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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

This paper describes a method for reconstructing scene images from a light field a captured by a 

camera array that relies on sparse sampling of the camera images. This adjustment results in faster 

and more robust reconstruction method. The authors demonstrate their method using several 

experimental implementation and application examples. They also introduce a new method for NLOS 

image reconstruction from non-planar relay surfaces. The paper does not seem to mention that this 

problem has been addressed in other works, even though the papers are cited. 

Overall the paper is well written and introduces an interesting method. However there are several 

issues that need to be clarified before it can be evaluated. 

1. Some of the intro sounds a little like a sales pitch. For example lines 70 to 74. Maybe try to use 

some more objective language here. 

2. It would be good to highlight the difference between the proposed reconstruction model and prior 

compressive light field approaches. Both propose a linear optimization method, and include a 

perspective transform (i.e. shearing) to do the reconstruction so the methods seem very similar. Is 

the main difference between the papers the proposed capture hardware? 

3. The paper uses algorithm speed as a major factor to motivate the work, but doesn't do a lot to 

quantify or verify that statement. The authors mention runtimes of methods in some places, but often 

the runtimes include a bulk time for different methods like line of sight and NLOS reconstruction. 

There is also no comparison of computational or memory complexity. I think the paper needs to 

include some meaning full comparison to alternative methods and a discussion of the expected 

improvements in performance over prior methods. It also needs to provide complete and structured 

information about the actual execution speeds and put those in some meaningful context. 

4. Similarly, the paper talks about the robustness of the work to missing or erroneous pixels, but does 

not actually do anything to test that. 

5. I'm a little confused about the actual setup used in the different demonstrations. The imaging setup 

with the streak camera and lenslet array should result in a light field array with a diameter similar to 

the slit of the streak camera. So a centimeter or two. An array of that size should not be big enough 

to image around the occlusions they create. The authors explain the geometry that determines the 

permissible size of the occluder in the supplement. I think s0ome added clarification and maybe a 

sketch of the setup is needed here. 

6. NLOS imaging using non-planar and changing relay walls has been demonstrated by La Manna et. 

al. (43). The method presented here is probably faster, but a little more discussion of the methods is 

probably neccessary. The paper about the FK migration algorithm that the authors use also describes 

reconstruction from non-planar surfaces. 

7. The computationally most challenging step of FK migration is the necessary interpolation in the 

Fourier domain. That is what drives complexity and memory use and tends to create artifacts. The 

published code the authors use addresses this problem by oversampling the reconstruction in the 

Fourier domain resulting in very high memory use. In that light, the statement, that FK does not 

require interpolation is misleading. The authors refer to interpolation in the time domain. FK instead 

needs interpolation in the Fourier domain. 



Reviewer #2 (Remarks to the Author): 

The manuscript reports on a method for lightfield photography in which, in essence, instead of 

acquiring L different images from different view points, only one pixel or one line of each image is 

acquired but each one from a different perspective. These are then combined together through an 

minimisation approach that relies on a "shear" operator that models how the various parts of the 

scene are captured at varying view points and then registered in a single final image. 

The idea is clever and seems to deliver very promising results. The authors show many different 

possible implementations of the technique, ranging from 2D imaging, flash lidar to non line of sight 

imaging. 

I am not personally convinced that the NLOS imaging results are that significant compared to the 

state of the art. However, the other results do look convincing, including the measurements in the 

presence of occluders. The video material provided is also very convincing. 

The work is very carefully prepared with sufficient details to reproduce the results. My only comment 

is that the supplementary information is actually very much integral to the main work as many or 

most of the actual results are presented there. This is probably a choice based on the fact that the 

authors present so many different cases that it is hard to show all results in the main text. 

But this is just a stylistic choice and does not impact the importance of the work itself. 

I therefore suggest acceptance of this work for publication without any need for revision. 

Reviewer #3 (Remarks to the Author): 

In this manuscript, the authors report their development of an imaging method which they call 

“compact light field photography (CLIP)”. They claim that CLIP enables three-dimensional imaging 

with fewer detectors compared to conventional light field photography methods. They demonstrated 

volumetric imaging by combining CLIP with other imaging techniques, such as time-of-flight, LiDAR, 

and non-line-of-sight 3D imaging. The main argument of this work is that the data size can be 

reduced compared to conventional light field photography, which is advantageous for large-scale, 

high-dimensional photography. However, I do not think the quality of the manuscript meets the 

publication criteria of Nature Communications in terms of novelty, quality of presentation, and impact 

of the results. Detailed comments are listed below: 

1. I doubt the effectiveness of their approach toward the realization of dynamic 3D imaging. The 

authors perform data compression optically by using specially arranged sensors (a single pixel, a 

linear array, or a sparse 2D area detector). Whether this compression works for retrieval of 3D images 

depends on the scene (as long as the restricted isometric property of the measurement matrix is not 

evaluated). The authors' approach seems to inherently lack generality. 

2. Also, optical compression accompanies the loss of data due to difficult-to-control factors. For 

example, in the authors' setup in Fig. S5d, the angles and positions of cylindrical lenses, the widths of 

slits, and the distance between the lenses and the sensor critically change the intensity profile on the 

sensor. In addition, aberration due to the imperfection of the lenses induces loss of information. As 

long as one can acquire the entire image, it should be taken. If compression is needed, we can do it 

by post processing using an FPGA in a high-throughput, lossless, and reproducible manner. 

3. The definition of CLIP is unclear. The authors' statement "To address these challenges, we present 

compact light field photography (CLIP) to sample dense light fields with a drastically improved 

efficiency and flexibility. By employing nonlocal image acquisitions and distributing a complete 

acquisition process into different views, CLIP enables light field imaging with a measurement dataset 

smaller than a single sub-aperture image and remains natively applicable to camera array systems" 



sounds no more than compressed light field photography, which has been thoroughly investigated. 

4. Even with the authors' explanation, "Unlike previous compressive light field cameras23–25 that 

decode a densely sampled 2D image into a full 4D light field, CLIP features the unique capability of 

utilizing a small number of sensors arranged in arbitrary formats—a single pixel, a linear array, or a 

sparse 2D area detector—for light field imaging", the difference is unclear because one can easily 

reduce the effective number of datapoints on a CCD /CMOS camera by pixel binning. 

5. The performance of their method is not evaluated well. In compressed sensing, evaluation of data 

fidelity is essential. Without comparison of the reconstructed images with the ground truth measured 

by conventional methods (with a lower acquisition rate), it is impossible to judge if the method is good 

or not. 

6. The authors' main claim "enable snapshot 3D imaging with an extended depth range and through 

severe scene occlusions" in the abstract is suspicious. In the supplementary movies, the shape of the 

objects significantly changes when they are occluded. Again, quantitative evaluation image 

reconstruction is needed for supporting their claim.



Response Letter 

The authors thank the reviewers for their insightful comments, which have 

greatly improved the quality of our manuscript.   

For a brief summary, the major revisions on the manuscript are as follows: 

1. We compare with previous compressive light field imaging methods with great 

details to show that CLIP is a unique framework to design and transform any imaging 

methods that employs nonlocal data acquisition into an efficient light field imaging 

method. CLIP is further shown, via experimental and synthetic studies, to be capable 

of recovering the 4D light field or directly retrieving a refocused image, and we prove 

that the later approach has the advantage of accommodating complex scenes better. 

2. A comparison on the computation and memory complexity was made between CLIP 

and existing compressive light field imaging methods. The proposed hybrid time-

frequency domain NLOS reconstruction algorithm was also benchmarked against 

alternative methods for imaging with curved surfaces, including the f-k migration and 

time-domain phasor field method. 

3. The robustness of CLIP against defective sensor readings (missing and dead pixels) 

are evaluated via both experimental and synthetic studies. 

4. We add new experiments to quantify the imaging accuracy of CLIP with 0D sensors, 

and add extensive synthetic simulations to evaluate the imaging accuracy of CLIP with 

both 0D and 1D sensors under different sampling regimes (compressive or not). 

5. We add explanations and new numerical experiments (the generalized flip test) to 

prove the generality of CLIP for practical imaging applications, despite that the 

restricted isometry property (RIP) cannot be directly evaluated (which is a NP hard 

problem). 

6. We improved the new imaging experiments for seeing through occlusions, 

illustrated the geometry, and further evaluated the accuracy of CLIP for this particular 

applications via extensive synthetic studies. 

In the following, we provide point-by-point responses. The changes in the 

manuscript are highlighted in red. 

Reviewer 1 

This paper describes a method for reconstructing scene images from a light 

field a captured by a camera array that relies on sparse sampling of the camera 

images. This adjustment results in faster and more robust reconstruction 

method. The authors demonstrate their method using several experimental 



implementation and application examples. They also introduce a new method 

for NLOS image reconstruction from non-planar relay surfaces. The paper does 

not seem to mention that this problem has been addressed in other works, even 

though the papers are cited. 

Overall the paper is well written and introduces an interesting method. However, 

there are several issues that need to be clarified before it can be evaluated.  

Response: 

We thank the reviewer for the constructive comments on this work. The previous 

NLOS image reconstruction for non-planar surfaces is compared with the proposed 

method in the revised manuscript. The main limitation of that work is its higher 

computation and memory complexity, please see Response to Comment 3 and 6 for 

details on this particular point. We addressed the comments in detail below.

1. Some of the intro sounds a little like a sales pitch. For example lines 70 to 74. 

Maybe try to use some more objective language here. 

Response: 

We revised the lines 70-74 to describe the method in a technical and objective flavor, 

which is appended below. 

“ … To address these challenges, we present compact light field photography (CLIP) to sample 

dense light fields1,2 with a drastically improved efficiency and flexibility. Unlike previous 

compressive light field cameras3–5 that require densely sampled 2D images for recovering a 4D 

light field, CLIP is a systematic framework to design and transform any imaging model that 

employs nonlocal data acquisition into a highly efficient light field imaging approach: by 

distributing the designed or existing nonlocal image acquisition process into different views 

and modelling the correlations inherent in 4D light fields, CLIP can recover the 4D light field 

or directly retrieve refocused images from a measurement dataset even smaller than a single 

sub-aperture image. Under the CLIP framework, sensors of arbitrary formats—a single pixel, 

a linear array, or a sparse 2D area detector—can be employed for efficient light field imaging 

by transforming the imaging models of a single pixel camera, x-ray computed tomography and 

a diffuser camera6, to name a few. Additionally, CLIP is natively applicable to camera array 

systems, and promotes robustness against defective sensor measurements and severe scene 

occlusions. With CLIP, we seamlessly synergized multi-view with time-of-flight techniques, 

and demonstrated single-shot 3D imaging of texture-less scenes in an extended depth range …”.

2. It would be good to highlight the difference between the proposed 

reconstruction model and prior compressive light field approaches. Both 

propose a linear optimization method, and include a perspective transform (i.e. 

shearing) to do the reconstruction so the methods seem very similar. Is the main 

difference between the papers the proposed capture hardware? 

Response: 



We thank the reviewer for the suggestion to clarify the difference between the 

proposed CLIP and previous compressive light field imaging methods. CLIP differs in 

both imaging models and implementation hardware. More fundamentally, it is a 

systematic method to design and transform any imaging models that employs 

nonlocal image acquisition into an efficient light field imaging method. 

      The perspective transform (and resultant imaging model) in compressive light field 

photography by Marwah et. al.3 is applied on the encoding mask, and is static once 

the mask is fixed inside the camera, while the perspective transform in CLIP is applied 

on the sub-aperture images and need be numerically adjusted to change the 

reconstruction focus, similar to conventional light field cameras when refocusing onto 

different depths. Secondly, we showed in the revised Supplementary Note 5 of 

Supplementary Materials that existing compressive light field imaging methods are ill-

suited to 0D, 1D, or a sparse 2D detector while CLIP can accommodate detectors of 

arbitrary formats. Moreover, we demonstrate experimentally in the revised manuscript 

that CLIP can recover a 4D light field or directly reconstruct a refocused image from 

the same measurement data, and showed in Supplementary Note 8 that the later 

approach has the advantage of coping with complex scenes better. 

A detailed comparison against existing methods was added in the dedicated 

Supplementary Note 5 of Supplementary Materials, and the 4D light field 

reconstruction versus direct reconstruction of refocused images are added in 

Supplementary Note 8, both are appended below for clarification: 

Supplementary Note 5. Comparison of CLIP with compressive light field photography 

Existing compressive light field imaging methods are not necessarily convolutional and can 

recover a 4D light field (na×na×N×N) from a 2D image (N×N). We compare them with CLIP 

and explain the unique advantages of CLIP in using sensors of arbitrary formats for efficient 

light field imaging. Most compressive light field photography methods share the roots with 

coded aperture imaging in using a mask (transmissive or reflective) to divide the system 

aperture into small patches, each modulating a sub-aperture image. The resultant sensor 

measurement is a weighted integration of all the sub-aperture images: 

𝑦1 = ∑ 𝑤1𝑘Pk = [𝑤11𝐈, 𝑤12𝐈,⋯ ,𝑤1𝑛𝑎
2𝐈] [

P1
P2
⋮

P𝑛𝑎2

]
𝑛𝑎
2

𝑘=1 (17) 

where 𝑦1 ∈ ℝ𝑛2×1  is the vectorized sensor image, 𝐈 ∈ ℝ𝑛2×𝑛2 is the identity matrix. 𝑤1𝑘 ≠

𝑤1𝑗, and it is a scalar representing the mask transmission coefficient for the k-th sub-aperture 

image. P𝑘 ∈ ℝ𝒏𝟐×𝟏 is the corresponding vectorized sub-aperture image. It is noted that imaging 

without the coding mask is equivalent to setting all the weights 𝑤1𝑘 to 1. While na
2 different 

set of mask coefficients 𝑤𝑗𝑘 (and sensor measurements 𝑦𝑗) are typically needed to recover the 

light field (P1 to P𝑛𝑎2 ), Ashok7 and Babacan8 proposed to use a smaller number m<na
2 of mask 



coefficients and relied on the sparsity prior for a compressive reconstruction of a 4D light field. 

Ashok et.al., further showed that one can use a similar coding scheme for each microlens in an 

unfocused light field camera, and recover the spatial image on the microlens with a sub-Nyquist 

measurement dataset, thereby addressing the angular-spatial resolution tradeoff in unfocused 

light field cameras. Nevertheless, multiple measurements are still needed in Ashok and 

Babacan’s methods for recovering a light field. 

      Marwah3 et.al., generalized the mask position to anywhere between the aperture and the 

sensor. When the mask is positioned close to the sensor, different sub-aperture images are 

modulated with sheared (and thus incoherent) mask codes before being integrated by the sensor: 

𝑦 = ∑ 𝐂𝐤Pk
𝑛𝑎
2

𝑘=1 = [𝐂𝟏, 𝐂𝟐, ⋯ , 𝐂𝑛𝑎2 ] [

P1
P2
⋮

P𝑛𝑎2

]     (18) 

where 𝐂𝐤 ∈ ℝ𝑛2×𝑛2 is the block diagonal matrix containing the sheared mask code. One key 

improvement of Marvah’s work lies in the modulation of each sub-aperture image P𝑘 with a 

random code 𝐂𝐤 rather than 𝑤𝑗𝑘𝐈  as in Supplementary Eq. 17, thereby improving the 

conditioning of the inverse problem as 𝐂𝐤 is incoherent with respect to each other. Coupled 

with a dictionary learning process that better sparsifies a 4D light field, Marwah’s approach 

can recover a full 4D light field from a single measurement, eliminating the need of changing 

the mask codes. 

      The diffuser-camera-based light field imaging4,5 differs from the above approaches in being 

convolutional: each sub-aperture image is convolved with a random nonlocal point-spread-

function (PSF) before integration: 

𝑦 = ∑ 𝐌𝐤Pk
𝑛
𝑘=1 = [𝐌𝟏, 𝐌𝟐, ⋯ ,𝐌𝑛𝑎

2 ] [

P1
P2
⋮

P𝑛𝑎2

]     (19) 

with 𝐌𝐤 ∈ ℝ𝑛2×𝑛2 being the Toeplitz convolution matrix for the random PSF in the k-th 

angular view. Light field imaging based on a diffuser camera can be implemented with both 

lens8 and lensless manners7. When being used with a lens, the PSF for each sub-aperture image 

is more compactly supported, leading to an efficient utilization of the sensor pixels owing to 

smaller boarder effects). In contrast, the lensless approach features system simplicity, and it is 

free from lens-aberrations.  

      It is now clear that the differentiating factor among existing compressive light field imaging 

methods is the matrix operating on each sub-aperture image. The matrices (𝐈, 𝐂𝐤)  in Ashok, 

Babacan, and Marwah et.al. are all diagonal. As a result, the sensor resolution directly 

determines the spatial resolution of the recovered light field (both 𝑦 and P𝑘 are in ℝ𝑛2×1), 

making these methods ill-suited for 0D, 1D, and sparse 2D sensors. In contrast, the Toeplitz 

matrix 𝐌𝐤 in diffuser-camera-based light field imaging is non-diagonal, and its row vectors 

multiplex multiple elements of P𝑘  into one measurement in 𝑦 (owing to a nonlocal PSF).

Though not being demonstrated yet, this allows in theory the recovery of a 4D light field from 

a sub-Nyquist measurement dataset (that is 𝑦 ∈ ℝ𝑚×1 with 𝑚 < 𝑛2while P𝑘 ∈ ℝ𝑛2×1). 



      In contrast, CLIP is a systematic method for designing and transforming any imaging 

methods with nonlocal data acquisition into a highly efficient light field imaging approach. For 

a given imaging model with measurement matrix 𝐀, the transformation of CLIP is achieved by 

splitting the measurements into different angular views, as illustrated below: 

𝑦 = 𝐀𝑥 =

⎣
⎢
⎢
⎢
⎡
𝒂𝟏
𝑻

𝒂𝟐
𝑻

⋮
⋮
𝒂𝒍
𝑻 ⎦

⎥
⎥
⎥
⎤

𝑥      
𝐓𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐢𝐧𝐠: 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔
                                                   

𝐶𝐿𝐼𝑃 𝑆𝑡𝑒𝑝 1
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⎡
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𝒂𝟏
𝑻

⋮
𝒂𝒒
𝑻
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𝒂𝒌𝒒+𝟏
𝑻

⋮
𝒂𝒌𝒒+𝒒
𝑻
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⎤

= 𝐀′
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⋮
P𝑙 ⎦

⎥
⎥
⎤

,    (20) 

where 𝒂𝒌
𝑻 is a row vector, and 𝑥 (an image from a single angular view) is extended to a 4D light 

field (P1  to P𝑙 ) with l=na
2 views (sub-apertures). While the imaging model becomes bock 

diagonal, recovering the light field is equivalent to solve each sub-aperture image Pk with a 

corresponding sub-measurement matrix 𝐀𝐤 . We can further exploit the correlations 

(redundancy) in the 4D light field by solving Supplementary Eq. 20 with appropriate sparsity 

based regularizations, as used in compressive light field imaging methods3–5. It is noteworthy 

that the elemental matrix 𝐀𝐤 is not diagonal as 𝐈 or 𝐂𝐤, a key fact that enables CLIP to use 0D 

or 1D sensors for light field imaging. We demonstrated 4D light field recovery using CLIP in 

Supplementary Note 7.  

      The second key differentiating factor of CLIP is explicit modeling of the correlations 

among sub-aperture images as P𝑘 = 𝐁𝐤ℎ via light field propagation assuming a uniform 

angular intensity distribution as derived in Supplementary Note 1. This simplifies 

Supplementary Eq. 20 to the CLIP equation 3 in the main text: 

𝑦 =

⎣
⎢
⎢
⎡
𝐀𝟏 ⋯ 𝟎
⋮ 𝐀𝟐 ⋮
𝟎 ⋱ 𝟎
𝟎 ⋯ 𝐀𝑙⎦

⎥
⎥
⎤

[

𝐏𝟏
𝐏𝟐
⋮
𝐏𝑙

]   
Pk=𝐁𝐤ℎ
           

𝐶𝐿𝐼𝑃 𝑆𝑡𝑒𝑝2

𝑦 =
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⎢
⎡
𝐀𝟏 ⋯ 𝟎
⋮ 𝐀𝟐 ⋮
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⎥
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⎣
⎢
⎢
⎡
𝐁𝟏ℎ 
𝐁𝟐ℎ

⋮
𝐁𝑙ℎ ⎦

⎥
⎥
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=

⎣
⎢
⎢
⎡
𝐀𝟏𝐁𝟏

𝐀𝟐𝐁𝟐

⋮
𝐀𝑙𝐁𝑙 ⎦

⎥
⎥
⎤

ℎ = 𝐀′′ℎ.       (21) 

This step has the advantage of enabling more complicated images to be recovered without the 

need of finding/learning a better sparsifying basis for the 4D light field, which is an important 

step in Marwah’s work. We show this advantage in Supplementary Note 8. 

The computation complexity of compressive light field photography and CLIP depends on 

the light field resolution and the applied regularization method under the framework of 

regularization by denoising (see Methods). In CLIP, each iteration involves a pass of 𝐀′′ and 



𝐀′′𝑻 along with a denoising step. The complexity for the shearing operation and matrix 𝐀 is 

o(𝑛𝑎
2𝑁2) and o(𝑚𝑁2) respectively, leading to a total complexity of o((𝑛𝑎

2 +𝑚)𝑁2) for both 

𝐀′′ and 𝐀′′𝑻. The complexity of BM3D and TV denoising for regularization is directly related 

to the image size as o(𝑘𝑁2), with k being a denoiser-dependent constant. Therefore, the total 

complexity of CLIP image recovery is o((2𝑚 + 2𝑛𝑎
2 + 𝑘)𝑁2) per iteration. In comparison, 

while the complexity for 𝐀′ and 𝐀′𝑻 in Supplementary Eq. 20 for retrieving the 4D light field 

remains o(𝑚𝑁2) owing to the block diagonal structure, the denoising complexity of a 4D light 

field becomes o(𝑘𝑛𝑎
2𝑁2), resulting in a total complexity of o((2𝑚 + 𝑘𝑛𝑎

2)𝑁2). Similarly, we 

can analyze the computation complexity per iteration for compressive light field imaging 

methods based on the model in Supplementary Eq. 17 to 19. Supplementary Table 1 

summarizes the characteristics of CLIP and compressive light field photography. It is worth 

noting that the computation complexity of Marwah’s work does not account for the dictionary 

learning process, and the regularization is applied on the entire light field. Also, the convolution 

model of the diffuser-camera is accelerated by FFT. 

Supplementary Table 1 Comparison of CLIP and compressive light field photography 

Methods Sensor Light field 

size 

Measurement 

data size 

Compression 

axis 

Computation complexity 

Ashok7 2D na×na×N×N r×N×N 
Angular or 

spatial 
o((2𝑟 + 𝑘)𝑛𝑎

2𝑁2)

Babacan8 2D na×na×N×N r×N×N Angular o((2𝑟 + 𝑘)𝑛𝑎
2𝑁2)

Marwah3 2D na×na×N×N N×N Angular o((2 + 𝑘)𝑛𝑎
2𝑁2)

Cai7, 

Antipa8 2D na×na×N×N N×N Angular 
o((4𝑙𝑜𝑔𝑁 + 𝑘𝑛𝑎

2)𝑁2)

CLIP
0D, 

1D, 2D
na×na×N×N m (≤ N×N) 

Angular 

and/or spatial

4D light 

field 
o((2𝑚 + 𝑘𝑛𝑎

2)𝑁2)

Refocus 

image 
o((2𝑚 + 2𝑛𝑎

2 + 𝑘)𝑁2)

Supplementary Note 8. CLIP 4D light field reconstruction versus direct reconstruction 

While CLIP can recover a 4D light field as demonstrated in previous note, we show here that 
directly recovering a refocused image can better accommodate complex scenes, particularly 
for imaging with lower dimension (1D or 0D) sensors. Marwah’s work relied on a dictionary 
learning process to obtain a representation basis to better sparsify the 4D light field, thereby 
attaining excellent 4D light field reconstruction for complex scenes. On the other hand, Antipa4

pointed out that improper regularization of the 4D light field in diffuser-based camera can 
degrade (or even destroy) the angular information in the light field.  

      In contrast, CLIP doesn’t rely on high quality 4D light field reconstruction to obtain 
excellent refocused images: CLIP’s complementary measurements among sub-apertures can 
significantly improve the refocused images despite the recovered 4D light field may not be of 
high quality, which is the case unde the compressive regime. Further, CLIP can directly recover 
a refocused image like coded-aperture and wavefront-coding methods to accommodate 
complex scenes better, as explained in previous section. We demonstrate this via a synthetic 
study for the synthetic scene 2 and an experimentally acquired light field from the ‘letter scene’, 



using a sampling ration of SR=1. During the reconstruction for the 4D light field, the 
regularization parameter is tuned from to obtain a best refocused image from the light field 
data. Supplementary Figure 11 shows the recovered 4D light field and refocused images for 
the two scenes under the CLIP-1D (a and b) and CLIP-0D (c and d) implementations, with the 
NMSE listed in Supplementary Table 4. It is noted that while the light field suffers from 
significant background signals and noises, the refocusing processing coherently assembles 
CLIP’s complementary imaging across the sub-apertures to yield substantially better refocused 
image. Moreover, CLIP’s direct reconstruction further improved the quality of the refocused 
image by rendering more image details and a higher contrast. 

Supplementary Table 4. NMSE of 4D and direct CLIP reconstructions 
Scene Method s=-1.0 s=1.0 Method s=1.0 s=1.0 

CLIP-1D 

1
4D recon. 11.98% 6.08% 

CLIP-0D 

4D recon. 10.47% 10.67% 

Direct 
recon. 

3.66% 4.16% 
Direct 
recon. 

6.23% 7.35% 

2
4D recon. 18.68% 8.48 % 4D recon. 13.02% 7.53% 

Direct 
recon. 

6.33% 6.75% 
Direct 
recon. 

4.41% 4.05% 

Supplementary Figure 11. 4D light field reconstruction versus direct reconstruction of 
refocused images by CLIP. a-b, CLIP-1D reconstruction for the synthetic scene and the 

experimental ‘letter’ scene. c-d, CLIP-0D reconstruction for the two scenes. The sampling ratio of 
CLIP is fixed at SR=1. 
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3. The paper uses algorithm speed as a major factor to motivate the work, but 

doesn't do a lot to quantify or verify that statement. The authors mention 

runtimes of methods in some places, but often the runtimes include a bulk time 

for different methods like line of sight and NLOS reconstruction. There is also 

no comparison of computational or memory complexity. I think the paper needs 

to include some meaningful comparison to alternative methods and a 

discussion of the expected improvements in performance over prior methods. 

It also needs to provide complete and structured information about the actual 

execution speeds and put those in some meaningful context.

Response: 

We than the reviewer for this suggestion. We analysed and compared the computation 

complexity per iteration for CLIP reconstruction with compressive light field imaging 

methods in Supplementary Table 1 of the revised Supplementary Note 5, please see 

the excerption in Response to Comment 2 above for details.  

      Regarding NLOS imaging with CLIP camera, there are two parts for the 

reconstruction: CLIP reconstruction of the (x, y, t) data cube in the first part and then 

applying the hybrid time-frequency domain algorithm to recover a 3D hidden scene in 

the second part. CLIP can accelerate (x, y, t) data acquisition (down to a single shot), 

but the iterative reconstruction is not fast enough for real-time imaging. To solve this 

problem, we show in Supplementary Note 13 (originally Supp. Note 9) that a fast 

‘adjoint reconstruction’ of CLIP can be used for NLOS imaging at the expense of a 

degraded imaging robustness against noises. We also compared the proposed hybrid 

time-frequency domain algorithm with alternative methods in terms of computation and 

memory complexity in the revised Methods Section of the main text, along with the 

execution time that includes CLIP reconstructions of the (x, y, t) data cube. The 

comparisons are excerpted below to clarify these points. 

“ ...with both the curved and virtual plane being sampled with a spatial resolution of N2, time-

domain migration has a computational complexity of o(N4) instead of o(N5logN) … Combined 

with the complexity of o(N3logN) for the frequency-domain phasor field reconstruction, the 

total complexity for the hybrid time-frequency domain reconstruction is o(N4), still orders of 

magnitude faster than time domain methods. The memory complexity for the frequency-

domain phasor field and relevant f-k migration reconstruction have been analyzed in the 

literature to be o(N3) and ~o(50N3)9, respectively. The time-domain migration in Eq. (9) has a 

memory complexity of o(N3) in order to store the propagated signals 𝑓(𝑟𝑣, 𝑡) on a virtual plane, 

leading to a total complexity of o(N3) for the hybrid time-frequency domain reconstruction 

method…

… For a 128×128×128 imaging volume with a spatiotemporal data cube of 125×125×1016, 

the NLOS reconstruction time is ~0.03 seconds, which can reach a 30 Hz video rate. The actual 

bottleneck lies in the iterative CLIP reconstruction of the spatiotemporal data cube on the wall, 



which takes about 2.0 seconds. However, we show in Supplementary Note 9 that a fast CLIP 

solution via the adjoint operator can reduce the reconstruction time to 0.01 seconds for NLOS 

imaging at the expense of noise robustness. Table 1 summarizes the computation and memory 

complexity of the hybrid time-frequency domain reconstruction method against the time-

domain phasor field method and f-k migration for NLOS imaging with curved surfaces. It is 

noteworthy that the complexity of f-k migration includes the necessary preprocessing step for 

coping with curved surfaces, and its execution time is obtained by CPU processing with a 

downsampled spatiotemporal data cube of (32×32×512) instead of (125×125×1016). 

Conforming with the complexity analysis, the preprocessing step is more time consuming than 

the actual reconstruction in f-k migration. 

Table 1 Comparison of NLOS imaging computation and memory complexity 

Algorithms Computational 
complexity 

Memory 
complexity 

Execution time 
CLIP 

reconstruction 
(seconds)

NLOS 
reconstruction 

(seconds)

Total 
reconstruction 

(seconds)

f-k migration o(N5logN) + 
o(N3logN)

~o(50N3) 0 15.1 + 0.65 
(CPU) 

15.7 
(CPU)

Time-domain 
phasor field 

o(N5) o(N3) 0 0.40 
(GPU)

0.40 
(GPU)

Hybrid time-
frequency method

o(N4) o(N3) 2.0 or 0.01 
(adjoint method)

0.03 
(GPU) 

2.03 or 0.04 
(GPU)

4. Similarly, the paper talks about the robustness of the work to missing or 

erroneous pixels, but does not actually do anything to test that. 

Response: 

We thank the reviewer for raising this point. The robustness against missing pixels 

was demonstrated to some extent by using a sparse 2D detector for light field imaging 

in the original Supplementary Figure 4 of Supplementary Materials. We added both 

experimental and synthetic results in dedicated Supplementary Note 9 of the revised 

Supplementary Materials to further demonstrate and quantify its robustness against to 

erroneous or missing pixels, which is referred to in the revised main text as “ … endows 

CLIP with imaging robustness against defective pixels or scene occlusions. Because the 

complete scene is encoded in any subset of the measurements, image recovery is not 

substantially affected by a fraction of defective pixel readings, despite that the conditioning of 

image reconstruction might deteriorate (Supplementary Note 9)… ” 

      Supplementary Note 9 is appended below to clarify this point.  

“ Supplementary Note 9. CLIP robustness 

The robustness against missing pixels of CLIP is demonstrated to some extent by imaging with 

sparse 2D detectors in Supplementary Note 5. Here, we further test the robustness of CLIP 

against erroneous measurements. Two typical errors are dead (or missing) pixels and saturated 

sensor readings. We tested the case that the measurement containing both types of errors by 



first normalizing the measurement data, and then randomly setting part of the measurement to 

0 (dead) or 1 (saturated). The error induced by defective measurement is evaluated by NMSE 

for both the raw measurement data and reconstructed images. Fixing the sampling ratio SR at 

1, we varied the percentage of the erroneous measurement from 0.1% to 1% for the 

experimental data in CLIP-0D, and 1% to 10% for the synthetic data in CLIP-1D. 

Supplementary Figure 12 shows the CLIP imaging results and the corresponding NMSEs are 

summarized in Supplementary Table 5. Owing the nonlocal data acquisition strategy and the 

regularization step, the reconstructed image error in CLIP is substantially smaller than the error 

in the raw measurements, making it more robust than classic imaging methods. 

Supplementary Table 5. NMSE of CLIP reconstruction with erroneous measurement 

CLIP-0D CLIP-1D 

Error percent 0.1% 0.2% 1% Error percent 1% 5% 10% 

Exp. 

Scene 1 

Data 

error 

5.68% 9.9% 37.2% 

Syn. 

Scene 1 

Data 

error 

14.53% 47.90% 66.39% 

Image 

error 

1.54% 2.08% 11.24% Image 

error 

5.07% 12.1% 15.2% 

Exp. 

Scene 2 

Data 

error 

22.52% 36.29% 75.88% 

Syn. 

Scene 2

Data 

error 

8.99% 34.83% 53.43% 

Image 

error 

4.50% 4.7% 6.5% Image 

error 

1.68% 6.05% 9.38% 

Supplementary Figure 12. CLIP reconstruction with different amount of erroneous 

measurement data. The error in the title is listed as percentage of the total measurement number. 

Syn.: synthetic; Exp.: experimental. 
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…” 

5. I'm a little confused about the actual setup used in the different 

demonstrations. The imaging setup with the streak camera and lenslet array 

should result in a light field array with a diameter similar to the slit of the streak 

camera. So a centimeter or two. An array of that size should not be big enough 

to image around the occlusions they create. The authors explain the geometry 

that determines the permissible size of the occluder in the supplement. I think 

some added clarification and maybe a sketch of the setup is needed here. 

Response: 

In principle, it is the relative scale between the camera baseline and object scene that 

matters for imaging through occlusions. We added a photograph for the setup of the 

proof-of-concept experiments in Supplementary Note 13b, and gave numerical details 

in the revised Supplementary Note 10 to clarify this point, which reads “…A photograph 

of system setup for the dynamic imaging experiment is shown in the bottom of Supplementary 

Figure 13b, where the camera baseline L is ~15 mm, and the occluder was placed at 

approximately d=50 mm (or ~40 mm in the static studies) from the lenslet array. For an 

occluder with width 𝐷 ≈ 6 (or 10) mm, the inactive region is hence 𝑙𝑑 ≈ 33 (𝑜𝑟 80)𝑚𝑚. The 

object was positioned at a distance ~70 mm (or >90 mm for different static studies) from the 

occluder to avoid falling into the inactive region… ” 

Supplementary Figure 13. 3D imaging through occlusions. b Geometry for calculating the inactive 

region caused by the occluder, and the experimental setup for dynamic imaging studies.

6. NLOS imaging using non-planar and changing relay walls has been 

demonstrated by La Manna et. al. (43). The method presented here is probably 

faster, but a little more discussion of the methods is probably necessary. The 

inactive region

CLIPb

LD

dld

Camera

2x2 grid

Occluder



paper about the FK migration algorithm that the authors use also describes 

reconstruction from non-planar surfaces. 

Response: 

We agree that NLOS imaging with dynamic non-planar relay wall has been 

demonstrated by La Manna et. al., where they scanned a collimated laser beam rather 

than the SPAD detector for 2D recording of the time-of-flight data. The reception point 

was fixed at a stationary point, sidestepping the depth-of-field problem of the detection 

optics. When using array detectors to accelerate NLOS imaging acquisition on curved 

surfaces, Manna’s method will suffer the depth-of-field problem as usual. In contrast, 

CLIP can use a 1D array detector for fast imaging with curved surfaces. 

      The f-k migration algorithm indeed can be adapted for NLOS imaging with curved 

surfaces, but its confocal imaging process still suffers from a long acquisition time, and 

as compared in Table 1 of the revised Methods Section (see Response to Comment 

3), its preprocessing step to cope with non-planar surfaces is actually more time-

consuming than the actual f-k migration step or the time-domain phasor field method. 

      Regarding this, we added a discussion on these two points in the section of “NLOS 

imaging with curved and disconnected surfaces” that reads “… The ToF-CLIP camera 

addresses this critical need for real-time mapping of the relay surface via built-in flash LiDAR 

imaging. More importantly, it can accommodate a non-planar surface geometry for NLOS 

imaging using array detectors with its light field capability. Paired with a proposed hybrid time-

frequency domain reconstruction algorithm, which can handle general surfaces with a 

computational complexity of o(N4) (Methods), ToF-CLIP can attain real-time NLOS imaging 

with arbitrary curved surfaces. While NLOS imaging with a dynamic and curved surface has 

been demonstrated by Manna10 et. al., its reception point was fixed at a stationary point rather 

than being on the dynamic surface, making it inapplicable for real-time imaging with array 

detectors. Similarly, the preprocessing step11 proposed by Lindell et.al. that adapts the f-k

migration reconstruction algorithm to deal with slightly curved surfaces in confocal NLOS 

imaging has a computational complexity of o(N5logN), which is higher than the time-domain 

phasor field method and thus inefficient for real-time reconstruction…”

7. The computationally most challenging step of FK migration is the necessary 

interpolation in the Fourier domain. That is what drives complexity and memory 

use and tends to create artifacts. The published code the authors use addresses 

this problem by oversampling the reconstruction in the Fourier domain resulting 

in very high memory use. In that light, the statement, that FK does not require 

interpolation is misleading. The authors refer to interpolation in the time domain. 

FK instead needs interpolation in the Fourier domain. 

Response: 

We agree with the reviewer that FK migration need to interpolate from a spherical 

coordinate onto a Cartesian one in the Fourier domain that causes high memory usage. 



We clarify that the frequency-domain NLOS reconstruction method that we used was 

the fast frequency-domain phasor-field method proposed by Liu et. al., which 

consumes much less memory. 

      The interpolation in time domain is to correct for the perspective distortion of the 

recording camera on a non-planar surfaces, thereby yielding a regular 2D grid 

sampling pattern on the virtual plane to facilitate subsequent frequency-domain NLOS 

reconstruction (otherwise, a nonuniform FFT based NLOS reconstruction algorithm 

needs to be developed). This interpolation is not needed in the proposed hybrid time-

frequency domain method because the waves can be directly migrated in the time-

domain to a regular 2D grid on the virtual plane. 

      Regarding this, we clarified in the revised Methods section that the second part of 

the hybrid time-frequency domain reconstruction is the frequency-domain phasor-field 

that reads “ … The hybrid frequency-time domain reconstruction method proposed here first 

converts the spatiotemporal measurement on a curved surface 𝑦𝑟(𝒓𝒑, 𝑡) onto a virtual plane via 

wave propagation in time domain and then reconstruct the hidden scenes with existing efficient 

frequency-domain phasor field method9…”

Reviewer 2

The manuscript reports on a method for light field photography in which, in 

essence, instead of acquiring L different images from different view points, only 

one pixel or one line of each image is acquired but each one from a different 

perspective. These are then combined together through an minimisation 

approach that relies on a "shear" operator that models how the various parts of 

the scene are captured at varying view points and then registered in a single 

final image. 

The idea is clever and seems to deliver very promising results. The authors 

show many different possible implementations of the technique, ranging from 

2D imaging, flash lidar to non line of sight imaging. 

I am not personally convinced that the NLOS imaging results are that significant 

compared to the state of the art. However, the other results do look convincing, 

including the measurements in the presence of occluders. The video material 

provided is also very convincing. 

The work is very carefully prepared with sufficient details to reproduce the 

results. My only comment is that the supplementary information is actually very 

much integral to the main work as many or most of the actual results are 

presented there. This is probably a choice based on the fact that the authors 

present so many different cases that it is hard to show all results in the main 



text. But this is just a stylistic choice and does not impact the importance of the 

work itself.   

I therefore suggest acceptance of this work for publication without any need for 

revision. 

Response: 

We appreciate the reviewer’s positive comments on our work. Regarding the NLOS 

imaging methods, the quality is not yet state-of-art because it is imaged with a small 

number of time-of-flight sensors (a 1D sensor in our demonstration) in a snapshot, 

scanless manner (<0.1 s), which causes a high compression factor (~20) for NLOS 

imaging. 

Reviewer 3 

In this manuscript, the authors report their development of an imaging method 

which they call “compact light field photography (CLIP)”. They claim that CLIP 

enables three-dimensional imaging with fewer detectors compared to 

conventional light field photography methods. They demonstrated volumetric 

imaging by combining CLIP with other imaging techniques, such as time-of-

flight, LiDAR, and non-line-of-sight 3D imaging. The main argument of this work 

is that the data size can be reduced compared to conventional light field 

photography, which is advantageous for large-scale, high-dimensional 

photography. However, I do not think the quality of the manuscript meets the 

publication criteria of Nature Communications in terms of novelty, quality of 

presentation, and impact of the results. Detailed comments are listed below: 

Response: 

We appreciate the reviewer’s extensive and constructive comments on our work. 

Extensive revisions have been made on the manuscript and supplementary materials 

accordingly to address the raised points, as detailed below.

1. I doubt the effectiveness of their approach toward the realization of dynamic 

3D imaging. The authors perform data compression optically by using specially 

arranged sensors (a single pixel, a linear array, or a sparse 2D area detector). 

Whether this compression works for retrieval of 3D images depends on the 

scene (as long as the restricted isometric property of the measurement matrix 

is not evaluated). The authors' approach seems to inherently lack generality. 

Response: 

We thank the reviewer for raising the important point on evaluating the RIP (restricted 

isometric property) of the measurement matrix when working in the compressive 



regime. We clarified that, while a major appeal of CLIP is to use a limited sensor 

budget to acquire large-scale light fields, it is not necessarily confined to the 

compressive regime for directly solving a refocused image. Also, CLIP can well 

accommodate, but is not limited to, those special sensor formats. When working in the 

compressive regime, we show in the revised manuscript that CLIP is general enough 

for recovering structured-sparse signals such as natural images. 

      As detailed in the Revised Supplementary Note 5 (Please see Response to 

Comment 3 of Reviewer 1) that articulates the difference between CLIP and 

compressive light field imaging methods, CLIP can transform any imaging model y=

Ax (𝐀 ∈ ℝ𝑚×𝑛) that employs nonlocal data acquisition into a light field imaging method. 

The resultant CLIP equation y=A’x has the same dimension with measurement matrix 

A (that is, A′ ∈ ℝ𝑚×𝑛). As a result, it is not necessarily under-determined and works 

equally well for imaging methods using dense 2D sensor arrays—it is proved in 

Supplementary Note 3 that CLIP can include coded-aperture and wavefront-coding 

based light field imaging methods as special cases. The motivation of using 0D and 

1D sensor is that they are far more accessible for imaging at the ultrafast time scale 

or in the infrared/Terahertz spectral band, for which existing compressive light field 

imaging methods are ill-suited, as proved in Supplementary Note 3 and 5. Also, the 

mathematical model of CLIP with 0D an 1D sensors are transformed from the imaging 

model of the single pixel camera and x-ray computed tomography respectively, which 

have been demonstrated to show the generality for imaging applications in practice 

when working in the compressive regime. 

      Mathematically, the generality of CLIP in the compressive regime can be evaluated 

by computing the RIP constant of the measurement matrix A’ as mentioned by the 

reviewer. However, RIP is only a sufficient condition, and evaluating RIP is a NP-hard 

problem. We added extensive numerical tests to demonstrate the generality of CLIP 

under the structured-sparse signal model in the dedicated Supplementary Note 6 of 

Supplementary Materials, and stressed in the revised Methods section that CLIP has 

the generality to recover structured-sparse signals such as natural images, which 

reads “ … It is worth noting that while recovering the 4D light field is always compressive in 

CLIP, directly retrieving a refocused image is not necessarily the same. Still, a major appeal of 

CLIP is to use a small number of sensors for recording a large-scale light field, which typically 

falls into the compressive sampling regime. In this case, we show in Supplementary Note 6 

that while the imaging model designed in or transformed by CLIP may not satisfy the restricted 

isometry property (RIP) to guarantee uniform recovery of arbitrary images in the classic sparse

signal model, CLIP has the generality in the structured-sparse signal model and hence remains 

applicable for practical imaging applications.” 

 The added Supplementary Note 6 is appended below for a detailed explanation. 

“Supplementary Note 6. Generality of CLIP 

While recovering a 4D light field is always under-determined in CLIP and compressive light 
field photography methods, directly recovering a refocused image by CLIP is not necessarily 



the same. As a result, CLIP isn’t bounded to the compressive regime, though one of its major 
appeal is to record a large-scale light field with a highly limited sensor budget. When working 
in the compressive regime, it is important to evaluate whether the system matrix 𝐀′ of CLIP
supports a uniform recovery of arbitrary s-sparse vectors (vectors with at most s non-zero 
entries) in the classic sparse signal model by computing the restricted isometry property (RIP) 
of matrix 𝐀′. However, RIP is not a necessary condition and computing the RIP constant is an 
NP-hard problem. Up to now, only a limited types of matrices have been proven to satisfy RIP 
with an exponentially high probability. On the other hand, it was shown12 that there is an 
absence of RIP in a range of practical compressive imaging applications, and yet, experimental 
image recovery is excellent. These applications include compressive x-ray tomography, MRI, 
and single pixel cameras. The work of Bastounis12 and Roman13, among other similar works14, 
attributed the correct recovery of image x to the structured-sparsity of x (that is, the sparsity of 
x has a structure instead of exhibiting an arbitrary pattern), and together with an extended 
concept of RIP in levels, explained the success of these compressive imaging methods in 
practice, despite that their measurement matrices failed to satisfy the classic RIP. As natural 
images are highly structured, and CLIP with 0D and 1D sensors are transformed from the single 
pixel cameras and x-ray tomography methods respectively, it is expected that CLIP can attain 
similar imaging performance in practice. 

      We followed the philosophy of generalized flip test proposed by Roman et.al.13 to evaluate 
the general applicability of CLIP under the structured-sparsity signal model. This idea of the 
test is to evaluate the reconstruction quality of different images with the same sparsity. To 
generate such images, we applied shift, flip, rotation operation on some image part, and 
evaluated the reconstruction error using normalized mean square errors (NMSE). As CLIP 
deals with light field data, these operations should be applied to 3D objects. To this end, the 
3D scenes were modelled in Blender software for rendering the 4D light field data on a regular 
2D grid.  

      Throughout the manuscript, synthetic CLIP measurement with 1D and 0D sensors were 
obtained as follows. In CLIP-0D, each sub-aperture image is encoded with random binary 
codes to yield mk=m/l single-pixel readings. For CLIP-1D, the measurements are obtained in 
three steps: a) generate m/N projection angles α uniformly in the range of [0, 180o]; b) randomly 
permute the angles α and distribute evenly into the l sub-apertures; c) calculate for each sub-
aperture image the projection data along the assigned angles. The sampling ratio (SR) is defined 
as the quotient between the total number of measurements m and the image size N2 (rather than 
the 4D light field). For this test, we fixed SR at 0.5.  

      Supplementary Figure 6 and 7 show the CLIP imaging results for two different scenes 
under various focus settings, with NMSE listed on Supplementary Table 2. It is noted that CLIP 
consistently yields a NMSE below 10% for SR=0.5, indicating its generality in coping with 
natural scenes when working in the compressive regime. Further results demonstrating the 
generality of CLIP are given in Supplementary Note 11, which employs CLIP (with different 
sampling ratio SRs) to represent experimentally acquired light field data for scenes with 
different BRDFs. 

Supplementary Table 2. NMSE of CLIP reconstruction for synthetic scene 1 and 2 

s 
CLIP-1D CLIP-0D 

Original Shift Flip Rotate Original Shift Flip Rotate 

Scene 1 
-0.8 7.28% 8.75% 8.13% 7.26% 8.75% 9.66% 9.70% 9.36% 
-0.1 9.53% 7.10% 7.14% 7.59% 8.71% 7.97% 9.22% 8.18% 
0.5 7.22% 7.96% 7.17% 6.38% 8.97% 9.34% 8.52% 8.39% 



Scene 2 
-0.6 4.71% 4.34% 4.88% 4.54% 5.40% 5.37% 5.20% 4.64% 

0 5.52% 3.70% 3.67% 4.28% 5.47% 5.57% 5.54% 5.54% 
0.8 6.48% 4.21% 4.40% 4.89% 5.22% 4.86% 4.59% 5.08% 

Supplementary Figure 6. Generalized flip test of CLIP reconstruction for synthetic scene 1 with 
SR = 0.5. The ground truth light field size is 8×8×128×128, and the measurement data size is 64×128, 

leading to a data reduction of 128. 
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Supplementary Figure 7. Generalized flip test of CLIP reconstruction for synthetic scene 2 with 
SR = 0.5. The ground truth light field size is 8×8×128×128, and the measurement data size is 64×128.  

2.  Also, optical compression accompanies the loss of data due to difficult-to-

control factors. For example, in the authors' setup in Fig. S5d, the angles and 

positions of cylindrical lenses, the widths of slits, and the distance between the 

lenses and the sensor critically change the intensity profile on the sensor. In 

addition, aberration due to the imperfection of the lenses induces loss of 

information. As long as one can acquire the entire image, it should be taken. If 

compression is needed, we can do it by post processing using an FPGA in a 

high-throughput, lossless, and reproducible manner. 

Response: 
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We agree with the reviewer that when a suitable 2D sensor is available for a target 

application, acquiring the image at/over the Nyquist rate and then compressing it in 

post processing will be advantageous in terms of fidelity. However, this is not always 

feasible, and the motivation for compressive sampling is mainly two-folds.  

      First and foremost is the availability (and economy) of suitable detectors for 

acquiring the signal of interest. Currently, there is no ultrafast detectors similar to 

consumer-grade 2D CMOS or CCD image sensors for snapshot acquisition of large-

scale time-of-flight data or any similarly high-dimensional data such as hyperspectral 

images. Existing ultrafast cameras are in the format of a single pixel (SPAD, PMT etc.), 

a linear array (streak camera or linear array SPAD), or a sparse 2D array (state-of-

the-art SPAD array has a relatively low fill factor below 50%). As a result, a slow 

scanning (spatial and/or temporal) mechanism is needed for 2D time-of-flight (or 

hyperspectral) imaging. Other applications for which 0D and 1D sensors are more 

accessible include imaging in the infrared and Terahertz region, where the detector 

resolution remains low. It is the limited sensor budget that hampers light field imaging 

in these applications. 

      The second motivation is the compressibility of natural signals, especially high-

dimensional signals. As pointed out by the reviewer, signal compression is typically 

done by post-processing after a full acquisition. However, for applications suffering 

from detector availability issues but dealing with highly compressible signals, 

compression in sampling phase can become advantageous because much fewer 

sensor measurements will be needed. Indeed, the compressibility of natural images 

has been well-exploited in many imaging applications. For example, x-ray CT and MRI 

imaging has adopted compressive sampling to reduce the radiation dose and imaging 

time. The compressibility of 4D light fields or natural images is also a key ingredient in 

existing compressive light field imaging methods. 

      The factors affecting optical compression is accounted for by a system calibration 

step, as typically done in other computational imaging methods. In theory, the nonlocal 

sampling and structured-sparse signal recovery strategy of CLIP could potentially be 

more robust against information loss and lens aberration of the optical system. The 

0D implementation does not need a lens as demonstrated in the single pixel cameras, 

and CLIP with a 1D sensor tends to suffer from less aberration than conventional 

imaging because there is no optical power in the invariant axis of the cylindrical lens. 

The setup in Fig. S5d differs from a coded aperture camera only in replacing the 

spherical lens-system with a cylindrical one that modifies the ideal point spread 

function from a point into an angled line. The effects of other factors on signal intensity 

on the sensor — the positions of cylindrical lenses, the widths of slits, and the distance 

between the lenses and the sensor, remain the same as that in coded aperture 

cameras. For example, a change in the distance of the lens and sensor will defocus 

the image signal (with a circular blur bokeh being replaced by an elliptical one). The 

width of slits defines the encoding resolution. The lens position relative to the sensor 



determines the imaging field of view. All these factors (except aberrations) are 

obtained after system alignment and calibration.  

      Regarding this, we clarified the calibration step for Fig. S5d in revised 

Supplementary Note 5, which reads “ … It is noted that the implementation for randomly 

coded line-shape PSF is very similar to the coded-aperture camera, with the camera lens and 

image sensor being replaced by a cylindrical one and 1D sensor respectively. Like coded-

aperture imaging therefore, a one-time calibration step for the camera will be needed to retrieve 

PSF on the sensor by imaging a point source and scanning the 1D sensor along the other 

dimension …” 

      Also, we included a dedicated Supplementary Note 9 on evaluating the robustness 

of CLIP under information loss (in the form of missing and erroneous measurements). 

Please see Response to Comment 4 of Reviewer 1 for more details. 

3. The definition of CLIP is unclear. The authors' statement "To address these 

challenges, we present compact light field photography (CLIP) to sample dense 

light fields with a drastically improved efficiency and flexibility. By employing 

nonlocal image acquisitions and distributing a complete acquisition process 

into different views, CLIP enables light field imaging with a measurement 

dataset smaller than a single sub-aperture image and remains natively 

applicable to camera array systems" sounds no more than compressed light 

field photography, which has been thoroughly investigated. 

Response: 

Because both Comment 3 and 4 concerned the distinction between CLIP and existing 

compressive light field photography methods, we address them together in our 

Response to Comment 4.  

4. Even with the authors' explanation, "Unlike previous compressive light field 

cameras23–25 that decode a densely sampled 2D image into a full 4D light field, 

CLIP features the unique capability of utilizing a small number of sensors 

arranged in arbitrary formats—a single pixel, a linear array, or a sparse 2D area 

detector—for light field imaging", the difference is unclear because one can 

easily reduce the effective number of data points on a CCD /CMOS camera by 

pixel binning. 

Response: 

We agree that pixel binning or extraction can reduce the measurement easily and 

effectively, but this will equally reduce the imaging (or light field) resolution, and require 

the intended applications to have a dense 2D CCD/CMOS camera to begin with. In 

contrast, CLIP can use a sensor of a limited resolution, such as 0D or 1D sensors, for 



efficient light field imaging by transforming an appropriate imaging model that employs 

nonlocal data acquisition. As examples, CLIP transformed the imaging model of the 

single pixel camera and x-ray CT for efficient light field imaging with a single pixel and 

a 1D sensor respectively in the manuscript.  

Moreover, we demonstrated experimentally in the revised manuscript that CLIP 

can recover a 4D light field or directly reconstruct a refocused image from the same 

measurement data (see Response to Comment 5 below for details). While existing 

compressive light field imaging methods recover a 4D light field from a densely 

sampled 2D image, we showed in Supplementary Note 8 that the CLIP’s approach of 

directly reconstructing a refocused image has the advantage of coping with complex 

scenes better. A detailed comparison against existing compressive light field imaging 

methods was added in the dedicated Supplementary Note 5 of Supplementary 

Materials, and the direct reconstruction of refocused images is compared with 4D light 

field reconstruction in Supplementary Note 8, both are appended below for clarification. 

Supplementary Note 5. Comparison of CLIP with compressive light field photography 

Existing compressive light field imaging methods are not necessarily convolutional and can 
recover a 4D light field (na×na×N×N) from a 2D image (N×N). We compare them with CLIP 
and explain the unique advantages of CLIP in using sensors of arbitrary formats for efficient 
light field imaging. Most compressive light field photography methods share the roots with 
coded aperture imaging in using a mask (transmissive or reflective) to divide the system 
aperture into small patches, each modulating a sub-aperture image. The resultant sensor 
measurement is a weighted integration of all the sub-aperture images: 

𝑦1 = ∑ 𝑤1𝑘Pk = [𝑤11𝐈, 𝑤12𝐈,⋯ ,𝑤1𝑛𝑎
2𝐈] [

P1
P2
⋮

P𝑛𝑎2

]
𝑛𝑎
2

𝑘=1 (17) 

where 𝑦1 ∈ ℝ𝑛2×1  is the vectorized sensor image, 𝐈 ∈ ℝ𝑛2×𝑛2 is the identity matrix. 𝑤1𝑘 ≠

𝑤1𝑗, and it is a scalar representing the mask transmission coefficient for the k-th sub-aperture 

image. P𝑘 ∈ ℝ𝒏𝟐×𝟏 is the corresponding vectorized sub-aperture image. It is noted that imaging 

without the coding mask is equivalent to setting all the weights 𝑤1𝑘 to 1. While na
2 different 

set of mask coefficients 𝑤𝑗𝑘 (and sensor measurements 𝑦𝑗) are typically needed to recover the 

light field (P1 to P𝑛𝑎2 ), Ashok7 and Babacan8 proposed to use a smaller number m<na
2 of mask 

coefficients and relied on the sparsity prior for a compressive reconstruction of a 4D light field. 
Ashok et.al., further showed that one can use a similar coding scheme for each microlens in an 
unfocused light field camera, and recover the spatial image on the microlens with a sub-Nyquist 
measurement dataset, thereby addressing the angular-spatial resolution tradeoff in unfocused 
light field cameras. Nevertheless, multiple measurements are still needed in Ashok and 
Babacan’s methods for recovering a light field. 

Marwah3 et.al., generalized the mask position to anywhere between the aperture and the 
sensor. When the mask is positioned close to the sensor, different sub-aperture images are 
modulated with sheared (and thus incoherent) mask codes before being integrated by the sensor:



𝑦 = ∑ 𝐂𝐤Pk
𝑛𝑎
2

𝑘=1 = [𝐂𝟏, 𝐂𝟐, ⋯ , 𝐂𝑛𝑎2 ] [

P1
P2
⋮

P𝑛𝑎2

]     (18) 

where 𝐂𝐤 ∈ ℝ𝑛2×𝑛2 is the block diagonal matrix containing the sheared mask code. One key 

improvement of Marvah’s work lies in the modulation of each sub-aperture image P𝑘 with a 

random code 𝐂𝐤 rather than 𝑤𝑗𝑘𝐈  as in Supplementary Eq. 17, thereby improving the 

conditioning of the inverse problem as 𝐂𝐤 is incoherent with respect to each other. Coupled 
with a dictionary learning process that better sparsifies a 4D light field, Marwah’s approach 
can recover a full 4D light field from a single measurement, eliminating the need of changing 
the mask codes. 

The diffuser-camera-based light field imaging4,5 differs from the above approaches in being 
convolutional: each sub-aperture image is convolved with a random nonlocal point-spread-
function (PSF) before integration:

𝑦 = ∑ 𝐌𝐤Pk
𝑛
𝑘=1 = [𝐌𝟏,𝐌𝟐, ⋯ ,𝐌𝑛𝑎

2 ] [

P1
P2
⋮

P𝑛𝑎2

]     (19) 

with 𝐌𝐤 ∈ ℝ𝑛2×𝑛2 being the Toeplitz convolution matrix for the random PSF in the k-th 
angular view. Light field imaging based on diffuser camera can be implemented with both lens8

and lensless manners7. When being used with a lens, the PSF for each sub-aperture image is 
more compactly supported, leading to an efficient utilization of the sensor pixels owing to 
smaller boarder effects. In contrast, the lensless approach features system simplicity, and it is 
free from lens-aberrations.  

It is now clear that the differentiating factor among existing compressive light field imaging 

methods is the matrix operating on each sub-aperture image. The matrices (𝐈, 𝐂𝐤)  in Ashok, 
Babacan, and Marwah et.al. are all diagonal. As a result, the sensor resolution directly 

determines the spatial resolution of the recovered light field (both 𝑦 and P𝑘 are in ℝ𝑛2×1), 
making these methods ill-suited for 0D, 1D, and sparse 2D sensors. In contrast, the Toeplitz 

matrix 𝐌𝐤 in diffuser-camera-based light field imaging is non-diagonal, and its row vectors 

multiplex multiple elements of P𝑘  into one measurement in 𝑦 (owing to a nonlocal PSF).
Though not being demonstrated yet, this allows in theory the recovery of a 4D light field from 

a sub-Nyquist measurement dataset (that is 𝑦 ∈ ℝ𝑚×1 with 𝑚 < 𝑛2while P𝑘 ∈ ℝ𝑛2×1). 

In contrast, CLIP is a systematic method for designing and transforming any imaging 
methods with nonlocal data acquisition into a highly efficient light field imaging approach. For 

a given imaging model with measurement matrix 𝐀, the transformation of CLIP is achieved by 
splitting the measurements into different angular views, as illustrated below: 

𝑦 = 𝐀𝑥 =

⎣
⎢
⎢
⎢
⎢
⎡
𝒂𝟏
𝑻

𝒂𝟐
𝑻

⋮
⋮
𝒂𝒍
𝑻 ⎦

⎥
⎥
⎥
⎥
⎤

𝑥      
𝐓𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐢𝐧𝐠: 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔
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𝑦 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑣𝑖𝑒𝑤_1 {[

𝒂𝟏
𝑻

⋮
𝒂𝒒
𝑻
] ⋯ 𝟎

⋮ 𝑣𝑖𝑒𝑤_𝑘 {[

𝒂𝒌𝒒+𝟏
𝑻

⋮
𝒂𝒌𝒒+𝒒
𝑻

] ⋮

𝟎 ⋱ 𝟎

𝟎 ⋯ 𝑣𝑖𝑒𝑤_𝑙 {[

𝒂𝒍𝒒+𝟏
𝑻

⋮
𝒂𝒍𝒒+𝒒
𝑻

]

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

[

P1

P2

⋮
P𝑙

] = [

𝐀𝟏 ⋯ 𝟎
⋮ 𝐀𝟐 ⋮
𝟎 ⋱ 𝟎
𝟎 ⋯ 𝐀𝑙

] [

P1

P2

⋮
P𝑙

] = 𝐀′ [

P1

P2

⋮
P𝑙

],    (20) 

where 𝒂𝒌
𝑻 is a row vector and 𝑥 (an image from a single angular view) is extended to a 4D light 

field (P1  to P𝑙 ) with l=na
2 views (sub-apertures). While the imaging model becomes bock 

diagonal, recovering the light field is equivalent to solve each sub-aperture image Pk with a 

corresponding sub-measurement matrix 𝐀𝐤. We can better exploit the correlations (redundancy) 
in the 4D light field by solving Supplementary Eq. 20 with appropriate sparsity based 
regularizations, as used in compressive light field imaging methods3–5. It is noteworthy that the 

elemental matrix 𝐀𝐤 is no longer diagonal as 𝐈 or 𝐂𝐤, a key fact that enables CLIP to use 0D or 
1D sensors for light field imaging. We demonstrated 4D light field recovery using CLIP in 
Supplementary Note 7.  

The second key differentiating factor of CLIP is explicit modeling of the correlations among 

sub-aperture images as P𝑘 = 𝐁𝐤ℎ via light field propagation, assuming a uniform angular 
intensity distribution as derived in Supplementary Note 1. This simplifies Supplementary Eq. 
20 to the CLIP equation 3 in the main text: 

𝑦 = [

𝐀𝟏 ⋯ 𝟎
⋮ 𝐀𝟐 ⋮
𝟎 ⋱ 𝟎
𝟎 ⋯ 𝐀𝑙

] [

𝐏𝟏
𝐏𝟐
⋮
𝐏𝑙

]   
Pk=𝐁𝐤ℎ
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𝑦 = [

𝐀𝟏 ⋯ 𝟎
⋮ 𝐀𝟐 ⋮
𝟎 ⋱ 𝟎
𝟎 ⋯ 𝐀𝑙

] [

𝐁𝟏ℎ 
𝐁𝟐ℎ

⋮
𝐁𝑙ℎ

]= [

𝐀𝟏𝐁𝟏
𝐀𝟐𝐁𝟐

⋮
𝐀𝑙𝐁𝑙

]ℎ = 𝐀′′ℎ.       (21) 

This step has the advantage of enabling more complicated images to be recovered without the 
need of finding/learning a better sparsifying basis for the 4D light field, which is an important 
step in Marwah’s work. We show this advantage in Supplementary Note 8. 

The computation complexity of compressive light field photography and CLIP depends on 
the light field resolution and the applied regularization method under the framework of 

regularization by denoising (see Methods). In CLIP, each iteration involves a pass of 𝐀′′ and 

𝐀′′𝑻 along with a denoising step. The complexity for the shearing operation and matrix 𝐀 is 

o(𝑛𝑎
2𝑁2) and o(𝑚𝑁2) respectively, leading to a total complexity of o((𝑛𝑎

2 +𝑚)𝑁2) for both 

𝐀′′ and 𝐀′′𝑻. The complexity of BM3D and TV denoising for regularization is directly related 

to the image size as o(𝑘𝑁2), with k being a denoiser-dependent constant. Therefore, the total 

complexity of CLIP image recovery is o((2𝑚 + 2𝑛𝑎
2 + 𝑘)𝑁2) per iteration. In comparison, 

while the complexity for 𝐀′ and 𝐀′𝑻 in Supplementary Eq. 20 for retrieving the 4D light field 

remains o(𝑚𝑁2) owing to the block diagonal structure, the denoising complexity of a 4D light 

field becomes o(𝑘𝑛𝑎
2𝑁2), resulting in a total complexity of o((2𝑚 + 𝑘𝑛𝑎

2)𝑁2). Similarly, we 

can analyze the computation complexity per iteration for compressive light field imaging 



methods based on the model in Supplementary Eq. 17 to 19. Supplementary Table 1 
summarizes the characteristics of CLIP and compressive light field photography. It is worth 
noting that the computation complexity of Marwah’s work does not account for the dictionary 
learning process, and the regularization is applied on the entire light field. Also, the convolution 
model of the diffuser-camera is accelerated by FFT. 

Supplementary Table 1 Comparison of CLIP and compressive light field photography 

Methods Sensor Light field 
size 

Measurement 
data size 

Compression 
axis 

Computation complexity 

Ashok7 2D na×na×N×N r×N×N 
Angular or 

spatial 
o((2𝑟 + 𝑘)𝑛𝑎

2𝑁2)

Babacan8 2D na×na×N×N r×N×N Angular o((2𝑟 + 𝑘)𝑛𝑎
2𝑁2)

Marwah3 2D na×na×N×N N×N Angular o((2 + 𝑘)𝑛𝑎
2𝑁2)

Cai7, 
Antipa8 2D na×na×N×N N×N Angular o((4𝑙𝑜𝑔𝑁 + 𝑘𝑛𝑎

2)𝑁2)

CLIP
0D, 

1D, 2D
na×na×N×N m (≤ N×N) 

Angular 
and/or spatial

4D light 
field 

o((2𝑚 + 𝑘𝑛𝑎
2)𝑁2)

Refocus 
image 

o((2𝑚 + 2𝑛𝑎
2 + 𝑘)𝑁2)

Supplementary Note 8. CLIP 4D light field reconstruction versus direct reconstruction 

While CLIP can recover a 4D light field as demonstrated in previous Note, we show here that 
directly recovering a refocused image can better accommodate complex scenes, particularly 
for imaging with lower dimension (1D or 0D) sensors. Marwah’s work relied on a dictionary 
learning process to obtain a representation basis to better sparsify the 4D light field, thereby 
attaining excellent 4D light field reconstruction for complex scenes. On the other hand, Antipa4

pointed out that improper regularization of the 4D light field in diffuser-based camera can 
degrade (or even destroy) the angular information in the light field.  

      In contrast, CLIP doesn’t rely on high quality 4D light field reconstruction to obtain 
excellent refocused images: CLIP’s complementary measurements among sub-apertures can 
significantly improve the refocused images despite the recovered 4D light field may not be of 
high quality, which is the case unde the compressive regime. Further, CLIP can directly recover 
a refocused image like coded-aperture and wavefront-coding methods to accommodate 
complex scenes better, as explained in previous section. We demonstrate this via a synthetic 
study for the synthetic scene 2 and an experimentally acquired light field from the ‘letter scene’, 
using a sampling ration of SR=1. During the reconstruction for the 4D light field, the 
regularization parameter is tuned from to obtain a best refocused image from the light field 
data. Supplementary Figure 11 shows the recovered 4D light field and refocused images for 
the two scenes under the CLIP-1D (a and b) and CLIP-0D (c and d) implementations, with the 
NMSE listed in Supplementary Table 4. It is noted that while the light field suffers from 
significant background signals and noises, the refocusing processing coherently assembles 
CLIP’s complementary imaging across the sub-apertures to yield substantially better refocused 
image. Moreover, CLIP’s direct reconstruction further improved the quality of the refocused 
image by rendering more image details and a higher contrast. 

Supplementary Table 4. NMSE of 4D and direct CLIP reconstructions 
Scene Method s=-1.0 s=1.0 Method s=1.0 s=1.0 

CLIP-1D 1 4D recon. 11.98% 6.08% CLIP-0D 4D recon. 10.47% 10.67% 



Direct 
recon. 

3.66% 4.16% 
Direct 
recon. 

6.23% 7.35% 

2
4D recon. 18.68% 8.48 % 4D recon. 13.02% 7.53% 

Direct 
recon. 

6.33% 6.75% 
Direct 
recon. 

4.41% 4.05% 

Supplementary Figure 11. 4D light field reconstruction versus direct reconstruction of 
refocused images by CLIP. a-b, CLIP-1D reconstruction for the synthetic scene and the 

experimental ‘letter’ scene. c-d, CLIP-0D reconstruction for the two scenes. The sampling ratio of 
CLIP is fixed at SR=1. 

5. The performance of their method is not evaluated well. In compressed 

sensing, evaluation of data fidelity is essential. Without comparison of the 

reconstructed images with the ground truth measured by conventional methods 

(with a lower acquisition rate), it is impossible to judge if the method is good or 

not. 

Response: 

We thank the reviewer for pointing out the importance of quantitatively evaluating the 

image performance (data fidelity) of CLIP. In the revised manuscript, we quantified the 

accuracy of CLIP using normalized mean square error (NMSE) with respect to the 

ground truth in both experiments and synthetic studies. We stressed this point in the 

Light field

CLIP direct reconstruction

CLIP 4D + refocus

Ground truth

CLIP direct reconstruction

CLIP 4D + refocus

Ground truth

Light field

CLIP direct reconstruction

CLIP 4D + refocus

Ground truth

CLIP direct reconstruction

CLIP 4D + refocus

Ground truth

a

c

b

d

s = -1 s = 1 s = -1 s = 1



last paragraph of Principle Section of the revised main text that reads “ … We quantified 

the efficacy of CLIP for light field imaging experimentally with a 0D sensor in Supplementary 

Note 7, and further evaluated the CLIP reconstruction accuracy synthetically with both 0D and 

1D sensors in Supplementary Note 11, which employs CLIP to represent custom-acquired 4D 

light field data for scenes of different complexities and BRDF characteristics… ”.  

      Detailed experimental quantification for CLIP imaging with 0D sensors (CLIP-0D) 

is given in the dedicated Supplementary Note 7 of the revised Supplementary 

Materials, and extensive synthetic quantification for both CLIP-0D and CLIP-1D (using 

a 1D array sensor) are summarized in Supplementary Table 7-10 of Supplementary 

Note 11 (the original Supplementary Note 6), which uses CLIP to represent the 4D 

light field data for scenes of different BRDFs. Both Supplementary Note 7 and 

Supplementary Tables 7-10 are excerpted below. 

“ … 

Supplementary Note 7. Quantitative evaluation of CLIP performance in experiments 

We quantitatively evaluated the performance of CLIP via experimental measurements when 
feasible and turned to synthetic studies otherwise. This is because for computational imaging 
employing nonlocal sampling strategies, ground truth data is typically difficult to obtain 
experimentally: a system reconfiguration with perfect alignment is necessary. Taking CLIP 
imaging with 1D sensors for example, one needs to swap the cylindrical lenslet array into its 
spherical counterpart and adds a 1D scanning to obtain the ground-truth light field. This 
reference imaging needs to be precisely realigned to show the same magnification and field of 
view with CLIP: any mismatch will otherwise bias the quantitative evaluation of its imaging 
accuracy.  

      For CLIP imaging with 0D sensors, the 4D light field can be fully sampled (though not 
based on conventional 2D sensors): for each angular position behind the lens, the sub-aperture 
image can be acquired with a measurement number equal to or larger than the image resolution 
(thus doesn’t rely on compressive sensing), and this imaging process is repeated at all angular 
positions. CLIP measurement can be readily obtained from this dataset by extracting a small 
subset measurement from each angular position and stacking the complementarily extracted 
data into a final measurement as described by Supplementary Eq. 20. We present experimental 
validation of CLIP with 0D sensor in this section and synthetic evaluation of CLIP with 1D 
sensor in the following sections.  

      Two different scenes composed of printed letters were imaged by CLIP-0D experimentally, 
and both the 4D light field and direct image reconstructions are demonstrated under different 
sampling ratio SR. The ground truth 4D light field has a resolution of 4×4×128×128 and was 
obtained by reconstruct each sub-aperture image using a complete measurement. Similarly, the 
ground truth refocused image was obtained from the 4D light field. Supplementary Figure 8 
and 9 shows the 4D light field reconstruction results by CLIP for the two scenes, and the direct 
reconstruction of different refocused images are given in Supplementary Figure 10. The 
reconstruction error is quantified by NMSE in Supplementary Table 3. It is noted that both the 
4D light field and direct reconstruction of refocused images attained a NMSE error below 10% 
in experiments. 

Supplementary Table 3. NMSE of CLIP-0D reconstruction for experimental scenes 



Sampling 
ratio 

4D light 
field 

s = -1 s = -0.3 s = 0.3 s = 1

Scene 1 
SR = 1 7.08% 1.94% 1.53% 1.39% 1.76% 

SR = 0.5 7.31% 2.32% 2.15% 1.83% 2.29% 
SR = 0.25 8.84% 5.41% 3.06% 2.57% 3.22% 

Scene 2 
SR = 1 1.34% 0.94% 0.66% 0.61% 0.67% 

SR = 0.5 2.13% 1.34% 1.39% 1.35% 1.46% 
SR = 0.25 5.06% 3.99% 4.16% 3.75% 3.07% 

Supplementary Figure 8. CLIP-0D 4D light field reconstruction for experimental scene 1. The 
sampling ratio of CLIP is varied from SR = 1 to 0.25. 

SR = 1Ground truth

SR = 0.5 SR = 0.25



Supplementary Figure 9. CLIP-0D 4D light field reconstruction for experimental scene 2. The 
sampling ratio of CLIP is varied from SR = 1 to 0.25. 

SR = 1Ground truth

SR = 0.5 SR = 0.25



Supplementary Figure 10. CLIP-0D direct reconstruction of refocused images for experimental 
scene 1 and 2. The sampling ratio of CLIP is varied from SR= 1 to 0.25. 

…” 

“ …  

Supplementary Note 11. CLIP generality: representing 4D light field data

Supplementary Table 7. NMSE of CLIP representation of the ‘letters’ scene 

SR 2 1 0.5 SR 2 1 0.5 0.25 

CLIP
-1D 

s= -1.0 1.75% 2.79% 5.32% CLIP
-0D

s= -1.0 1.75% 2.60% 3.99% 6.61% 
s= -0.4 1.47% 2.63% 4.54% s= -0.4 1.48% 2.49% 4.06% 5.58% 

s= -0.1 1.59% 3.04% 5.91% s= -0.1 1.64 % 2.84% 4.48% 7.50% 

Supplementary Table 8. NMSE of CLIP representation of the ‘toy-bottle’ scene 

SR 2 1 0.5 SR 2 1 0.5 0.25 

CLIP
-1D 

s= -0.3 0.87% 1.65% 2.37 % CLIP
-0D

s= -0.3 1.95% 3.70% 5.00% 7.86% 
s= 0.0 1.21% 2.40% 3.19% s= 0.0 1.76% 4.99% 5.70% 6.83% 

s= 0.3 1.42% 2.86% 3.65% s= 0.3 2.56% 4.01% 6.24% 9.38% 

Supplementary Table 9. NMSE of CLIP representation of the ‘slanted-text’ scene 

SR 2 1 0.5 SR 2 1 0.5 0.25 

CLIP
-1D 

s= -1.0 0.97% 4.5% 9.97 % CLIP
-0D

s= -1.0 3.01% 4.91% 8.03% 11.94% 
s= -0.4 0.80 % 1.78% 6.41% s= -0.4 4.10% 3.85% 6.13% 9.31% 

s= -1 s= -0.3 s= 0.3 s= 1

Ground 
truth

SR=1

SR=0.5

SR=0.25

s= -1 s= -0.3 s= 0.3 s= 1



s= 0.3 0.72% 3.39% 5.54% s= 0.3 3.29% 5.88% 7.62% 15.77% 

Supplementary Table 10. NMSE of CLIP representation of the ‘bolt-letter’ scene 

SR 2 1 0.5 SR 2 1 0.5 0.25 

CLIP
-1D 

s= -1.0 0.97% 2.46% 4.77 % CLIP
-0D

s= -1.0 0.82% 1.27% 1.96% 3.28% 
s= -0.5 0.80 % 2.04% 3.84% s= -0.5 1.31% 1.72% 2.35% 3.25% 

s= 0.2 0.72% 1.70% 3.23% s= 0.2 0.85% 1.22% 2.11% 2.94% 

… ”

6. The authors' main claim "enable snapshot 3D imaging with an extended depth 

range and through severe scene occlusions" in the abstract is suspicious. In 

the supplementary movies, the shape of the objects significantly changes when 

they are occluded. Again, quantitative evaluation image reconstruction is 

needed for supporting their claim. 

Response: 

We improved the experiments of imaging through occlusions. In previous 

demonstration, the CLIP measurement across the lenslet array was not sufficiently 

randomized: the projection angle of the cylindrical lenslet array were uniformly spaced 

along the array direction. Under occlusions, the object only yields a subset of the full 

measurement entries. To maximize (in a statistical sense) the incoherence among the 

measurement subset at any time instant (the occlusion changes dynamically with 

object motion), it is best to randomly distribute the projection angles of the cylindrical 

lens along the array direction. This is similar in spirit to use a random subset of Fourier 

basis for compressive single pixel or MRI imaging: the Fourier basis needs be 

randomly shuffled first and then chose an arbitrary subset from it.  

      Guided by this principle, we further randomized the cylindrical lens angles along 

the array direction in the new experiments, and improved the imaging quality for 

imaging through occlusions. Regarding this, we revised the Methods section to stress 

the randomized cylindrical lenslet arrangement that reads “ … For optimal imaging 

through occlusions, the cylindrical lenslet angles are further randomly distributed along the 

lenslet array direction, as the effective measurement entries for the occluded objects are 

reduced to a subset of the measurement entry in the imaging model. Such random distribution 

maximizes statistically the incoherence among any subset of the measurements to ensure 

consistent image recovery performance…”.  

      The improved imaging results (along with the corresponding Supplementary Video 

1) are revised in Fig. 2d in the main text, which is appended below. 



Fig. 2. 3D imaging through occlusions. d Three representative frames of imaging a 2×2 grid pattern 

moving across the CLIP camera FOV behind a rectangular occluder. Note that signals from the black 

occluders are enhanced relative to the objects for better visualization.

      Furthermore, we also revised Supplementary Note 10 of Supplementary Materials 

to quantitatively evaluate the performance of CLIP in imaging through occlusions via 

synthetic studies, which shows that CLIP can achieve a small error (mostly <10% 

NMSE) for seeing through occlusions with orders of magnitude less data. We clarified 

this point in the last sentence of ‘3D imaging through Occlusions’ section in the revised 

main text that reads “ … We further quantified the accuracy of CLIP imaging through 

occlusions via synthetic studies in Supplementary Note 10, which shows a small imaging error 

(<10%) can be obtained by CLIP despite of a large reduction (>100 times) in light field 

measurement data… ”. 

      We excerpted Supplementary Note 10 below for a detailed clarification. 

“ … We further compare CLIP with conventional light field imaging for seeing through 

occlusions via synthetic studies. The 4D light field for 3D scenes were rendered in Blender 

software with a resolution of 8×8×128×128, and CLIP measurement were obtained as in 

previously sections. Unlike ToF based measurements that can separate signals of the occluder 

and occluded objects in time, conventional imaging systems can only defocus the occluder, 

yielding significant background for visualizing the occluded objects. To emulate ToF 

measurement for minimizing background, the occluder can be made black in Blender such that 

its image signal is negligible in the generated light field. Supplementary Figure 14 shows four 

examples of imaging through occlusions: a mannequin standing behind a tree, the mannequin 

partially occluded by the black rectangular plate, the ‘CLIP’ letter placed behind a bush, and 

the ‘CLIP’ letter being blocked by a black rectangular occluder. The CLIP reconstruction 

NMSE errors are shown in Supplementary Table 6. It is noted that even with a sampling ratio 

of SR=0.5 that corresponds to a reduction of the 4D light field by 128 times, CLIP can 

effectively see through severe occlusions with an error below 10%. With ToF measurement 

that produces far sparser 2D instantaneous images and separates the occluder signal in time, as 
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emulated by black occluder, CLIP can hence attain background-free imaging of occluded 

objects with a small number of sensors.

Supplementary Table 6. NMSE of CLIP imaging through occlusions 

Scene SR=1.0 SR=0.5 Scene s=1.0 s=1.0 

CLIP-1D 

1 4.07% 6.80% 

CLIP-0D

1 3.59% 5.20% 
2 4.99% 9.12% 2 10.17% 14.0% 
3 3.03% 4.83% 3 4.37% 6.41% 
4 2.62% 4.12% 3 3.25% 4.77% 

[redacted] 
 

Supplementary Figure 14. CLIP imaging through occlusions for four different scenes. The 
sampling ratio of CLIP is varied from SR= 1 to 0.5. 

… ” 
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REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

I share the concerns of reviewer 3 that, while containing some interesting approaches, this is not 

dramatically different from existing compressive light field ideas. The added analysis definitely 

improves the clarity and content of the paper. 

The noise model used seems to be additive gaussian noise. With modern cameras and under normal 

light levels and exposure times, measurements are likely poisson noise limited. Poisson noise is not 

additive and often results in very different behavior compared to additive gaussian noise, especially in 

coding or compressed sensing systems. It would be good to model poisson noise where noise is 

modeled in the simulations. 

Overall, I am not sure whether the scope of the contribution warrants publication in Nature 

Communications, with the substantial added materials, I think it can be publishable. There is nothing 

technically wrong with the paper. 

Reviewer #2 (Remarks to the Author): 

The authors have significantly revised their manuscript. I think it is suitable for publication in Nature 

Communications. 

Reviewer #3 (Remarks to the Author): 

The authors have addressed my comments reasonably well. I recommend accpetance of this work for 

publication.



Response Letter 

Reviewer 1 

I share the concerns of reviewer 3 that, while containing some interesting 

approaches, this is not dramatically different from existing compressive light 

field ideas. The added analysis definitely improves the clarity and content of the 

paper. 

The noise model used seems to be additive gaussian noise. With modern 

cameras and under normal light levels and exposure times, measurements are 

likely poisson noise limited. Poisson noise is not additive and often results in 

very different behavior compared to additive gaussian noise, especially in 

coding or compressed sensing systems. It would be good to model poisson 

noise where noise is modeled in the simulations. 

Overall, I am not sure whether the scope of the contribution warrants publication 

in Nature Communications, with the substantial added materials, I think it can 

be publishable. There is nothing technically wrong with the paper.  

Response: 

We thank the reviewer for the constructive comments on modelling Poisson noises in 

simulation studies, which are added in revised Supplementary Note 9 (Figure 13 and 

Table 6, excerpted below for reference), showing our method works well under 

Poisson-noise-limited applications. 

      Regarding the difference with existing compressive light field cameras, we would 

like to highlight again our work’s is not necessarily compressive, and it is a unique 

framework that enables sensors of arbitrary formats for efficient recording of 4D light 

field. We revised the sentence in Discussion section as “The CLIP framework 

encompasses and goes far beyond these methods to utilize sensors of arbitrary formats for 

efficient light field imaging (compressive or not), with a flexible nonlocal sampling strategy 

that promotes imaging robustness and better exploitation of the sparsity characteristic of high-

dimensional data.”

Revisions in Supplementary Note 9 is appended below in red: 

The robustness of CLIP for photon-starved imaging applications, which are limited by Poisson 
(or shot) noises, are demonstrated in Supplementary Figure 13 by varying the maximum 
number of photons in measurement from 400 to 10000. As indicated by the NMSE in 
Supplementary Table 6, while CLIP-0D is more susceptible to Poisson noises, it can still 
recover the rough structure of complex scenes with a maximum of only 1000 photons. Since 
single pixel imaging usually benefit from a larger photon-detector, CLIP-0D is expected to 
cope well with shot-noise limited imaging applications. 

Supplementary Table 6. NMSE of CLIP imaging with different number photons 



Photons Scene 1 Scene 2 Photons Scene 1 Scene 2 

CLIP-1D 

400 7.30% 2.85% 

CLIP-0D

400 57.88% 43.45% 
1000 6.54% 2.66% 1000 40.62% 25.45% 
4000 5.92% 2.55% 4000 20.58% 16.16% 
10000 6.01% 2.53% 10000 14.95% 7.05% 

Supplementary Figure 13. CLIP reconstruction with different number of photons. NP is 
the maximum number of photons in the measurement dataset.

Reviewer 2

The authors have significantly revised their manuscript. I think it is suitable for 

publication in Nature Communications. 

Response: 

We appreciate the reviewer’s positive comments on our work. 

Reviewer 3 

The authors have addressed my comments reasonably well. I recommend 

acceptance of this work for publication. 

Response: 

We thank the reviewer for the positive comments on our work.  
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