

𝑘=0

𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛
→                  

= ∑ 𝐀𝐤𝐁𝐤𝐡 = 𝐓 [

𝐀𝟏𝐁𝟏
𝐀𝟐𝐁𝟐
⋮

𝐀𝑵𝐁𝑵

]

⏟      
𝑪𝒐𝒏𝒗𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝒎𝒂𝒕𝒓𝒊𝒙

𝐡 = 𝐅(𝐝) ℎ𝑁−1
𝑘=0 = 𝐟             (5) 

where 𝑟′(𝑥, −𝑢𝑘) = 𝑟(𝑥,−𝑢𝑘)∆𝑢, and 𝐓 = [𝐈, 𝐈,⋯   𝐈] is the integration operator that preserves 

the Toeplitz structure of matrix 𝐀𝐤𝐁𝐤 and multiplex the sub-aperture measurements 𝐀𝐤𝐁𝐤𝐡 into a 

single image measurement. Notably, the convolutional model of Supplementary Eq. (4-5) applies 

indiscriminately to computational cameras using a diffuser, coded aperture, or wavefront coding, 

and the image recovery is essentially a deconvolution problem. We illustrate the agreement with 

existing results3,9,10 by examining a coded aperture camera with an amplitude mask  (𝑢). The 

mask together with the lens system yields a kernel 𝑘(𝑥, 𝑢) =  (𝑢)𝛿(𝑥) in the ray space, leading 

to a depth-dependent PSF that is calculated as: 
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𝑔(𝑥, 𝑠) = ∫𝑘(𝑥 − 𝑠𝑢,−𝑢)𝑑𝑢 = ∫ (−𝑢)𝛿(𝑥 − 𝑠𝑢)𝑑𝑢 = 𝑠 (−
𝑥

𝑠
).      (6) 

Substituting into Supplementary Eq. (4), the sensor measurement is: 

𝑖(𝑥) = 𝑠 (−
𝑥

𝑠
) ∗𝑥 𝑝(𝑥),    (7) 

which is the same model of coded aperture cameras3—the recorded photograph is the convolution 

of a scaled aperture function  (−
𝑥

𝑠
) with an ideal image. For instance, focusing at nominal focal 

plane is obtained by setting s=0, with which the aperture function is scaled to a Dirac delta 

function. Refocusing onto another depth involves re-scaling the aperture function and applying a 

deconvolution step to recover the image, equivalent to regenerating the depth-dependent model 

F(d) in CLIP and subsequently reconstructing a refocused image.        

      Under the convolutional model, few of these existing techniques can be directly applied to 

sparsely packed 2D detectors or sensors of lower dimensionality (0D and 1D). With a sparse 

detector that has a pixel pitch of nx and ny (in the unit of pixel size), the measurement is a down-

sampled version of the convolution results 𝑖(𝑥) with a factor of nx and ny along the two spatial 

axes. By reciprocity, the system PSF 𝑔(𝑥, 𝑠) is the measurement pattern of an individual pixel for 

the scene at the depth indexed by s. To encode the complete 3D scene into the sensor measurement, 

the pixel pitch must be smaller than the size of PSFs at all depths, as illustrated in Supplementary 

Fig. 3b. Moreover, to ensure the image reconstruction to be well-posed, the system PSFs at 

different depths need to show non-negligible high-frequency features3.  

      With this in mind, the coded-aperture methods hence demand a properly sampled 2D 

photograph because its PSF is a Dirac function at s=0 (Supplementary Fig. 3c). For wavefront 

coding methods, current designs typically yield relatively sparse PSFs (Supplementary Fig. 3d for 

the cubic phase plate that yields depth-invariant PSFs) with a compact size (compared to the image 

size) at all depths, allowing a small downsampling factor (or sparsity) for 2D sensors but remain 

infeasible to cover the entire scene with a 1D sensor. By contrast, the random PSF produced by a 

scattering medium (a caustic pattern for a thin diffuser6,7, Supplementary Fig. 3d) densely covers 

a large image area with high-frequency features at all depths. This makes it suitable for light field 

imaging using a sparsely packed 2D sensor. Nevertheless, we show in the next section that while 

theoretically feasible, the diffuser camera approach to perform 2D imaging with a 1D sensor11 is 

ill-posed and far from optimal. 

      We demonstrate the feasibility of CLIP imaging using 2D sensors (dense and sparse) via 

synthetic studies in Supplementary Figure 4, using a diffuser at the aperture (like DiffuserCam9) 

as an example implementation. The imaging performance for scenes of different complexities is 

investigated at a fixed depth. The full measurement data is generated by convolving a ground-truth 

image with the system PSF. Measurement using sensors with different sparsity (sparsity of 1 is 

equivalent to a dense sensor) is simulated by downsampling the full measurement correspondingly 

and adding 2.5% white noise to emulate sensor noises. 

      Supplementary Figure 4a-c shows the imaging results for the complex “monkey” image, a 

resolution target, and a simple letter image, respectively. The sensor sparsity is varied from 1 

(Nyquist sampling) to 16 across both spatial axis from left to right, leading to a measurement data 

size ranging from 100% to only 0.4% of the full image size. The random wide-field PSF permits 

a sparsity factor of 2 for the recording sensor to attain a good image recovery for the complex 

monkey image. As the sparsity becomes more significant, more high-frequency image details get 
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washed out, but the low-frequency structure of the image is still obtained. For simpler (more 

compressible) images, however, a greater sparsity factor can be accommodated. For the letter 

image, in particular, a measurement with a sparsity factor of 8 (~1.6% of complete image data) 

still managed to recover it despite of some burring. The ability to handle sparse detectors also 

proves the robustness of CLIP against defective sensor readings, which typically cause only a 

small faction of the measurement data to be lost. 

 

 

Supplementary Figure 4. CLIP imaging with 2D sensors. a-c CLIP imaging for the monkey image, the 

resolution target, and the simple letter image with different sampling sparsities. From left to right are the 

random wide-field PSFs, the ground truth image, the full measurement data, and the reconstruction results 

with a sparsity factor of 1, 2, 4, 8, and 16 for the 2D sensor. d Reconstruction of the slanted resolution 

target in the pubic DiffuserCam dataset by CLIP at different refocusing depths. e-f The same 

reconstruction of the slanted resolution target after downsampling the measurement by 2 and 3 times. 

PSF: point spread function. 

 

      We further validated CLIP on the publicly released DiffuserCam9 dataset, which share the 

same setup as the synthetic study in employing a diffuser for 3D imaging. It originally aimed to 

directly retrieve a 3D volumetric scene from a dense 2D measurement. For CLIP, we recover only 

a refocused image by solving Supplementary Eq. (5) with a PSF at the corresponding depth. 

Supplementary Figure 4d shows the CLIP reconstructed images refocused at different depths for 

the slanted resolution target, along with the projected 2D image from the original algorithm for 

comparison. To demonstrate the capability to cope with a sparse 2D detector, we down-sampled 
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the experimental measurement by 2 and 3 times and then reconstructed the image at the same 

refocusing depths in Fig. 4e-f, respectively. It is noted that CLIP can reconstruct the resolution 

target with a sparsity factor of 2 with the refocusing effect being observed in all the cases, 

validating the capability of CLIP to handle 2D sparse detectors. However, the images get blurred 

for the sparsity factor of 3, similar to the observation made in the simulation results.  

 

 

Supplementary Note 4. CLIP imaging with 1D sensors 

With the convolutional imaging model, we show that performing 2D imaging with a 1D sensor is 

an ill-posed problem. According to the compressive sensing theory12, the number of measurements 

required for recovering a s-sparse signal (i.e., having s non-zero coefficients in a suitable 

representation basis) of size N is 𝑀 = 𝑂(𝑠𝑙𝑜𝑔𝑁) , provided that an appropriate measurement 

scheme is employed. While a 1D sensor with N pixels seems feasible to recover a 2D image of 

N×N with a sparsity of 𝑠 = 𝑂(𝑁 (2𝑙𝑜𝑔𝑁)⁄ ), the sampling scheme as performed by the 1D sensor 

proves to be inadequate to approach the bound. Following Eq. (4), the 1D sensor measurement is 

a single slice of the convolutional results: 

𝑖(𝑥, 𝑦 = 0) = 𝑝(𝑥, 𝑦) ∗𝑥 𝑔(𝑥, 𝑦, 𝑠)|𝑦=0.                     (8) 

In the Fourier domain, it can be written as: 

𝐿(𝑘𝑥) = ∫𝑃(𝑘𝑥, 𝑘𝑦)𝐺(𝑘𝑥, 𝑘𝑦, 𝑠) 𝑑𝑘𝑦 = ∫ 𝐼(𝑘𝑥, 𝑘𝑦) 𝑑𝑘𝑦,                     (9) 

which states that the Fourier transform of the 1D sensor measurement 𝐿(𝑘𝑥) is equivalent to a 

projection of the image spectrum 𝐼(𝑘𝑥, 𝑘𝑦) along the ky axis in the Fourier domain, a dual to the 

Fourier slice theorem. We prove this equation below. Denoting the Fourier transform operation as 

FT and the inverse transform as FT-1, we can obtain (omitting the 2π constant throughout): 

𝐹𝑇−1(𝐿(𝑘𝑥)) = ∫𝐿(𝑘𝑥)𝑒
𝑖2𝜋𝑘𝑥𝑥 𝑑𝑘𝑥 

= ∫∫ 𝐼(𝑘𝑥, 𝑘𝑦) 𝑑𝑘𝑦 𝑒
𝑖2𝜋𝑘𝑥𝑥𝑑𝑘𝑥 

= ∫∫ 𝐼(𝑘𝑥, 𝑘𝑦) 𝑒
𝑖2𝜋𝑘𝑦×0𝑑𝑘𝑦 𝑒

𝑖2𝜋𝑘𝑥𝑥𝑑𝑘𝑥 

= ∫∫ 𝐼(𝑘𝑥, 𝑘𝑦) 𝑒
𝑖2𝜋𝑘𝑦×0 𝑒𝑖2𝜋𝑘𝑥𝑥𝑑𝑘𝑥𝑑𝑘𝑦 

= 𝑖(𝑥, 𝑦 = 0) .              (10) 

Selecting a different 1D slice of the image i(x, y) can be done by multiplying the image spectrum 

𝐼(𝑘𝑥, 𝑘𝑦) with a proper phase function in Supplementary Eq. (10) as: 

𝐹𝑇−1(𝐿(𝑘𝑥)) = ∫∫𝐼(𝑘𝑥, 𝑘𝑦) 𝑒
𝑖2𝜋𝑘𝑦×𝑛 𝑒𝑖2𝜋𝑘𝑥𝑥𝑑𝑘𝑥𝑑𝑘𝑦 

= 𝑖(𝑥, 𝑦 = 𝑛) .              (11) 

Following the same analysis, we can further prove that extracting a single-pixel measurement from 

an image is equivalent to a 2D summation or projection of the spectrum: 



 

 

9 

 

∬𝐼(𝑘𝑥, 𝑘𝑦) 𝑑𝑘𝑥𝑑𝑘𝑦 = ∫∭𝑖(𝑥, 𝑦)𝑒−𝑖2𝜋𝑘𝑥𝑥𝑒−𝑖2𝜋𝑘𝑦𝑦𝑑𝑥𝑑𝑦 𝑑𝑘𝑥𝑑𝑘𝑦 

= ∬∬𝑒−𝑖2𝜋𝑘𝑥𝑥𝑑𝑘𝑥𝑒
−𝑖2𝜋𝑘𝑦𝑦 𝑑𝑘𝑦𝑖(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

= ∬𝛿(𝑥)𝛿(𝑦) 𝑖(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

= 𝑖(𝑥 = 0, 𝑦 = 0) .    (12) 

Supplementary Eq. (9) can be written in the matrix formalism as: 

𝐋 = ∫𝐺(𝑘𝑥, 𝑘𝑦, 𝑠)𝑃(𝑘𝑥, 𝑘𝑦) 𝑑𝑘𝑦 = 𝐆𝐏,                     (13) 

with P being the vectorized image spectrum. 𝐆 is a matrix whose row vector is the column entry 

of 𝐺(𝑘𝑥 , 𝑘𝑦, 𝑠): 

𝐆 =

[
 
 
 
 𝐆𝟏
𝐓

𝟎
𝟎
⋮
𝟎

 

𝟎
𝐆𝟐
𝐓

𝟎
⋮
𝟎

𝟎
𝟎
𝐆𝟑
𝐓

⋮
𝟎

 

𝟎
𝟎
𝟎
⋮
𝐆𝐧
𝐓]
 
 
 
 

,                     (14) 

where 𝐆𝐣  is the j-th column of 𝐆(𝑘𝑥, 𝑘𝑦, 𝑠) . Hence, each column of the image spectrum is 

independently coded by 𝐺𝑗 and then integrated: 

𝐋[𝑗] = 𝐆𝐣
𝐓𝐏𝐣.                     (15) 

This reveals the ill-posed nature of the problem of 2D imaging with 1D sensors: it essentially 

involves recovering a column 𝐏𝐣 from a single measurement 𝐋[𝑗]. Even with a strong prior that the 

signal 𝐏𝐤  is one-sparse, the minimum number of measurements needed is 𝑀 = 𝑂(𝑙𝑜𝑔𝑁) , 

indicating the inversion of Supplementary Eq. 15 will be unreliable. 

      CLIP’s approach to improving the conditioning of imaging with 1D sensors is to use a different 

PSF 𝐺(𝑘𝑥, 𝑘𝑦, 𝑠)  for each sub-aperture measurement, and thus increase the incoherent 

measurement number M:  

[
𝐋𝟏[j]
⋮

𝐋𝐌[j]
] = [

𝐆𝟏𝐣
𝐓

⋮
𝐆𝐌𝐣

𝐓
 ] 𝐏𝐣.                     (16) 

To design PSFs that are close-to-optimal for imaging with 1D sensors, we first identify the desired 

imaging metrics to be optimized: 1) a small PSF size Np in the spatial domain, and 2) incoherent 

PSFs with broad bandwidth. The first is to maximize image resolution for a given sensor resolution 

Nx—the maximum image resolution that the sensor can accommodate for a PSF of size Np is N=Nx-

Np. The incoherent PSFs with broad bandwidth are to satisfy the multiplexing requirement for 

stable signal recovery. As exemplified in Supplementary Eq. 16, the PSF column 𝐺1𝑗
𝑇 need be both 

broadband to efficiently encode 𝑃𝑗 into the measurement and be mutually incoherent to ensure a 

well-conditioned matrix for a stable solution. The minimal Np is 1, which corresponds to line-

shaped PSFs in both the spatial and Fourier domains, as indicated in Supplementary Fig. 5a. To 

make them mutually incoherent and broadband, the line-shaped PSFs are rotated to different angles 
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and further modulated by random codes to spread the spectrum over the entire Fourier domain 

(Supplementary Fig. 5b). For reference and comparison, randomly coded PSFs of various sizes Np 

(2, 4, 8, and 128) and their corresponding spectra are shown in Supplementary Figure 5c. Random 

coding of the line-shaped PSF can be implemented by attaching a coded amplitude mask onto a 

cylindrical lens as in Supplementary Fig. 5d. Because random codes are the optimal sensing basis 

when no prior signal information is available12, randomly coded line-shaped PSF is close to 

optimal for imaging with 1D sensors. 

      

 

Supplementary Figure 5. CLIP imaging with 1D sensors. a The line-shaped PSFs (top row) at 

different rotation angles and their corresponding spectrum in the Fourier domain (bottom row). b 

Encrypting the line-shaped PSF with random binary codes spreads the spectrum to cover the entire 

Fourier domain to obtain efficient multiplexing of the measurement for compressive sensing. c PSFs with 

different spatial sizes and encrypted with random codes to promote broadband multiplexing. The 

corresponding spectra are shown in the bottom rows. d The encrypted line-shaped PSF can be 

implemented by coding the cylindrical lens aperture with an (essentially one-dimensional) amplitude 
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mask. e Image reconstruction with a 1D sensor and a PSF with various spatial sizes Np (1 to 256). f Fix 

the PSF size at Np =256 and reconstruct the image with different numbers of measurement M (1 to 8). g 

Image reconstruction by rotating the corresponding PSFs in f to different angles in the range of [-45o, 

45o]. h Reconstructed images using M=10 different PSFs of different sizes without (top) and with 

(bottom) rotations. i The reconstruction quality is measured by the PSNR. The vertical lines at each point 

is the error bar. Note that the random line-shaped PSF with rotations consistently obtains the best 

reconstruction quality. PSNR: peak signal to noise ratio; PSF: point spread function; Np: line width. 

 

      We validated the optimality of randomly codeds line-shaped PSFs via synthetic studies. 

Imaging with a single random PSF with various sizes Np for the simple letter scene is given in 

Supplementary Fig. 5e. As expected, the ill-posed nature of the problem prevented decent image 

recovery in this case. However, when one gradually increases the measurement number M (i.e., M 

PSFs) as in Supplementary Fig. 5f, the images are recovered with progressively better fidelity. 

Nevertheless, noticeable artefacts are still observed in the reconstructions. By rotating the PSFs 

uniformly into different angles in the range of [-45o, 45o], the image quality in Supplementary Fig. 

5g is drastically improved. We evaluated the reconstructed image quality by the peak signal-to-

noise ratio (PSNR) and quantified the improvement obtained by CLIP in Supplementary Fig. 5h-

i. For this particular quantitative study, the number of PSFs is fixed at M=10, and we also varied 

the PSFs size Np to show the close-to-optimality of line-shaped PSFs. The image reconstructions 

without and with applying the PSF rotation are given in the top and bottom rows of Supplementary 

Fig. 5h. And the PSNR of the reconstructions is depicted in Supplementary Fig. 5i. It is noted that 

the PSF size doesn’t affect the reconstruction quality, while applying rotations to the PSF 

consistently improves the quality by more than 4 dB in PSNR. Overall, randomly coded line-shape 

PSF attains the best reconstruction quality while allowing the most efficient utilization of the 

sensor pixels, proving its close-to-optimal performance for imaging with 1D sensors.  

      It is noted that the implementation for randomly coded line-shape PSF is very similar to the 

coded-aerpture camera, with the camera lens and image sensor being replaced by a cylindrical one 

and 1D sensor respectively. Like coded-aperture imaging therefore, a one-time calibration step for 

the camera will be needed to retrieve PSF on the sensor by imaging a point source and scanning 

the 1D sensor along the other dimension. 

 

Supplementary Note 5. Comparison of CLIP with compressive light field photography 

Existing compressive light field imaging methods are not necessarily convolutional and can 

recover a 4D light field (na×na×N×N) from a 2D image (N×N). We compare them with CLIP and 

explain the unique advantages of CLIP in using sensors of arbitrary formats for efficient light field 

imaging. Most compressive light field photography methods share the roots with coded aperture 

imaging in using a mask (transmissive or reflective) to divide the system aperture into small 

patches, each modulating a sub-aperture image. The resultant sensor measurement is a weighted 

integration of all the sub-aperture images: 

𝐲𝟏 = ∑ 𝑤1𝑘𝐏𝐤 = [𝑤11𝐈, 𝑤12𝐈,⋯ , 𝑤1𝑛𝑎2𝐈] [

𝐏𝟏
𝐏𝟐
⋮
𝐏𝒏𝒂𝟐

]
𝑛𝑎
2

𝑘=1              (17) 
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where 𝐲𝟏 ∈ ℝ
𝑛2×1  is the vectorized sensor image, 𝐈 ∈ ℝ𝑛

2×𝑛2 is the identity matrix. 𝑤1𝑘 ≠ 𝑤1𝑗, 

and it is a scalar representing the mask transmission coefficient for the k-th sub-aperture image. 

𝐏𝒌 ∈ ℝ
𝒏𝟐×𝟏 is the corresponding vectorized sub-aperture image. It is noted that imaging without 

the coding mask is equivalent to setting all the weights 𝑤1𝑘 to 1. While na
2 different set of mask 

coefficients 𝑤𝑗𝑘 (and sensor measurements 𝑦𝑗) are typically needed to recover the light field (𝐏𝟏 

to 𝐏𝒏𝒂𝟐), Ashok13 and Babacan14 proposed to use a smaller number m<na
2 of mask coefficients and 

relied on the sparsity prior for a compressive reconstruction of a 4D light field. Ashok et.al., further 

showed that one can use a similar coding scheme for each microlens in an unfocused light field 

camera, and recover the spatial image on the microlens with a sub-Nyquist measurement dataset, 

thereby addressing the angular-spatial resolution tradeoff in unfocused light field cameras. 

Nevertheless, multiple measurements are still needed in Ashok and Babacan’s methods for 

recovering a light field. 

      Marwah5 et.al., generalized the mask position to anywhere between the aperture and the sensor.  

When the mask is positioned close to the sensor, different sub-aperture images are modulated with 

sheared (and thus incoherent) mask codes before being integrated by the sensor: 

𝐲 = ∑ 𝐂𝐤𝐏𝐤
𝑛𝑎
2

𝑘=1 = [𝐂𝟏, 𝐂𝟐, ⋯ , 𝐂𝑛𝑎2 ] [

𝐏𝟏
𝐏𝟐
⋮
𝐏𝒏𝒂𝟐

]     (18) 

where 𝐂𝐤 ∈ ℝ
𝑛2×𝑛2  is the block diagonal matrix containing the sheared mask code. One key 

improvement of Marvah’s work lies in the modulation of each sub-aperture image 𝐏𝒌  with a 

random code 𝐂𝐤 rather than 𝑤𝑗𝑘𝐈 as in Supplementary Eq. 17, thereby improving the conditioning 

of the inverse problem as 𝐂𝐤 is incoherent with respect to each other. Coupled with a dictionary 

learning process that better sparsifies a 4D light field, Marwah’s approach can recover a full 4D 

light field from a single measurement, eliminating the need of changing the mask codes. 

      The diffuser-camera-based light field imaging6,7 differs from the above approaches in being 

convolutional: each sub-aperture image is convolved with a random nonlocal point-spread-

function (PSF) before integration: 

𝐲 = ∑ 𝐌𝐤𝐏𝐤
𝑛
𝑘=1 = [𝐌𝟏, 𝐌𝟐, ⋯ ,𝐌𝑛𝑎2 ] [

𝐏𝟏
𝐏𝟐
⋮
𝐏𝒏𝒂𝟐

]     (19) 

with 𝐌𝐤 ∈ ℝ
𝑛2×𝑛2 being the Toeplitz convolution matrix for the random PSF in the k-th angular 

view. Light field imaging based on diffuser camera can be implemented with both lens8 and 

lensless manners7. When being used with a lens, the PSF for each sub-aperture image is more 

compactly supported, leading to an efficient utilization of the sensor pixels owing to smaller 

boarder effects. In contrast, the lensless approach features system simplicity, and it is free from 

lens-aberrations.  

      It is now clear that the differentiating factor among existing compressive light field imaging 

methods is the matrix operating on each sub-aperture image. The matrices (𝐈, 𝐂𝐤)  in Ashok, 

Babacan, and Marwah et.al. are all diagonal. As a result, the sensor resolution directly determines 

the spatial resolution of the recovered light field (both 𝐲 and 𝐏𝒌  are in ℝ𝑛
2×1), making these 

methods ill-suited for 0D, 1D, and sparse 2D sensors. In contrast, the Toeplitz matrix 𝐌𝐤  in 
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diffuser-camera-based light field imaging is non-diagonal, and its row vectors multiplex multiple 

elements of 𝐏𝒌  into one measurement in 𝐲  (owing to a nonlocal PSF). Though not being 

demonstrated yet, this allows in theory the recovery of a 4D light field from a sub-Nyquist 

measurement dataset (that is 𝐲 ∈ ℝ𝑚×1 with 𝑚 < 𝑛2while 𝐏𝐤 ∈ ℝ
𝑛2×1). 

      In contrast, CLIP is a systematic method for designing and transforming any imaging methods 

with nonlocal data acquisition into a highly efficient light field imaging approach. For a given 

imaging model with measurement matrix 𝐀, the transformation of CLIP is achieved by splitting 

the measurements into different angular views, as illustrated below: 

𝐲 = 𝐀𝐱 =

[
 
 
 
 
𝐚𝟏
𝐓

𝐚𝟐
𝐓

⋮
⋮
𝐚𝐥
𝐓

 

]
 
 
 
 

𝐱      
𝐓𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐢𝐧𝐠: 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔
⇒                             ⏟                    

𝐶𝐿𝐼𝑃 𝑆𝑡𝑒𝑝 1

 

𝐲 =

[
 
 
 
 
 
 
 
 
 
 
 
𝑣𝑖𝑒𝑤_1{[

𝐚𝟏
𝐓

⋮
𝐚𝐪
𝐓
] ⋯ 𝟎

⋮ 𝑣𝑖𝑒𝑤_𝑘 {[

𝐚𝐤𝐪+𝟏
𝐓

⋮
𝐚𝐤𝐪+𝐪
𝐓

] ⋮

𝟎 ⋱ 𝟎

𝟎 ⋯ 𝑣𝑖𝑒𝑤_𝑙 {[

𝐚𝐥𝐪+𝟏
𝐓

⋮
𝐚𝐥𝐪+𝐪
𝐓

]

]
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
𝐏𝟏
𝐏𝟐
⋮
𝐏𝒍 ]
 
 
 

=

[
 
 
 
𝐀𝟏 ⋯ 𝟎
⋮ 𝐀𝟐 ⋮
𝟎 ⋱ 𝟎
𝟎 ⋯ 𝐀𝑙]

 
 
 

[
 
 
 
𝐏𝟏
𝐏𝟐
⋮
𝐏𝒍 ]
 
 
 

= 𝐀′

[
 
 
 
𝐏𝟏
𝐏𝟐
⋮
𝐏𝒍 ]
 
 
 

,    (20) 

 

where 𝐚𝐤
𝐓 is a row vector and 𝐱 (an image from a single angular view) is extended to a 4D light 

field (𝐏𝟏  to 𝐏𝒍 ) with l=na
2 views (sub-apertures). While the imaging model becomes bock 

diagonal, recovering the light field is equivalent to solve each sub-aperture image 𝐏𝐤  with a 

corresponding sub-measurement matrix 𝐀𝐤. We can better exploit the correlations (redundancy) 

in the 4D light field by solving Supplementary Eq. 20 with appropriate sparsity based 

regularizations, as used in compressive light field imaging methods5–7. It is noteworthy that the 

elemental matrix 𝐀𝐤 is not longer diagonal as 𝐈 or 𝐂𝐤, a key fact that enables CLIP to use 0D or 

1D sensors for light field imaging. We demonstrated 4D light field recovery using CLIP in 

Supplementary Note 7.  

      The second key differentiating factor of CLIP is explicit modeling of the correlations among 

sub-aperture images as 𝐏𝒌 = 𝐁𝐤𝐡 via light field propagation, assuming a uniform angular intensity 

distribution as derived in Supplementary Note 1. This simplifies Supplementary Eq. 20 to the CLIP 

equation 3 in the main text: 
 

𝐲 =

[
 
 
 
𝐀𝟏 ⋯ 𝟎
⋮ 𝐀𝟐 ⋮
𝟎 ⋱ 𝟎
𝟎 ⋯ 𝐀𝑙]

 
 
 

[

𝐏𝟏
𝐏𝟐
⋮
𝐏𝑙

]   
𝐏𝐤=𝐁𝐤𝐡
⇒      ⏟    
𝐶𝐿𝐼𝑃 𝑆𝑡𝑒𝑝2

  𝐲 =

[
 
 
 
𝐀𝟏 ⋯ 𝟎
⋮ 𝐀𝟐 ⋮
𝟎 ⋱ 𝟎
𝟎 ⋯ 𝐀𝑙]

 
 
 

[
 
 
 
𝐁𝟏𝐡 
𝐁𝟐𝐡
⋮
𝐁𝑙𝐡 ]

 
 
 

=

[
 
 
 
𝐀𝟏𝐁𝟏
𝐀𝟐𝐁𝟐
⋮
𝐀𝑙𝐁𝑙 ]

 
 
 

𝐡 = 𝐀′′𝐡.       (21) 

This step has the advantage of enabling more complicated images to be recovered without the need 

of finding/learning a better sparsifying basis for the 4D light field, which is an important step in 

Marwah’s work. We show this advantage in Supplementary Note 8. 
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      The computation complexity of compressive light field photography and CLIP depends on the 

light field resolution and the applied regularization method under the framework of regularization 

by denoising (see Methods). In CLIP, each iteration involves a pass of 𝐀′′ and 𝐀′′𝑻 along with a 

denoising step. The complexity for the shearing operation and matrix 𝐀 is o(𝑛𝑎
2𝑁2) and o(𝑚𝑁2) 

respectively, leading to a total complexity of o((𝑛𝑎
2 +𝑚)𝑁2)  for both 𝐀′′  and 𝐀′′𝑻 . The 

complexity of BM3D and TV denoising for regularization is directly related to the image size as 

o(𝑘𝑁2), with k being a denoiser-dependent constant. Therefore, the total complexity of CLIP 

image recovery is o((2𝑚 + 2𝑛𝑎
2 + 𝑘)𝑁2) per iteration. In comparison, while the complexity for 

𝐀′ and 𝐀′𝑻 in Supplementary Eq. 20 for retrieving the 4D light field remains o(𝑚𝑁2) owing to the 

block diagonal structure, the denoising complexity of a 4D light field becomes  o(𝑘𝑛𝑎
2𝑁2) , 

resulting in a total complexity of o((2𝑚 + 𝑘𝑛𝑎
2)𝑁2). Similarly, we can analyze the computation 

complexity per iteration for compressive light field imaging methods based on the model in 

Supplementary Eq. 17 to 19. Supplementary Table 1 summarizes the characteristics of CLIP and 

compressive light field photography. It is worth noting that the computation complexity of 

Marwah’s work does not account for the dictionary learning process, and the regularization is 

applied on the entire light field. Also, the convolution model of the diffuser-camera is accelerated 

by FFT. 

Supplementary Table 1 Comparison of CLIP and compressive light field photography 
Methods Sensor Light field 

size 

Measurement 

data size 

Compression 

axis 

Computation complexity 

Ashok13 2D na×na×N×N r×N×N 
Angular or 

spatial 
o((2𝑟 + 𝑘)𝑛𝑎

2𝑁2) 

Babacan14 2D na×na×N×N r×N×N Angular o((2𝑟 + 𝑘)𝑛𝑎
2𝑁2) 

Marwah5 2D na×na×N×N N×N Angular o((2 + 𝑘)𝑛𝑎
2𝑁2) 

Cai7, 

Antipa8 
2D na×na×N×N N×N Angular 

o((4𝑙𝑜𝑔𝑁 + 𝑘𝑛𝑎
2)𝑁2) 

CLIP 
0D, 

1D, 2D 
na×na×N×N m (≤ N×N) 

Angular 

and/or spatial 

4D light 

field 
o((2𝑚 + 𝑘𝑛𝑎

2)𝑁2) 

Refocus 

image 
o((2𝑚 + 2𝑛𝑎

2 + 𝑘)𝑁2) 

 

Supplementary Note 6. Generality of CLIP 

While recovering a 4D light field is always under-determined in CLIP and compressive light field 

photography methods, directly recovering a refocused image by CLIP is not necessarily the same. 

As a result, CLIP isn’t bounded to the compressive regime, though one of its major appeal is to 

record a large-scale light field with a highly limited sensor budget. When working in the 

compressive regime, it is important to evaluate whether the system matrix 𝐀′ of CLIP supports a 

uniform recovery of arbitrary k-sparse vectors (vectors with at most k non-zero entries) in the 

classic sparse signal model by computing the restricted isometry property (RIP) of matrix 𝐀′. 
However, RIP is not a necessary condition and computing the RIP constant is an NP-hard problem. 

Up to now, only a limited types of matrices have been proven to satisfy RIP with an exponentially 

high probability. On the other hand, it was shown15 that there is an absence of RIP in a range of 

practical compressive imaging applications, and yet, experimental image recovery is excellent. 

These applications include compressive x-ray tomography, MRI, and single pixel cameras. The 

work of Bastounis15 and Roman16, among other similar works17, attributed the correct recovery of 
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image x to the structured-sparsity of x (that is, the sparsity of x has a structure instead of exhibiting 

an arbitrary pattern), and together with an extended concept of RIP in levels, explained the success 

of these compressive imaging methods in practice, despite that their measurement matrices failed 

to satisfy the classic RIP. As natural images are highly structured, and CLIP with 0D and 1D 

sensors are transformed from the single pixel cameras and x-ray tomography methods respectively, 

it is expected that CLIP can attain similar imaging performance in practice. 

      We followed the philosophy of generalized flip test proposed by Roman et.al.16 to evaluate the 

general applicability of CLIP under the structured-sparsity signal model. This idea of the test is to 

evaluate the reconstruction quality of different images with the same sparsity. To generate such 

images, we applied shift, flip, rotation operation on some image part, and evaluated the 

reconstruction error using normalized mean square errors (NMSE). As CLIP deals with light field 

data, these operations should be applied to 3D objects. To this end, the 3D scenes were modelled 

in Blender software for rendering the 4D light field data on a regular 2D grid.  

      Throughout the manuscript, synthetic CLIP measurement with 1D and 0D sensors were 

obtained as follows. In CLIP-0D, each sub-aperture image is encoded with random binary codes 

to yield mk=m/l single-pixel readings. For CLIP-1D, the measurements are obtained in three steps: 

a) generate m/N projection angles α uniformly in the range of [0, 180o]; b) randomly permute the 

angles α and distribute evenly into the l sub-apertures; c) calculate for each sub-aperture image the 

projection data along the assigned angles. The sampling ratio (SR) is defined as the quotient 

between the total number of measurements m and the image size N2 (rather than the 4D light field). 

For this test, we fixed SR at 0.5.  

      Supplementary Figure 6 and 7 show the CLIP imaging results for two different scenes under 

various focus settings, with NMSE listed on Supplementary Table 2. It is noted that CLIP 

consistently yields a NMSE below 10% for SR=0.5, indicating its generality in coping with natural 

scenes when working in the compressive regime. Further results demonstrating the generality of 

CLIP are given in Supplementary Note 11, which employs CLIP (with different sampling ratio 

SRs) to represent experimentally acquired light field data for scenes with different BRDFs. 

Supplementary Table 2. NMSE of CLIP reconstruction for synthetic scene 1 and 2 
 

s 
CLIP-1D CLIP-0D 

Original Shift Flip Rotate Original Shift Flip Rotate 

Scene 1 

-0.8 7.28% 8.75% 8.13% 7.26% 8.75% 9.66% 9.70% 9.36% 

-0.1 9.53% 7.10% 7.14% 7.59% 8.71% 7.97% 9.22% 8.18% 

0.5 7.22% 7.96% 7.17% 6.38% 8.97% 9.34% 8.52% 8.39% 

Scene 2 

-0.6 4.71% 4.34% 4.88% 4.54% 5.40% 5.37% 5.20% 4.64% 

0 5.52% 3.70% 3.67% 4.28% 5.47% 5.57% 5.54% 5.54% 

0.8 6.48% 4.21% 4.40% 4.89% 5.22% 4.86% 4.59% 5.08% 
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Supplementary Figure 6. Generalized flip test of CLIP reconstruction for synthetic scene 1 

with SR = 0.5. The ground truth light field size is 8×8×128×128, and the measurement data size is 

64×128, leading to a data reduction of 128. s: refocusing parameter, CLIP: compact light field 

photography. 
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Supplementary Figure 7. Generalized flip test of CLIP reconstruction for synthetic scene 2 

with SR = 0.5. The ground truth light field size is 8×8×128×128, and the measurement data size is 

64×128. s: refocusing parameter, CLIP: compact light field photography. 

 

Supplementary Note 7. Quantitative evaluation of CLIP performance in experiments 

We quantitatively evaluated the performance of CLIP via experimental measurements when 

feasible and turned to synthetic studies otherwise. This is because for computational imaging 

employing nonlocal sampling strategies, ground truth data is typically difficult to obtain 

experimentally: a system reconfiguration with perfect alignment is necessary. Taking CLIP 

imaging with 1D sensors for example, one needs to swap the cylindrical lenslet array into its 
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spherical counterpart and adds a 1D scanning to obtain the ground-truth light field. This reference 

imaging needs to be precisely realigned to show the same magnification and field of view with 

CLIP: any mismatch will otherwise bias the quantitative evaluation of its imaging accuracy.  

      For CLIP imaging with 0D sensors, the 4D light field can be fully sampled (though not based 

on conventional 2D sensors): for each angular position behind the lens, the sub-aperture image can 

be acquired with a measurement number equal to or larger than the image resolution (thus doesn’t 

rely on compressive sensing), and this imaging process is repeated at all angular positions. CLIP 

measurement can be readily obtained from this dataset by extracting a small subset measurement 

from each angular position and stacking the complementarily extracted data into a final 

measurement as described by Supplementary Eq. 20. We present experimental validation of CLIP 

with 0D sensor in this section and synthetic evaluation of CLIP with 1D sensor in the following 

sections.  

      Two different scenes composed of printed letters were imaged by CLIP-0D experimentally, 

and both the 4D light field and direct image reconstructions are demonstrated under different 

sampling ratio SR. The ground truth 4D light field has a resolution of 4×4×128×128 and was 

obtained by reconstruct each sub-aperture image using a complete measurement. Similarly, the 

ground truth refocused image was obtained from the 4D light field. Supplementary Figure 8 and 9 

shows the 4D light field reconstruction results by CLIP for the two scenes and the direct 

reconstruction of different refocused images are given in Supplementary Figure 10. The 

reconstruction error is quantified by NMSE in Supplementary Table 3. It is noted that both the 4D 

light field and direct reconstruction of refocused images attained a NMSE error below 10% in 

experiments. 

Supplementary Table 3. NMSE of CLIP-0D reconstruction for experimental scenes 

 
Sampling 

ratio 

4D light 

field 
s = -1 s = -0.3 s = 0.3 s = 1 

Scene 1 

SR = 1 7.08% 1.94% 1.53% 1.39% 1.76% 

SR = 0.5 7.31% 2.32% 2.15% 1.83% 2.29% 

SR = 0.25 8.84% 5.41% 3.06% 2.57% 3.22% 

Scene 2 

SR = 1 1.34% 0.94% 0.66% 0.61% 0.67% 

SR = 0.5 2.13% 1.34% 1.39% 1.35% 1.46% 

SR = 0.25 5.06% 3.99% 4.16% 3.75% 3.07% 
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Supplementary Figure 8. CLIP-0D 4D light field reconstruction for experimental scene 1. The 

sampling ratio (SR) is varied from SR = 1 to 0.25. 

SR = 1Ground truth

SR = 0.5 SR = 0.25

0

1
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Supplementary Figure 9. CLIP-0D 4D light field reconstruction for experimental scene 2 The 

sampling ratio (SR) of CLIP is varied from SR = 1 to 0.25. SR: sampling ratio. 
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Supplementary Figure 10. CLIP-0D direct reconstruction of refocused images for experimental 

scene 1 and 2. The sampling ratio (SR) of CLIP is varied from SR= 1 to 0.25. s: refocusing parameter. 

 

Supplementary Note 8. CLIP 4D light field reconstruction versus direct reconstruction 

While CLIP can recover a 4D light field as demonstrated in previous note, we show here that 

directly recovering a refocused image can better accommodate complex scenes, particularly for 

imaging with lower dimension (1D or 0D) sensors. Marwah’s work relied on a dictionary learning 

process to obtain a representation basis to better sparsify the 4D light field, thereby attaining 

excellent 4D light field reconstruction for complex scenes. On the other hand, Antipa7 pointed out 

that improper regularization of the 4D light field in diffuser-based camera can degrade (or even 

destroy) the angular information in the light field.  

      In contrast, CLIP doesn’t rely on high quality 4D light field reconstruction to obtain excellent 

refocused images: CLIP’s complementary measurements among sub-apertures can significantly 

improve the refocused images despite the recovered 4D light field may not be of high quality, 

which is the case unde the compressive regime. Further, CLIP can directly recover a refocused 

image like coded-aperture and wavefront-coding methods to accommodate complex scenes better, 

as explained in previous section. We demonstrate this via a synthetic study for the synthetic scene 

2 and an experimentally acquired light field from the ‘letter scene’, using a sampling ration of 

SR=1. During the reconstruction for the 4D light field, the regularization parameter is tuned from 

to obtain a best refocused image from the light field data. Supplementary Figure 11 shows the 

recovered 4D light field and refocused images for the two scenes under the CLIP-1D (a and b) and 

CLIP-0D (c and d) implementations, with the NMSE listed in Supplementary Table 4. It is noted 

that while the light field suffers from significant background signals and noises, the refocusing 

processing coherently assembles CLIP’s complementary imaging across the sub-apertures to yield 

substantially better refocused image. Moreover, CLIP’s direct reconstruction further improved the 

quality of the refocused image by rendering more image details and a higher contrast. 
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Supplementary Table 4. NMSE of 4D and direct CLIP reconstructions 
 Scene Method s=-1.0 s=1.0  Method s=1.0 s=1.0 

CLIP-1D 

1 

4D recon. 11.98% 6.08% 

CLIP-0D 

4D recon. 10.47% 10.67% 

Direct 

recon. 
3.66% 4.16% 

Direct 

recon. 
6.23% 7.35% 

2 

4D recon. 18.68% 8.48 % 4D recon. 13.02% 7.53% 

Direct 

recon. 
6.33% 6.75% 

Direct 

recon. 
4.41% 4.05% 

 

 

Supplementary Figure 11. 4D light field reconstruction versus direct reconstruction of refocused 

images by CLIP. a-b, CLIP-1D reconstruction for the synthetic scene and the experimental ‘letter’ scene. 

c-d, CLIP-0D reconstruction for the two scenes. The sampling ratio (SR) of CLIP is fixed at SR=1. CLIP: 

compact light field photography; s: refocusing parameter. 

 

Supplementary Note 9. CLIP robustness 

The robustness against missing pixels of CLIP is demonstrated to some extent by imaging with 

sparse 2D detectors in Supplementary Note 5. Here, we test the robustness of CLIP against 

erroneous measurements. Two typical errors are dead (or missing) pixels and saturated sensor 

readings. We tested the case that the measurement containing both types of errors by first 
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normalizing the measurement data, and then randomly setting part of the measurement to 0 (dead) 

or 1 (saturated). The error induced by defective measurement is evaluated by NMSE for both the 

raw measurement data and reconstructed images. Fixing the sampling ratio SR at 1, we varied the 

percentage of the erroneous measurement from 0.1% to 1% for the experimental data in CLIP-0D, 

and 1% to 10% for the synthetic data in CLIP-1D. Supplementary Figure 12 shows the CLIP 

imaging results, and the corresponding NMSEs are summarized in Supplementary Table 5. Owing 

the nonlocal data acquisition strategy and the regularization step, the reconstructed image error in 

CLIP is substantially smaller than the error in the raw measurements, making it more robust than 

classic imaging methods. 

Supplementary Table 5. NMSE of CLIP reconstruction with erroneous measurement 
CLIP-0D CLIP-1D 

Error percent 0.1% 0.2% 1% Error percent 1% 5% 10% 

Exp. 

Scene 1 

Data 

error 

5.68% 9.9% 37.2% 

Synthetic 

Scene 1  

Data 

error 

14.53% 47.90% 66.39% 

Image 

error 

1.54% 2.08% 11.24% Image 

error 

5.07% 12.1% 15.2% 

Exp. 

Scene 2 

Data 

error 

22.52% 36.29% 75.88% 

Synthetic 

Scene 2 

Data 

error 

8.99% 34.83% 53.43% 

Image 

error 

4.50% 4.7% 6.5% Image 

error 

1.68% 6.05% 9.38% 

 

Supplementary Figure 12. CLIP reconstruction with different amount of erroneous measurement 

data. The error in the title is listed as percentage of the total measurement number. Syn.: synthetic; Exp.: 

experimental; CLIP: compact light field photography. 
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      The robustness of CLIP for photon-starved imaging applications, which are limited by Poisson 

(or shot) noises, are demonstrated in Supplementary Figure 13 by varying the maximum number 

of photons in measurement from 400 to 10000. As indicated by the NMSE in Supplementary Table 

6, while CLIP-0D is more susceptible to Poisson noises, it can still recover the rough structure of 

complex scenes with a maximum of only 1000 photons. Since single pixel imaging usually benefit 

from a larger photon-detector, CLIP-0D is expected to cope well with shot-noise limited imaging 

applications. 

Supplementary Table 6. NMSE of CLIP imaging with different number photons 
 Photons Scene 1 Scene 2  Photons Scene 1 Scene 2 

CLIP-1D 

400 7.30% 2.85% 

CLIP-0D 

400 57.88% 43.45% 

1000 6.54% 2.66% 1000 40.62% 25.45% 

4000 5.92% 2.55% 4000 20.58% 16.16% 

10000 6.01% 2.53% 10000 14.95% 7.05% 

 

 

Supplementary Figure 13. CLIP reconstruction with different number of photons. NP is the 

maximum number of photons in the measurement dataset. CLIP: compact light field photography. 
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Supplementary Note 10. 3D Imaging through occlusion by ToF-CLIP 

Our proof of concept demonstration of seeing through occlusion used a oblique illumination to 

ensure both the occluder and the obscured objects are covered by the laser. In practice, high power 

lasers are bulky and most LiDAR systems used an array of synchronized laser diodes to deliver 

sufficient energy within a flash illumination. For ToF-CLIP under a camera array implementation, 

it is feasible to distribute the laser diodes to each invidual view as illustrated in Supplementary 

Fig. 14a, where the laser diodes (could be more than one) in each view provide a diverged 

illumination and are closely packed with the sensor to make them roughly co-located. This allows 

the laser diodes and time-of-flight sensor to share approximately the same field of view and 

therefore facilitates imaging through occlusions without special coordination of the illumination. 

 

 

Supplementary Figure 14. 3D imaging through occlusions. a ToF-CLIP camera with roughly con-

located laser diodes and sensor for seeing thourgh occlusions. b Geometry for calculating the inactive 

region caused by the occluder, and the experimental setup for dynamic imaging studies. c-d Additional 

imaging results of seeing through occlusions. The reconstructed 3D images are rendered in different 

perspectives. A small circular plate are blocked by a letter V (c) and a triangular plate is placed behind a 

rectangular plate (d). LD: laser diode; CLIP: compact light field photography; 3D: three-dimensional. 

      The ability to see through occlusions relies critically on part of the object being visible to at 

least one view of the ToF-CLIP camera. As a result, there will be an inactive region where the 

object cannot be detected if an occluder blocks its signal in all the views. Supplementary Figure 

14b shows the geometry for determining the inactive region caused by a solid occluder (i.e., no 
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hollow structures allowing some light to pass through). Denoting the aperture base line of the CLIP 

camera as L, the occluder size and its distance to the camera as D and d respectively, the length of 

the inactive region can be calculated as 𝑙𝑑 = 𝑑𝐷 (𝐿 − 𝐷)⁄ . A negative 𝑙𝑑  (D>L) indicates the 

inactive region extends to infinity and thus it will not be possible to sense any objects behind the 

occluder. This is common in conventional imaging approaches, where the camera aperture has a 

small baseline L. 

      A photograph of system setup for the dynamic imaging experiment is shown in the bottom of 

Supplementary Figure 14b, where the camera baseline L is ~15 mm, and the occluder was placed 

at approximately d=50 mm (or ~40 mm in the static studies) from the lenslet array. For an occluder 

with width 𝐷 ≈ 6 (or 10) mm, the inactive region is hence 𝑙𝑑 ≈ 33 (𝑜𝑟 80)𝑚𝑚. The object was 

positioned at a distance ~70 mm (or >90 mm for different static studies) from the occluder to avoid 

falling into the inactive region. Two additional experimental results of 3D imaging through 

occlusions are shown in Supplementary Fig. 14c-d, where the obscured objects are placed at a 

distance behind the occluder to be outside the inactive region. Similar to the large camera array 

system18, CLIP’s reconstruction process essentially synthesize the small apertures from all the 

views into a large one, and hence allow it to peek through occlusions. A key difference is that 

while the conventional camera array can directly visualize different parts of the obstructed object 

from certain views, CLIP only captures an implicit nonlocal measurement for it.  

      We further compare CLIP with conventional light field imaging for seeing through occlusions 

via synthetic studies. The 4D light field for 3D scenes were rendered in Blender software with a 

resolution of 8×8×128×128, and CLIP measurement were obtained as in previously sections. 

Unlike ToF based measurements that can separate signals of the occluder and occluded objects in 

time, conventional imaging systems can only defocus the occluder, yielding significant 

background for visualizing the occluded objects. To emulate ToF measurement for minimizing 

background, the occluder can be made black in Blender such that its image signal is negligible in 

the generated light field. Supplementary Figure 15 shows four examples of imaging through 

occlusions: a mannequin standing behind a tree, the mannequin partially occluded by the black 

rectangular plate, the ‘CLIP’ letter placed behind a bush, and the ‘CLIP’ letter being blocked by a 

black rectangular occluder. The CLIP reconstruction NMSE errors are shown in Supplementary 

Table 7. It is noted that even with a sampling ratio of SR=0.5 that corresponds to a reduction of 

the 4D light field by 128 times, CLIP can effectively see through severe occlusions with an error 

below 10%. With ToF measurement that produces far sparser 2D instantaneous images and 

separate the occluder signal in time, as emulated by black occluder, CLIP can hence attain 

background-free imaging of occluded objects with a small number of sensors. 

Supplementary Table 7. NMSE of CLIP imaging through occlusions 
 Scene SR=1.0 SR=0.5  Scene SR=1.0 SR=0.5 

CLIP-1D 

1 2.14% 2.68% 

CLIP-0D 

1 4.29% 6.96% 

2 0.89% 2.44% 2 2.19% 3.810% 

3 3.03% 4.83% 3 4.37% 6.41% 

4 2.62% 4.12% 4 3.25% 4.77% 
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Supplementary Figure 15. CLIP imaging through occlusions for four different scenes. The 

sampling ratio (SR) of CLIP is varied from SR= 1 to 0.5. CLIP: compact light field photography. 

 

Supplementary Note 11. CLIP generality: representing 4D light field data 

We show additional ressults of applying CLIP to represent 4D light field acquired by a custom 

unfocused plenoptic camera for scenes with different BRDFs. The ground truth light fields have a 

dimension of l=8×8 (angular) and N2=128×128 (spatial), and the CLIP measurement are generated 

similarly as the synthetic study in Supplementary Note 5.  

      Supplementary Figure 16 shows the CLIP representation of the light field data of the ‘letters’ 

scene composed of three-letter plates separated at different depths. The ground truth images 

generated by canonical processing of the 4D light fields, and the corresponding results reproduced 

by the CLIP framework are arranged in a tabular format. For both the CLIP-0D and CLIP-1D 

approaches, CLIP achieved the same light field processing capabilities as conventional light field 

cameras, including post-capture refocusing, depth retrieval, and extending the depth of field. The 

recovered image quality in CLIP varies with the sampling ratio SR: a small oversampling with 

SR=2 leads to almost indistinguishable imaging results from the ground truth. At the same time, 

compressive sensing (SR<1) tends to degrade the image resolution by washing out high-frequency 

features, as a stronger image prior is imposed herein for compressive reconstruction. Still, we 

emphasize that the measurement number is only a fraction of that in a single sub-aperture image 
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and is two orders of magnitude less than the full 4D light field. The NMSE of the CLIP 

representation results are summarized in Supplementary Table 8. 

Supplementary Table 8. NMSE of CLIP representation of the ‘letters’ scene 
 SR 2 1 0.5  SR 2 1 0.5 0.25 

CLIP

-1D 

s = -1.0 1.75% 2.79% 5.32% CLIP

-0D 

s= -1.0 1.75% 2.60% 3.99% 6.61% 

s = -0.4 1.47% 2.63% 4.54% s= -0.4 1.48% 2.49% 4.06% 5.58% 

s = -0.1 1.59% 3.04% 5.91% s= -0.1 1.64 % 2.84% 4.48% 7.50% 

 

 

Supplementary Figure 16. CLIP representation of light fields for the ‘letters’ scene. Sampling ratio 

SR=1 indicates the measurement number m equals the image size: m=N×N. LIFT: light field tomography; 

SPC: single-pixel camera. The refocusing capability is rendered (s<0 refocus to close depth) when 

sweeping the imaging focus from close to far, gradually bringing three-letter plates into focus. Although 

CLIP reconstruction becomes nosier and leads to more deficient depth maps as the sampling ratio 

decreases, the extracted depth map can correctly separate the three letter plates into different depths in all 

cases. eDOF: extended depth of field; CLIP: compact light field photography; s: refocusing parameter. 

      The images in Supplementary Fig. 17-18 are taken under the macro photography setup with a 

imaging magnification around 0.5. While the assumption of uniform angular intensity might 

become less accurate in this setting, CLIP managed to reproduce light field imaging results 

comparable with those yielded by convetional methods, even for the ‘bolt-letter’ scene that contain 

a shinny metal bolt. This illustrates that for applications where quantititavie analysis based on 

image intensity is not critical, CLIP can be employed for efficient light field imaging. Also, 

although the depth maps become noiser as the samping ratio SR gets smaller, the relative depth 
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for regions containing sufficient textures (e.g. the letters part) can be recovered in all the cases. 

Supplementary Table 9 and 10 detailed the NMSE of the CLIP representation for the two scenes.  

 

Supplementary Table 9. NMSE of CLIP representation of the ‘slanted-text’ scene 
 SR 2 1 0.5  SR 2 1 0.5 0.25 

CLIP

-1D 

s = -1.0 0.97% 4.5% 9.97 % CLIP

-0D 

s = -1.0 3.01% 4.91% 8.03% 11.94% 

s = -0.4 0.80 % 1.78% 6.41% s = -0.4 4.10% 3.85% 6.13% 9.31% 

s = 0.3 0.72% 3.39% 5.54% s = 0.3 3.29% 5.88% 7.62% 15.77% 

 

 

Supplementary Figure 17. CLIP representation of light fields for the ‘slanted-text’ scene. A paper 

printed with letters is attached on a slanted plate. Owing to the simplicity of the scene, an SR of 0.25 that 

leads to a reduction of light field data by 256 folds can be used for CLIP. eDOF: extended depth of field; 

CLIP: compact light field photography; s: refocusing parameter; SR: sampling ratio. 

 

Supplementary Table 10. NMSE of CLIP representation of the ‘bolt-letter’ scene 
s SR 2 1 0.5  SR 2 1 0.5 0.25 

CLIP

-1D 

s = -1.0 0.97% 2.46% 4.77 % CLIP

-0D 

s = -1.0 0.82% 1.27% 1.96% 3.28% 

s = -0.5 0.80 % 2.04% 3.84% s = -0.5 1.31% 1.72% 2.35% 3.25% 

s = 0.2 0.72% 1.70% 3.23% s = 0.2 0.85% 1.22% 2.11% 2.94% 
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sSupplementary Figure 18. CLIP representation of light fields for the ‘bolt-letter’ scene. Note that 

the shinny regions on the metal bolt can be well recovered. eDOF: extended depth of field; CLIP: 

compact light field photography; s: refocusing parameter; SR: sampling ratio. 

 

 

 

Supplementary Note 12. Hybrid frequency-time NLOS reconstruction for curved surfaces 

 

Supplementary Figure 19. Hybrid frequency-time domain reconstruction algorithm for NLOS 

imaging. A virtual planar surface between the curved surface the hidden 3D scene is chosen, and the 

measured spatiotemporal waveform on the curved surface is computationally propagated in the time 

domain onto the virtual planar surface. The frequency-domain solver19 proposed by Liu. et.al can then be 
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readily exploited for recovering the hidden scene. Note that the virtual planar plane can span a larger 

baseline than that of the curved surface to reconstruct beyond the surface area, which is generally done by 

zero-padding the Fourier domain data in the frequency domain algorithms. rp : laser spot; rv : spot on the 

virtual plane. 

 

Supplementary Note 13. Adjoint CLIP reconstruction for NLOS imaging 

With real-time NLOS reconstruction being addressed by frequency domain algorithms19–21, the 

CLIP image recovery should be similarly efficient for real-time acquisition of time-of-flight data. 

As the relaying wall is effectively the aperture in NLOS imaging, it is possible to tolerate some 

noises and artefacts on it while still obtain a recognizable reconstruction of the hidden objects. 

Though sub-optimal in terms of noise robustness, it could be useful for high-speed detection and 

tracking applications in the field, where imaging speed rather than quality is critical. In this case, 

we show that a fast CLIP recovery is possible by applying the adjoint operator of the forward 

model on the measurement data: 

𝐡̃ = [𝐅(𝐝)]𝐓𝐟 = [𝐅(𝐝)]𝐓[𝐅(𝐝)𝐡 + 𝛔] = [𝐅(𝐝)]𝐓𝐅(𝐝)𝐡 + 𝛔′,      (22) 

where 𝛔′ is the amplified noises. The reconstruction is only accurate when the forward models 

𝐅(𝐝) is unitary, i.e., [𝐅(𝐝)]𝐓𝐅(𝐝) = 𝐈, which is ususally not the case. Nevertheless, inverting 

linear systems with adjoint operators for an approximate solution has long been used in seismic 

imaging and computed tomography. With the image at each time being recovered independently, 

the computation complexity for the adjoint reconstruction of a time-of-flight data cube with a 

dimension of (N, N, Nt) is o(NtN2m). 

      Supplementary Figure 20a-c show our experimental NLOS imaging results (maximum 

intensity projection along depth direction) for the three hidden objects using the iterative (left) and 

adjoint (middle) methods to recover the time-of-flight data. Owing to the sub-optimal 

reconstruction and low signal-to-noise ratio of the experimental data, the adjoint method leads to 

noiser NLOS images with strong background around the objects. However, the rough shape of the 

objects is still discernable and could be enhanced by a hard image thresholding in the right column. 

When the signal-to-noise ratio is reasonably large in the raw signal, the simple adjoint method can 

lead to high quality NLOS reconstruction as shown in the synthetic results in Supplementary Fig. 

20d-f. The experimental ‘office-scene’ dataset22 used there were acquired by a SPAD with an 

exposure time varied from 20 ms to 5 ms and 1 ms, and the maximum photon counts across the 

temporal data cube is 19, 15, and 6 respectively. To simulate NLOS imaging via CLIP, the time-

of-flight data is transformed by the forward operator F(d) (for a fixed d) and then recovered with 

the adjoint method. With a sampling ratio of SR=0.1 for the tomographic CLIP measurement, the 

NLOS image obtained by the adjoint method is very close to the ground truth for the dataset 

acquired with an exposure time of 20 ms. The rough shape of the scene can also be inferred most 

of the time, except for the case that emulates the CLIP acquisition of the dataset with an exposure 

time of 1 ms at sampling ratio of SR=0.05.  
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Supplementary Figure 20. NLOS imaging using time-of-flight data recovered by the adjoint 

methods. a-c Reconstruction of three hidden objects in main Fig. 4 by applying the adjoint method for 

CLIP recovery. d-f Synthetic NLOS imaging for the ‘office-scene’ dataset, with the exposure time varied 

from 20 ms to 5 ms and 1 ms from top to bottom. The CLIP sampling ratio is made at SR=0.05 and 0.1 

under the tomographic camera embodiments, similar to our current experimental demonstration 

(SR=0.05). SR: sampling ratio. 

 

Supplementary Note 14. Additional flash LiDAR imaging results 
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Supplementary Figure 21. Snapshot flash LiDAR imaging over an extended depth range for a 

cluttered scene. a Reference photographs from the front and side view. b A projected 2D LiDAR images 

of the scene along the depth direction, and a 3D view of the point-cloud representation. c Top view of the 

point cloud. d Projected LiDAR images of the 3D scene by refocusing the camera onto a few different 

focal planes. The complexity of the 3D scene makes it hard to interpret and to compare the LiDAR results 

with a single 2D photograph. To ease the comparison, we labeled the objects with numbers in both the 

LiDAR results and photographs. 3D: three-dimensional. 

 

 

Supplementary Figure 22. Flash LiDAR with a visible 532 nm illumination. To better show the 

capability of CLIP in recover shadows on a background wall, we changed the illumination to a 532 nm 

picosecond laser, which allows the ground truth shadow cast by the occluding objects to be captured by a 

video camera. a Reference photographs of the scene with laser illumination. b-d Rendering the scene in a 

3D view, and from the top and side perspective, respectively. The laser illumination is not uniform across 

the camera FOV, as revealed by the wall’s edges that reproduced the circular illumination pattern. 3D: 

three-dimensional. 
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