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S1 CONET run settings used in the presented results
For all runs on simulated data presented in Section Performance of CONET in
comparison to other methods on simulated data in the main text, the run parameters
of CONET are fixed to the following values:

(k0 = 1, k1 = 0.01, s1 = 100000, s2 = 100000, nCN = 2).

For all runs on simulated data presented in Section Performance of CONET using
different priors on per-breakpoint data simulated from the model, the run parame-
ters of CONET are fixed to the following values:

• (k0 = 1, k1 = 0.5, s1 = 0, s2 = 0, nCN = 2) for Tree structure prior equal to
0.5 setting (cell attachment probability is uniform),

• (k0 = 1, k1 = 0.1, s1 = 0, s2 = 0, nCN = 2) for Tree structure prior equal to
0.1 setting (cell attachment probability is uniform),

• (k0 = 1, k1 = 0, s1 = 0, s2 = 0, nCN = 2) for Attachment prior equal to 0.5
setting.

For the evaluation of CONET scalability on simulated data with increasingly large
m (number of cells), presented in Table S1 (Additional File 4), the run parameters
of CONET are fixed to:

(k0 = 1, k1 = 0.01 ·
500
m
, s1 = 100000, s2 = 100000, nCN = 2).

For the SA501X3F xenograft breast cancer sample the run settings were:

(k0 = 1, k1 = 0.5, s1 = 200000, s2 = 200000, nCN = 2).

For the joint SA501X3F and SA501X4F xenograft breast cancer sample the run
settings were:

(k0 = 1, k1 = 0.005, s1 = 200000, s2 = 200000, nCN = 2).

For the TN2 invasive ductal carcinoma sample the run settings were:

(k0 = 1, k1 = 0.1, s1 = 1000000, s2 = 1000000, nCN = 3).

S2 Run settings for the compared methods
HMMCopy was run with the command HMMSegment from R ”HMMcopy” package
with maxiter set to 50000.
CBS+Megelevels were run using the following commands:

• segment(smooth.CNA( · ), verbose=0, alpha = 0.01, undo.prune = 0.05),
• followed by mergeLevels (after appropriate transformation of results from the
preceding command).

using R ”DNAcopy”, ”aCGH” packages.
SCICoNE was run with default parameters provided by the implementation with
the exception of window size which was set to 10.
MEDALT was run with default parameters provided by the implementation.
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S3 Comparison of MEDALT trees on different CN calling input
for the xenograft breast cancer SA501X3F data

Figure S5 shows comparison of MEDALT trees obtained from different CN ma-
trices inferred by CBS+MergeLevels, HMMCopy and CONET. For input from
CBC+MergeLevels, the CN calling procedure that is the default for MEDALT,
the event tree (Figure S5A) is the largest and has multiple branches. Still, the ma-
jority of cells are assigned to one node, which includes alteration of AKT3 and
ATR. For this input, the events recognized by MEDALT as significant affect only
two breast cancer genes, AKT1 and NTRK3 (according to the COSMIC Cancer
Gene Census [67]). For the input CNs called using HMMCopy, the MEDALT tree
is much smaller, and contains a single node which aggregates the majority of cells
(Figure S5B). Among the events associated with this largest node the alterations
of AKT3 and ATR occur again, similarly to the tree for the CBC+MergeLevels
input. Other events, however, do not agree between the two trees: either the events
from one tree do not occur in the other, or it occurs in a different order implied by
the tree structures. For the HMMCopy input, MEDALT identifies events affecting 9
breast cancer genes, two of which overlap with the breast cancer genes identified for
the CBC+Mergelevels input. Finally, for the input provided by CONET, the tree
structure and event occurrence and ordering is again different from the other two
trees (figure S5C). This tree, however, is characterized by a more even distribution
of cells assigned to different nodes of the tree. This tree contains events affecting
four genes, two of which overlap with the other ones (AKT1 and NTRK3 ).

S4 Comparison of event discovery for short and long events
To assess the effectiveness of CONET on different scales of CNAs, we compare
event precision and sensitivity on short and long events, for CONET with three
different sets of candidate breakpoints loci: i) CONET (known), with true candi-
date breakpoint loci set, ii) CONET (HMMCopy), with candidate breakpoint loci
set identified by HMMCopy and iii) CONET (CBS+MergeLevels), with candidate
breakpoint loci set identified by CBS followed by MergeLevels (Figure S10). The
experiment is performed for all 50 synthetic data sets generated in the most challeng-
ing setting (tree of size 40 and 1000 cells; see Section Simulations for comparative
evaluation of CONET on both per-bin and per-breakpoint data in the main text).
An event is considered short if its length is smaller than 0.25th quantile of event
length for all events from the ground truth tree. Likewise, an event is considered
long if its length is greater than 0.75th quantile of event length for all events from
the ground truth tree.
For CONET (known), event precision is very high and larger for short events than
for long events. This can be due to the fact that the model prioritizes shorter events
(see the description of Pel prior in Section Tree structure priors in the main text).
In contrast, for CONET (HMMCopy) and CONET (CBS+MergeLevels) event pre-
cision is lower for short events than for long events. We speculate that this is due to
the fact that HMMCopy and CBS+MergeLevels are worse at detecting breakpoints
for short events and fail to provide them as input candidate loci.
For CONET (known) and CONET (CBS+MergeLevels) event sensitivity does
not show differences between long and short events. For CONET (HMMCopy) the
median sensitivity for long events is around 10 percentage points higher.
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Overall CONET obtains satisfactory results for both short and long CN events
detection. The above mentioned differences do not show systematic bias for the
event length and result from the method of candidate breakpoint loci detection.

S5 Performance of CONET using different priors on
per-breakpoint data simulated from the model

To assess the performance of CONET using different priors in a setting where the
ground truth is known, we conduct the evaluation on simulated data. To this end,
we use CONET as a generative model, and sample trees of given sizes with attached
predefined numbers of cells, outputting per-breakpoint data in the form of abso-
lute count difference matrices, according to the assumed absolute count difference
distributions (Section Data simulation from the model). Note that this simulation
experiment differs in several ways from the experiment on simulated data presented
in the main text. First, the data is generated directly from the model, and thus the
performance of the model in terms of learning the trees and recovering the break-
points depends exclusively on the level of noise put into the simulated data in a
controlled manner. Second, only the per-breakpoint data are simulated, and not the
per-bin data, and thus no other existing approach can be applied. Therefore, in this
simulation experiment we do not compare CONET to any other method. Instead,
we evaluate the performance of CONET inference from per-breakpoint data alone,
for different types of priors.
The simulated count difference matrix is used as an input for CONET inference
procedure and the results are compared with the ground truth to assess the quality
of the output tree structure and breakpoints in each cell, according to cell attach-
ment which maximizes the likelihood.
Each evaluation scenario is described by three parameters - the size of the
CONET tree (with values from {20, 40}), the number of cells (with values from
{200, 400, 1000, 2000}) which are randomly assigned to tree vertices during simu-
lation, and finally the absolute count difference distributions that will be used for
the generation of the difference matrices. The number of potential breakpoint loci
is fixed to twice the tree size.
Entries of the difference matrix are sampled from two corrected counts absolute
difference distributions settings - well separated and poorly separated. The first one
provides a clear distinction between the distribution of the absolute count differences
at breakpoint loci and the differences at loci without breakpoints. The well separated
setting corresponds to higher quality data, with less noise and higher coverage.
The poorly separated setting represents input data with more noise and as such is
expected to be more challenging for our algorithm. During the inference procedure,
the distributions of the corrected count absolute differences are assumed to be
unknown and must be inferred by our algorithm.
Additionally, we run our algorithm with two different choices of priors. The tree
structure prior penalizes inference of large trees. The impact of this penalty depends
on the constant which is set by the user, and we evaluate this prior with the constant
set either to 0.1 or to 0.5. The attachment prior encourages our scheme to propose
trees that attach cells to nodes with a history consisting of shorter events.
For each of the scenarios described above (number of cells, tree size, distributions
setting, prior) we generate 10 random models. For each of the generated models, we
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run our inference scheme 10 times (each time with a different seed) with 5 ·105 steps
for parameter inference and 106 MCMC steps, obtaining 10 inferred CONETs and
10 breakpoint matrices (information about breakpoints in each cell according to
their maximum attachment to the tree). The average running time of one inference
procedure ranges from less than two minutes in the least computationally demand-
ing scenario (tree size 20 with 200 cells) to half an hour in the most demanding
scenario (tree size 40 with 2000 cells). We then compare the inferred data to the
ground truth information from the simulated models. This strategy allows us to
evaluate not only the quality of a single prediction, but also the consistency of the
results across different runs of the algorithm for common input data.
The quality of inference results was evaluated using the same metrics as introduced
in the main text: Inferred Tree Size, Edge Sensitivity, Edge Precision for assessing
the quality of the inferred CN event tree, False Positive Rate and False Negative
rate quantifying the similarity of the inferred tree’s edge set to that of the real tree,
and Symmetric Distance assessing the quality of breakpoint detection.
Figure S13 depicts aggregated tree scores for the analyzed simulation scenarios
and demonstrates the high performance of the model in terms of inferring CONET
structure. The sizes of the inferred trees oscillate around the real values of 20 or
40, with slight over- or under-prediction being dependent on the choice of prior
(Figure S13 A–D). There is a tendency, however, that the trees grow as the number
of cells increases. This is to be expected, since for a higher amount of cells the
algorithm has more possibilities of increasing the likelihood by adding subtrees that
correspond to small subpopulations of our cells. All evaluated priors regularize the
model and are effective at limiting the inferred tree growth. For the tree structure
prior, the results depend on the constant controlling the prior’s strength. The more
complex scenarios with more cells and bigger true trees, the strong tree structure
prior (constant 0.5) sometimes over-penalizes the tree size, resulting in overly small
trees. In comparison to the strong tree structure prior, the moderate tree structure
prior (constant equal to 0.1) results in trees of size closer to the true values. The
attachment prior works in the most subtle way i.e. the model returns the biggest
trees compared to the two other priors.
Edge sensitivity (Figure S13 E–H) decreases with stronger regularization due to
smaller tree size, but is very high for adequate regularization choice. In simulation
scenarios, the strong tree structure prior gives the smallest edge sensitivity. For
trees of size 20 and the case of the well separated distributions (Figure S13 E),
both the attachment prior and moderate tree structure prior yield a high edge
sensitivity of around 0.75, regardless of the number of cells. For the same tree size
and the poorly separated case, edge sensitivity decreases by around 0.1 for these
priors (Figure S13 F). For larger trees (Figure S13 G,H) edge sensitivity further
decreases, but it grows with larger numbers of cells. In the most difficult of the
analyzed simulation scenarios (tree size 40 and poorly separated data), with 2000
cells, the attachment and moderate tree structure prior give edge sensitivity of
around 0.65.
Compared to edge sensitivity, the different regularization priors have less effect on
edge precision (Figure S13 I-L). In all analyzed simulation scenarios, the majority
of discovered edges is contained in the real history. In the simplest scenario (tree
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size 20 and well separated data, Figure S13 I), edge precision is around 0.75 for all
cell numbers. Even in the most difficult scenario (Figure S13 L), the median edge
precision of the algorithm exceeds 0.5, regardless of the prior and the cell count.
In some simulation scenarios (Figure S13 I,J), edge precision decreases with the
increasing number of cells for the attachment prior. This is because with this prior,
larger trees are inferred.
Figure S14 illustrates the excellent performance of breakpoint detection using our
algorithm. In all analyzed scenarios, the median false positive rate of the detected
breakpoints is very low. Indeed, regardless of the choice of the prior and the number
of cells, the median false positive rate is below 0.1 (Figure S14 A–D). In the well
separated data scenarios (Figure S14 A,C), the false positive rates are even lower
(median less than 0.05).
Similarly, the false negative rate is very low in all scenarios (Figure S14 E–H).
Only in the most difficult simulation scenario (tree size 40 and poorly separated
data) and only for the strong tree structure prior (constant 0.5), the median false
negative rate exceeds 0.1. Better data separability (Figure S14 E,G) yields even
better results, with median false negative rates below 0.025. Transition to poorly
separated distribution results in a more significant deterioration of the false nega-
tive rate than of the false positive rate – this is an outcome of more pronounced
underestimation of tree size in those scenarios (Figure S13).
Interestingly, both false positive and false negative breakpoint rates are very small
for the attachment prior, also in the scenarios with small trees, where attachment
prior yielded relatively low edge precision (Figure S13 I,J) and proposed trees were
larger than the true trees (Figure S13 A,B). This result suggests that even though
edge precision may be worse for CONET with priors that propose trees that are
too large, the algorithm can still exhibit good breakpoint detection.
The excellent performance in breakpoint re-detection for simulated data is best
quantified using the symmetric difference metric (Figure S14 I–L). Again, even in
the most difficult scenario (Figure S14 L), the symmetric distance between real and
the inferred breakpoint matrices is only around 1. This means that on average every
cell has only a single missed or wrongly inferred breakpoint.
In conclusion, although the best results are achieved for the smaller trees with
well separated absolute count difference distributions, overall the algorithm excels
in breakpoint detection across all evaluated measures, while the correct choice of
regularization ensures satisfactory edge sensitivity and precision.

S5.1 Data simulation from the model
Simulations are performed to test CONET performance in the conditions where we
know the ground truth CONET tree. Different simulation settings are generated, by
varying the size t of the simulated tree T , the number of loci |L|, the number of single
cells m and whether the distribution of the corrected count absolute differences for
the breakpoint loci is well separated from the distribution for the non-breakpoint
loci (well separated setting) or not (poorly separated setting). The data is simulated
as originating from one chromosome.
First, the tree structure T is sampled uniformly from the set of all trees of pre-
specified size t. The size t is either 20 with the number of all possible breakpoints |L|
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equal to 40 or two times more, i.e., 40 with 80 possible breakpoints. Next, we sample
the events corresponding to each vertex from the set of all possible events with log-
probability proportional to the negative length of the event. The probability of a
cell being attached to a given vertex v is equal to α∗v, where (α

∗
v)v∈V (T ) is sampled

from Dirichlet(1).
Finally, we generate simulated corrected count absolute differences dj,i for each
cell j = 1, . . . ,m and each locus i ∈ L. To this end, for each cell, its breakpoints are
read from its tree attachment. Differences for loci without breakpoint are sampled
from distribution f0 while differences for loci with breakpoint are sampled from
distribution fbp. In the well separated setting case we set:

• f0 = N (0, 0.3)
• fbp is a mixture of (N (1, 0.4),N (2, 0.4),N (3, 1.7)) with weights (0.5, 0.35, 0.15).
In the poorly separated setting case we set:

• f0 = N (0, 0.7)
• fbp is a mixture of (N (1, 0.7),N (2, 0.7),N (3, 1.7)) with weights (0.5, 0.35, 0.15).

Where N (a, b) denotes normal distribution with mean a and standard deviation b.
In the simulations we do not produce corrected count data C and thus set the s0
constant to 0, i.e., the R(C,D, T, θ) penalty is ignored in the inference.

S6 Evaluation of the count discrepancy penalty for scDNA-seq
data sample

In the case of a real scDNA-seq data set, where the per-bin corrected count data
is available, it is advantageous to apply additional regularisation in the form of the
count discrepancy penalty. The count discrepancy penalty consists of two terms
(Methods). The first term corresponds to the L2 distance between the noisy counts
in the data and the CN estimation based on the model. The weight of this term is
controlled by a constant s1, with s1 = 0 corresponding to the fact that this term
is not included in the penalty. The second term penalizes trees that create regions
changed by CN events and inferred CN equal to two. The weight of this term is
controlled by the constant s2.
To demonstrate the benefit of applying the discrepanccy penalty, we consider
three scenarios. In the first scenario, similarly to the tests on simulated data, we do
not apply the count discrepancy penalty at all (s1 = s2 = 0). In the second scenario
we apply only the first penalty (s1 = 200000, s2 = 0). Finally, in the third scenario
we take advantage of both count discrepancy penalties (s1 = s2 = 200000). In each
case, CONET inference is performed under the same MCMC sampling setting):
0.5 million iterations with joint inference of the tree structure and the corrected
count absolute difference distributions, proceeded with 1 million iterations with
only tree moves (see Section Methods in the main text).
The run time for the first scenario is 2.5 hours, the second scenario - 11.5 hours,
and the third - just under 10 hours (on a high performance computer with AMD
Ryzen Threadripper 3990X 64-Core CPU and 128 GB RAM, using 5 threads).
For each scenario, the run times for the whole inference procedures in the case of
biological data are longer than for simulated data, since we deal with over ten times
more potential breakpoints (which translates to around 100 times more potential
CN events). The first scenario is substantially the least computationally demanding
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because it skips the count discrepancy calculation in each MCMC step and - as a
result - infers much smaller trees (tens vs hundreds of vertices). The second scenario
runs longer than the third because the inferred trees are larger when we do not
penalize trees for inferring regions with CN equal to two.

S6.1 Applied quality measures
The CONETs obtained in the three scenarios are evaluated using several quality
measures.
For basic characterization of the inferred trees we report Tree size (the number
of CN events inferred for a given data set) and No of clusters – the number of all
BCw clusters i.e. subsets of bins that share the same copy number event history,
including the B∅ cluster.
To evaluate the consistency of an inferred CONET with the count data, we use
characteristics defined below. Cluster support is calculated as the number of bins in
a given cluster with corrected count close to inferred CN (c ∈ [CN−0.5, CN+0.5])
divided by the number of all the bins in the cluster.
Avg cluster support – average over all BCw clusters’ supports,
Perc of good clusters – percentage of clusters with at least 0.7 support,
Perc of nCN clusters – percentage of clusters that infer CN equal to basal ploidy
nCN (not including B∅ cluster).
Finally, we define detailed measures evaluating the quality and consistency of the
CN calling results, where by bins inside events we mean bins in all BCw clusters
except for BC∅.
Avg Gini Index in events – Gini Index calculated separately for corrected counts
in bins for each BCw cluster (w ̸= ∅), averaged over the clusters,
Avg Entropy in events – normalized Shannon Entropy calculated separately for
corrected counts in bins in each BCw cluster (w ̸= ∅), averaged over the clusters; to
calculate the entropy in each cluster the corrected counts are grouped into intervals
of width 1, concentrated around integer copy numbers,
Gini Index outside events – Gini Index calculated for corrected counts in bins in
the BC∅ cluster,
Entropy outside events – normalized Shannon Entropy calculated for corrected
counts in bins in the BC∅ cluster,
CN-TPR – The number of bins inside events with corrected count c far from basal
ploidy, i.e. c /∈ [nCN − 0.5, nCN +0.5], divided by the total number of bins with the
true corrected count far from basal ploidy,
CN-FPR – The number of bins inside events with corrected count c close basal
ploidy, i.e. c ∈ [nCN − 0.5, nCN + 0.5] divided by the total number of bins with the
true corrected count close to two.
CNCC-RMSE – root mean square error for CN calling for experimental data with
unkown true CN, the quadratic mean of the differences between the inferred integer
copy number for each bin and the corrected count for each corresponding bin.

S6.2 Assessment of CONET quality
The additional count discrepancy improves the quality of the inferred tree (Addi-
tional File 6: Table S3). In the first scenario, the tree inferred without the penalty
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contains only 35 events and defines 127 clusters. It is hard to expect that such a
small tree can fully explain the CN variation in 260 single tumor cells. Correspond-
ingly, according to all quality measures, this tree has the lowest quality of clusters,
compared to the trees obtained with the additional count discrepancy penalty. The
tree obtained in the second scenario is noticeably larger, and although the cluster
qualities are comparable to the third scenario, the percentage of clusters with CN
equal to two is too high. The comparison clearly demonstrates the overall advantage
of applying the full count discrepancy penalty (scenario 3), which yields the CONET
of the average size and combines the good quality of nodes with low percentage of
clusters that infer CN equal to basal ploidy 2. The fact that the inference without
the additional penalty (the first scenario) gives very good performance on simu-
lated data, shows that the real biological data poses a significantly more difficult
challenge for the model.

S6.3 Assessment of CN calling quality
Similarly, incorporation of the count discrepancy penalty improves CN estimation
(Methods; Additional File 7: Table S4). As above, the evaluation is based on the
quality of bin clusters (sets of bins that share the same event history according to
the model). Here, we first consider bin clusters that are indeed changed by events
of the tree, referred to as in events. Second, we consider bins that are in one large
cluster of all bins that were not included in the events of the tree, i.e. the tree does
not infer any CN tree for these bins. These bins are referred to as outside events.
To quantify the dispersion of corrected counts in both the bin clusters inside and
outside events, we use the Gini index and Shanon Entropy measures. Next, CN
true positive rate (CN-TPR) is computed as the fraction of bins with true corrected
count not rounding to two and contained in events of a CONET, out of all bins
with true corrected count not rounding to two. Here, we consider the bins with true
corrected count not rounding to two as the positive examples of bins that truly
underwent a CN change event. The CN false positive rate (CN-FPR) quantifies
the fraction of bins that are part of a CONET events (the bins that underwent a
CN event according to our model) out of the total number of bins with corrected
count rounding to two (the bins that did not undergo a CN event according to
the data). Root mean square error for our CN calling procedure (CNCC-RMSE) is
calculated as the quadratic mean of the differences between inferred integer CN and
corrected count in each bin, i.e. the square root of the count discrepancy penalty. For
a correctly inferred CONET, the CNCC-RMSE reflects the noisiness of scDNA-seq
data.
The small size of the CONET inferred without the count discrepancy penalty in
the first scenario, results in bad overall quality of inferred CNs according to all
quality measures. Compared to the trees inferred with the penalty, this tree has
higher dispersion inside events and - more apparently - outside events, very low
CN-TPR and almost two times higher CNCC-RMSE. In the second scenario an
opposite situation occurs, where the CN-TPR is close to 100% because this most
complicated CONET includes such a high number of events that almost all bins
with CN far from two are included inside them. The dispersion measures improve
substantially compared to scenario 1 and the CNCC-RMSE is the lowest. This
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happens at the cost of CN-FPR, which is over three times higher than in the first
scenario and nine times higher than in the third scenario. This again proves that
without penalizing inference of CN equal to two inside events, the inferred tree
grows too large. The CN calling results obtained using the CONET with the full
discrepancy penalty in the third scenario are by far the best, constituting a well
balanced compromise between the too simple and too complicated CONETs from
the two other scenarios. The quality of CN calling results for the tree in scenario
3 is higher than for the first scenario across all parameters. In comparison to the
tree obtained in scenario 2, this tree is similar in terms of low dispersion in counts
in bins inside and outside events, rare inclusion of bins with corrected count far
from two in CN events (CN-TPR) and low CN calling error (CNCC-RMSE), while
scoring far better in terms of restricting the inclusion of bins with corrected count
close to two (CN-FPR).
We conclude that additional regularisation in the form of the full count discrep-
ancy penalty is necessary when dealing with noisy, low-depth scDNA-seq data from
real experiments. The degree of this regularisation should be calibrated to the spe-
cific biological data set with scDNA-seq technology in mind, utilising different s1
and s2 count discrepancy constants’ values and comparing the results with the aid
of the described quality measures.
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S7 Recommended procedure for setting CONET regularization
parameters

Regularization parameters can be used to control the output tree size, as well as
the fit of the output CN calls to the input per-bin data. Copy number events that
occur in high frequency across cells are localized in vertices at the top of the tree
(close to the trunk). Larger trees will explain rarer CN events, to the extent that
very large trees can already include events that correspond to the noise in the data.
Therefore, manipulating the regularization parameters helps to avoid over-fitting.
To identify optimal regularization parameter values, we recommend running the
model for different regularization parameter settings and choosing those that yield
the best tree quality measures, as introduced in section Applied quality measures.
Specifically, in the initial run, set the values for the model regularization parameters:

(k1 = 0.0, s1 = 100000, s2 = 100000, k0 = 1).

After finishing the inference procedure, calculate the quality measures defined in
Applied quality measures using the available readTree.R script. Compare obtained
values to those described in Section Assessment of CONET quality and presented
in Tables S3 and S4 (Additional Files 6 and 7). If the trees are too large and
over-fit to the data, which can be indicated by a large value of CN − FPR,
fit the data size prior k1 i.e. run a series of models with different values k1 ∈
{0.01, 0.05, 0.1, 0.2, 0.5}, calculate and compare the quality measures. Higher k1
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values generally decrease the size of inferred CONET. After setting optimal k1, per-
form fine tuning by checking results for different values of count penalty constants
s1 = s2 ∈ {50000, 200000, 500000, 1000000}. Higher s1 and s2 values generally in-
crease the size of inferred CONET. To make sure that the regularization parameter
values are optimal, additional runs can be performed in the relative proximity of
the regularization parameters value that returned the best inference results.
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Supplementary Figures

Figure S1 The fit of the assumed theoretical and the empirical data distributions, for data
generated using two different scDNA-seq technologies. A Density histogram (y axis) of
corrected counts (x axis) for SA501X3F experimental data set, generated using DLP protocol.
Green line represents fitted mixed normal distribution with 4 components. B Double density
histogram (y axis) of count absolute differences (x axis) for SA501X3F experimental data set. Red
line represents fitted truncated normal distribution and blue line - fitted mixed normal distribution
(4 components). C Density histogram (y axis) of corrected counts (x axis) for TN2 experimental
data set, generated using the ACT protocol. Green line represents fitted mixed normal distribution
with 6 components. D Double density histogram (y axis) of count absolute differences (x axis) for
TN2 experimental data set. Red line represents fitted truncated normal distribution and blue line -
fitted mixed normal distribution (6 components). For both datasets, the assumed theoretical
distributions fit the data perfectly.
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Figure S2 Assessment of CC-rounding CN calling for synthetic data A Distribution of false
positive rate (y axis) as a function of cell count (x axis) for all simulation scenarios. B Distribution
of false negative rate (y axis) as a function of cell count (x axis) for all simulation scenarios. C
Distribution of symmetric distance (y axis) as a function of cell count (x axis) for all simulation
scenarios. D Distribution of CN-RMSE (y axis) as a function of cell count (x axis) for all
simulation scenarios. Overall results are very poor for all scenarios indicating very high sensitivity
to noise in the data.
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Figure S3 Graphical illustration of CN calling results with CBS+MergeLevels for SA501X3F
xenograft breast cancer data set. A The CC heatmap illustrates the biological data with
corrected counts in genomic bins, B the CN heatmap presents the inferred integer CN for
equivalent bins using CBS+MergeLevels. Columns correspond to genomic locations, rows to single
cells. The rows in both matrices are in the same order fixed using hierarchical clustering of cells
according to their inferred CNs.
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Figure S4 Graphical illustration of CN calling results with rounding for SA501X3F xenograft
breast cancer data set. A The CC heatmap illustrates the biological data with corrected counts in
genomic bins, B the CN heatmap presents the inferred integer CN for equivalent bins using simple
rounding. Columns correspond to genomic locations, rows to single cells. The rows in both
matrices are in the same order fixed using hierarchical clustering of cells according to their inferred
CNs.
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Figure S5 MEDALT trees for CN input from A CBS+MergeLevels, B HMMCopy, C CONET.
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Figure S6 Comparison of CONETs for mixed SA501X3F and SA501X4F vs single SA501X3F
xenograft breast cancer samples. A The CONET for SA501X3F and SA501X4F xenograft breast
cancer samples. The CONET is drawn in a compacted form, with part of vertices collapsed when
it is possible without losing important information i.e. when the collapsed vertex has no cells
attached and not more than one child. Specifically, the collapsed vertex is joined with its closest
descendant that does not satisfy these criteria (number of events is shown at the beginning of
joint vertices). This results in decreasing the tree size from 388 to 240. For clarity, we additionally
collapse 120 events into one artificial vertex (left lower corner in the Figure). The names of the
breast cancer genes [67] affected by the CN events are printed in alphabetical order in the
corresponding vertices, except for the artificial vertex, which only contains events overlapping with
cancer genes present in other vertices on the path from this node to the root. The colors illustrate
the sample of origin of the cells that are attached to o vertex. Underlined genes correspond to
their counterparts in the CONET from B part of the figure. B The CONET for SA501X3F
xenograft breast cancer sample, reproduced from Figure 4A in the main text.
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Figure S7 CONET for TN2 invasive ductal carcinoma data set. A The CONET is drawn in a
compacted form, with part of vertices collapsed when it is possible without losing important
information, i.e. when the collapsed vertex has no cells attached and not more than one child.
Specifically, the collapsed vertex is joined with its closest descendant that does not satisfy these
criteria (number of events is shown at the beginning of joint vertices). This results in decreasing
the tree size from 163 to 84. The number of cells attached to each vertex is illustrated with
different colors, where white vertices have no cells attached and the darker green indicates more
cells attached. The names of the breast cancer genes [67] affected by the CN events are printed in
alphabetical order in the corresponding vertices. Underlined genes are characteristic for the
subclones.
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Figure S8 Graphical illustration of CN calling results for for TN2 invasive ductal carcinoma
data set. A The CC heatmap illustrates the biological data with corrected counts in genomic bins,
B the CN heatmap presents the inferred integer CN for equivalent bins. Columns correspond to
genomic locations, rows to single cells. The rows in both matrices are in the same order fixed
using hierarchical clustering of cells according to their inferred CNs.
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Figure S9 Assessment of CONET recovery of ancestry relations and clustering of cells. A,B
Distribution of ancestry recall (y axis) as a function of cell count (x axis) for all three CONET
versions (colors), in scenario with real tree of size 20 and high noise (A) and in scenario with real
tree of size 40 and high noise (B). C, D Distribution of branching recall (y axis) as a function of
cell count (x axis) for all three CONET versions, in scenario with real tree of size 20 and high
noise (C) and in scenario with real tree of size 40 and high noise (D). E, F Distribution of rand
index (y axis) as a function of cell count (x axis) for all three CONET versions in scenario with
real tree of size 20 and high noise (E) and in scenario with real tree of size 40 and high noise (F).
Overall, the results show that even in challenging high-noise settings CONET is able to correctly
recover majority of ancestry relations and cell clustering.
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Figure S10 Effectiveness of CONET on short versus long copy number events. A Distribution
of event precision (y axis) for short events for all methods (x axis). B Distribution of event
precision (y axis) for long events for all methods (x axis). C Distribution of event sensitivity (y
axis) for short events for all methods (x axis). D Distribution of event sensitivity (y axis) for long
events for all methods (x axis).

Figure S11 Log-likelihood trace plots for eight runs of CONET on the SA501X3F xenograft
breast cancer sample. Right - trace plots for the first chain in the procedure (inference of model’s
parameters). Left - trace plots for the second chain in the procedure (tree inference). The plots
indicate convergence with only one of the eight chains being stuck in local suboptimal maximum.



Markowska et al. Page 23 of 25

Figure S12 Log-likelihood trace plots of parameters inference chain for different versions of
CONET on synthetic data with high noise level. A - trace plots for all three CONET versions (8
runs per version) for model with real tree of size 20 and 200 cells. B - trace plots for all three
CONET versions (8 runs per version) for model with real tree of size 20 and 1000 cells. C - trace
plots for all three CONET versions (8 runs per version) for model with real tree of size 40 and 200
cells. D - trace plots for all three CONET versions (8 runs per version) for model with real tree of
size 40 and 1000 cells.
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Figure S13 Assessment of the tree structure inference for simulated data tests results. A-D
Distribution of inferred tree sizes (y axis) depending on the cell number (x axis) for all simulation
scenarios. The horizontal line indicates the size of the true event tree. E-H Distribution of edge
sensitivity (y axis) depending on the cell number (x axis) for all scenarios. I-L Distribution of edge
precision (y axis) depending on the cell number (x axis) for all scenarios. The results indicate very
high efficiency in detecting real event history. In all figures Attachment prior scenario has Tree
structure prior set to 0. Scenarios with non-zero Tree structure prior use uniform attachment
probability.
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Figure S14 Assessment of breakpoints inference for simulated data tests results. A-D
Distribution of false positive rate (y axis) as a function of cell count (x axis) for all simulation
scenarios. E-H Distribution of false negative rate (y axis) as a function of cell count (x axis) for all
scenarios. I-L Distribution of symmetric distance score between inferred and real breakpoints (y
axis) as a function of cell count (y axis) for all scenarios. Overall results are very good for all
scenarios, and good data separability is a determining factor of the quality of the results. In all
figures Attachment prior scenario has Tree structure prior set to 0. Scenarios with non-zero Tree
structure prior use uniform attachment probability.
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