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Supplementary Figures

Supplementary Figure S1: tSNE visualization of the overlapping subset data from mouse cell

atlases for Liger (first column) and Conos (second column), colored by cell type (first row) and

technology (second row).
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Supplementary Figure S2: Evaluating the joint visualizations of the mouse cell atlas subset data.

Boxplots of cell type silhouette coefficients (left) and modality silhouette coefficient (right) for

scJoint, Seurat, Conos and Liger (n = 101,692). Each boxplot ranges from the upper and lower

quartiles with the median as the horizontal line and whiskers extend 1.5 times the interquartile

range.
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Supplementary Figure S3: Evaluating the accuracy of transferred labels for each cell type in the

mouse cell atlas subset data. F1-scores of cell type classification from each method.
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Supplementary Figure S4: Accuracy rates of scJoint, Seurat and Conos using scRNA-seq data

with 5%, 10%, and 20% of the cell type labels randomly shuffled in mouse cell atlas subset data.

10 random shuffling were performed for each setting to generate the variance. Each boxplot

ranges from the upper and lower quartiles with the median as the horizontal line and whiskers

extend 1.5 times the interquartile range.
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Supplementary Figure S5: tSNE visualization of the overlapping subset data (433,695 cells from

scRNA-seq and 656,074 cells from scATAC-seq) from human fetal atlas for scJoint, colored by

technology (left), original labels (middle) and scJoint prediction (right).
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Supplementary Figure S6: Evaluating the joint visualizations of the mouse cell atlas data: box-

plots of cell type silhouette coefficients. The distances between cells are calculated based on the

tSNE plot of scATAC-seq data (n = 81,173), and the predicted labels from scJoint, Seurat and

Conos are used as grouping information, with the cell type labels from the original scATAC-seq

study used as the golden standard for comparison. Each boxplot ranges from the upper and lower

quartiles with the median as the horizontal line and whiskers extend 1.5 times the interquartile

range.
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Supplementary Figure S7: tSNE visualization of CITE-seq and ASAP-seq PBMC data under

stimulation, generated by scJoint (first column), Seurat (second column), Conos (third column)

and Liger (fourth column), colored by cell types (first row) from CiteFuse and manual annota-

tions, and technology (second row).
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Supplementary Figure S8: tSNE visualization of CITE-seq and ASAP-seq PBMC data under

the control condition, generated by scJoint (first column), Seurat (second column), Conos (third

column) and Liger (fourth column), colored by cell types (first row) from CiteFuse and manual

annotations, and technology (second row).
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Supplementary Figure S9: Evaluating the joint visualizations of CITE-seq and ASAP-seq PBMC

data. (a-b) Barplots of cell type silhouette coefficients for scJoint, Seurat, Conos and Liger for

all cells, colored by cell types under (a) control; (b) stimulation. (c-d) Scatter plot of mean

silhouette coefficients for scJoint, Seurat, Conos and Liger (left), where the x-axis denotes the

mean silhouette coefficients of cell types and the y-axis denotes 1 - mean modality silhouette

coefficients under two conditions: (c) control; (d) stimulation; (e-f) Boxplots of F1 scores of

silhouette coefficients for scJoint, Liger, Seurat, and Conos, under (e) control (n = 9,146) and (f)

stimulation (n = 8,942). Each boxplot ranges from the upper and lower quartiles with the median

as the horizontal line and whiskers extend 1.5 times the interquartile range.
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Supplementary Figure S10: Label transfer accuracy in CITE-seq and ASAP-seq PBMC data.

Heatmaps show fractions of agreement between the original labels and the transferred labels of

scJoint, Seurat and Conos: (a) control; (b) stimulation.
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Supplementary Figure S11: Consistency of label transfer in CITE-seq and ASAP-seq PBMC

data. Heatmaps show fractions of agreement among the transferred labels from running each

method on control / stimulation separately and two conditions jointly: scJoint (left), Seurat (mid-

dle) and Conos (right).
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Supplementary Figure S12: ADT expression of NK T cells in CITE-seq and ATAC-seq data.
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Supplementary Figure S13: tSNE visualization of CITE-seq and ASAP-seq PBMC data under

combined conditions, generated by Seurat (first column) and Conos (second column), colored

by original cell types (first row) from CiteFuse and manual annotations, and predicted cell types.

Cells identified as NK T cells in scJoint visualization are mixed with Effector CD8+ T cells by

other methods.
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Supplementary Figure S14: Differential expression (DE) analysis across two conditions of CITE-

seq and ASAP-seq.
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Supplementary Figure S15: (a) tSNE visualization of SNARE-seq data with the RNA and ATAC

parts colored separately for unpaired methods: scJoint (top left), Seurat (top right), Conos (bot-

tom left) and Liger (bottom right). (b) tSNE visualization of SNARE-seq data colored by original

cell types, generated by Seurat (top), Conos (bottom left), Liger (bottom right).

Supplementary Figure S16: Evaluating the joint tSNE visualizations for SNARE-seq data. (a)

Boxplots of modality silhouette coefficients for scJoint, Seurat, Conos, and Liger (n = 9,190);

smaller values indicate better mixing. Each boxplot ranges from the upper and lower quartiles

with the median as the horizontal line and whiskers extend 1.5 times the interquartile range. (b)

Boxplots of F1 scores of silhouette coefficients for scJoint, Seurat, Conos, and Liger (n = 9,190);

larger values indicate better balance. Each boxplot ranges from the upper and lower quartiles

with the median as the horizontal line and whiskers extend 1.5 times the interquartile range. (c)

Scatter plot of mean silhouette coefficients for scJoint, Liger, Seurat, and Conos, where the x-

axis shows the mean cell type silhouette coefficients and the y-axis shows 1 - mean modality

silhouette coefficients; ideal outcomes would lie in the top right corner.
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Supplementary Figure S17: Evaluating the accuracy of transferred labels for each cell type in the

SNARE-seq data. F1-scores of cell type classification from each method.
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Supplementary Figure S18: Robustness to tuning parameters. Label transfer accuracy of scJoint

on the overlapping subset data from the mouse cell atlases when varying (a) the fraction p of data

pairs included in the cosine similarity loss (p = 0.7, 0.8, 0.9, 1.0) and number of training epochs

in Step 1 and 3 ((5, 5), (10, 10), and (5, 10)); (b) the number of nodes in the embedding (hidden)

layer (number of nodes = 64, 96, 128, 160). The dots indicate the medians and the bars indicate

the interquartile range from 10 independent runs.
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Supplementary Figure S19: Evaluating the probability scores for label transfer in CITE-seq and

ASAP-seq PBMC data. (a-b) tSNE visualization using scJoint colored by: (a) probability score

of cell type prediction; (b) the correctness of transferred labels. (c) Accuracy rate changes as

we change the threshold for probability scores in each method. The x-axis shows the number

of cells whose probability scores exceed a given threshold and were assigned a prediction; the

y-axis shows the corresponding accuracy rate.
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Dataset S T # epochs (Step 1) lr (Step 1) # epochs (Step 3) lr (Step 3) λ

Mouse atlas full 2 1 10 0.01 10 0.01 10

Mouse atlas subset 2 1 10 0.01 10 0.01 10

SNARE-seq 1 1 10 0.01 10 0.01 1

Multi-modal control 1 1 20 0.01 20 0.01 1

Multi-modal stimulation 1 1 20 0.01 20 0.001 1

Multi-modal combined 1 1 20 0.01 20 0.01 1

Table S1: Training details for each data listing the number of scRNA-seq datasets (S), number

of scATAC-seq datasets (T), learning rate (lr) and number of training epochs used in Step 1 and

Step 3.

Number of cells batch size # epochs (Step 1) lr (Step 1) # epochs (Step 3) lr (Step 3)

≤ 50k 256 10 0.01 10 0.01

50k - 500k 512 10 0.01 10 0.01

≥ 500k 1024 10 0.01 10 0.01

Table S2: Training details for the human fetal atlas data, including the batch size, learning rate

(lr) and number of training epochs used in Step 1 and Step 3.
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Supplementary Note

A: Integrative analysis of human hematopoiesis data

As a case study to demonstrate the trajectory mode of scJoint, we performed integrative analysis

of human hematopoiesis data from healthy donors generated by scRNA-seq and scATAC-seq

[1]. The data contains 35038 cells for scRNA-seq data and 35582 cells for scATAC-seq data

from multiple hematopoietic lineages, including the B cell lineage (HSC - CMP/LMPP - CLP -

Pre B - B) and the monocytic lineage (HSC - CMP/LMPP - GMP - CD14 Mono).

We first integrated the full data to evaluate the label transfer accuracy rate and the joint em-

bedding of the two modalities. Supplementary Figure S20 shows that the trajectory mode of

scJoint effectively mixes the two modalities while multiple lineage trajectories are also well rep-

resented in the joint visualization. Moreover, scJoint achieves a higher accuracy rate (81%) than

Seurat (78%) and Conos (31%).

Next, we performed trajectory analysis on the B cell lineage and monocytic lineage respec-

tively to evaluate the conservation of trajectory after integration based on the original labels.

Similar to Luecken et al.[2], the trajectory for each lineage was generated by the diffusion map

of the joint embedding space from each method; diffusion pseudotime was then obtained using

the R package destiny [3]. The cells labeled hematopoietic stem cells (HSC) were considered

as root cells. The diffusion pseudotime was then ranked and normalized. For the unintegrated

data, the diffusion map was performed on the first 50 principal components for the scRNA-seq

and scATAC-seq data respectively. We then used the trajectory conservation score to evaluate the

preservation of the trajectory structure. The trajectory conservation score is defined similarly as

in Luecken et al. [2], quantified by the Spearman correlation between the trajectories from the

integrated data and the unintegrated data. Note that the trajectory conservation score proposed

assumes the trajectory from unintegrated data as the golden standard, but our analyses (panel

c of Supplementary Figures S21, S22) suggest unintegrated data do not necessarily contain the

clearest trajectory information.

The diffusion maps of scJoint reveal biological trajectories following the correct order of lin-

eage development for both the B cell lineage and monocytic lineages (panel b of Supplementary

Figures S21, S22, first column) and also broadly consistent with the unintegrated data (panel
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Supplementary Figure S20: (a) UMAP plots of human hematopoiesis developmental data for

scJoint, Seurat, Conos, and Liger, colored by cell types defined in the original study [1] (first

row), and cell types (second row). (b) Predicted cell types and their fractions of agreement with

the original cell types given in the original study [1] for scJoint (left panel), Seurat (middle panel)

and Conos (right panel). Clearer diagonal structure indicates better agreement.

a of Supplementary Figures S21, S22). In terms of the trajectory conservation scores, scJoint

performs consistently with scores greater than 0.7 in all cases; scJoint and Seurat are the top two

methods and perform most consistently in both lineages (panel d of Supplementary Figures S21,

S22). Although Conos has high conservation scores for the B cell lineage, it fails to integrate the

two modalities (panel b of Supplementary Figures S21, S22, last column). Looking closely at the

distribution of the pseudotime, scJoint shows clearer shifts in distribution as the cell types evolve

along the correct developmental path than the unintegrated data (panel c of Supplementary Fig-

ures S21, S22, RNA and ATAC). This suggests integration of the two modalities brings about

better reconstruction of developmental processes and the use of unintegrated data as the golden

standard for comparison in the conservation scores may not be optimal. In this sense, the plots in

panel c of Supplementary Figures S21, S22 can be considered as an alternative way of assessing
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the pseudotime from each method, where we can see scJoint provides mostly uni-modal distri-

butions with clear shifts, while the other methods often have multiple modes in each cell type.

Together, the analysis of the human hematopoiesis data illustrates that the trajectory version

of scJoint is capable of integrating data from continuous biological processes.

B: scJoint loss functions

The purpose of each loss function component in LscJoint:

1. The NNDR loss performs dimension reduction on data adapting intuition from PCA and is

a novel loss that integrates dimension reduction into the whole training framework. Com-

pared to existing approaches in computer vision, which apply PCA separately followed

by CNN (known as whitening), our loss directly uses the neural network itself for feature

extraction, thus allowing the low dimensional features to be jointly updated throughout

training.

2. The cosine similarity loss aligns cells across the two modalities (RNA and ATAC) with

similar low dimensional representations. It is commonly used in the computer vision liter-

ature for face recognition (e.g. Wang et al. [4]), but underexplored in the single-cell deep

learning literature and novel in its application.

3. The cross entropy loss is a commonly used loss for classification. It enforces clear sep-

aration between different cell types in the case with well-differentiated tissues. This loss

can be removed in Step 3 for developmental data since the underlying cell states are more

continuous.

4. The center loss removes batch effects by encouraging cells of the same cell type to be close

to their cluster center in the low dimensional space representation, regardless of their batch

or modality labels. This loss only comes in Step 3 as it requires a reasonably accurate

estimation of ATAC cell labels, which are obtained in Step 2, for calculating the cluster

centers.
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C: Additional assessment of scJoint

C1: Evaluation of activation functions

We examined two types of nonlinear activation functions popular in the single cell deep learning

literature:

• (1) LeakyReLU with slope equal to 0.05, 0.1 and 0.5, and

• (2) ELU with default setting.

The results of the mouse atlas overlapping subset data are summarized in the table below. We

observe that for LeakyReLU, the accuracy increases as the slope increases and as the function

becomes closer to a linear function; for ELU, it achieves the same accuracy rate as using the

linear activation function. Intuitively, the nonlinear activation functions do not outperform the

linear activation functions because these nonlinear activation functions can be well approximated

by a few linear function pieces and we only have one hidden layer. In this sense, we do not expect

nonlinearity to add extra representation power since we already have an overparametrized neural

network ( 80 million parameters). Thus, the linear activation function is one of the optimal

settings for scJoint.

LeakyReLU LeakyReLU LeakyReLU ELU

(slope = 0.05) (slope = 0.1) (slope = 0.5) (default in PyTorch)

Accuracy 69% 82% 82% 0.84%

Table S3: Label transfer accuracy table of nonlinear activation functions or mouse atlas overlap-

ping subset data.

C2: Choice of the weight for the center loss

We examined the choice of weight for the center loss. By default, we set the weight of the center

loss λ as 1. For all the datasets that used λ = 1 in the manuscript (Supplementary Table S1), we

found larger λ did not change their label transfer accuracy or embedding visualizations. How-

ever, a larger λ should be considered when different technologies were used in generating the

omics leading to batch effects (e.g. droplet-based and plate-based in scRNA-seq). In the mouse

atlas data analysis, which contains scRNA-seq data from 10x Genomics and SMART-seq2, we

set λ as 10. Supplementary Figure S23 shows that batch effects are still apparent with λ equal to
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1. Good mixing starts with λ = 5, and the visualizations are very stable for lambda larger than

10. (λ = 10 shown in Figure 2a.)

In the example of human hematopoiesis developmental data, we set λ = 1 during training

since the scRNA-seq data was generated by one technology. Supplementary Figure S24 shows

UMAP plots with larger λ (λ = 5, 10) show similar cell type development structure and batch

mixing as the UMAP plot with λ = 1 (shown in Supplementary Figure S20). Thus similar to the

case for well differentiated tissues, the results are very stable to larger λ values.

C3: Evaluation of binarization

To investigate the impact of different ways to binarize data as input for scJoint, we performed

additional experiments using the mouse cell atlas subset data from the 19 overlapping cell types

to compare the performance of:

1. Binarized vs. non-binarized scRNA-seq data

2. Different higher expression thresholds for non-binarized scRNA-seq data

3. Different lower expression thresholds for binarized scRNA-seq data

The performance of these different forms of scRNA-seq as input data is evaluated by the

overall label transfer accuracy and the F1-score per cell type in the scATAC-seq data. Overall,

these results suggest that the binarized scRNA-seq is optimal for scJoint, and the label transfer

performance of scJoint is robust to how the binary matrix is constructed. The details of the

experiments are:

Case 1: Binarized vs. non-binarized scRNA-seq data. For the non-binarized data, we

scaled the log-transformed gene expression data into the range of 0 to 1 using min-max scaling

so that it has the same scale as the binary scATAC-seq data. The label transfer accuracy of the

non-binarized scRNA-seq is 71.8%, which is significantly lower than using the binarized matrix

(84%) and using the binarized matrix as input outperforms the non-binarized for all cell types

(Supplementary Figure S25a).

Case 2: Different higher expression thresholds for non-binarized. scRNA-seq data. First

we truncated the expression values with maximum value set to a threshold t. We then performed

min-max transformation to scale the values to between 0 and 1. As this threshold decreases, the

input matrix becomes more similar to the binarized matrix. We varied this threshold from 3 to 8.
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Supplementary Figure S25b shows that the label transfer accuracy rate increases as this threshold

decreases, that is, as more high expression values are capped at 1. For performance per cell type,

the binarized data has higher F1-scores than the thresholded non-binarized data in all cell types

except monocytes (Supplementary Figure S25a, columns 1, 7-12). While monocytes is one of

the cell types with a small number of cells in the training data, the binarized data performs well

in all the other cell types with fewer cells than monocytes.

Case 3: Different lower expression thresholds for binarized scRNA-seq data. We ex-

plored different lower thresholds to binarize data. If the log-transformed gene expression value

is greater than this threshold, we set the value as 1; otherwise we set the value as 0. As this

threshold increases, the input matrix becomes sparser. (Our binarization is equivalent to setting

this threshold as 0.) We varied this threshold from 1 to 4. Note the 5%, 10%, 20% and 30%

quantiles of the non-zero expression value in the scRNA-seq SMART-seq2 data are 1.1, 1.73.1

and 4.2 respectively. Therefore, using a threshold of 1 is equivalent to roughly setting 5% of

non-zero gene expression values as 0. As shown in Supplementary Figure S25a (columns 3-6)

and Supplementary Figure S25c, we found that both the overall label transfer accuracy and F1-

score per cell type are robust to thresholds from 1 to 3. As expected, the accuracy rate drops

at the threshold 4 as the input data becomes too sparse and loses too much information due to

thresholding.
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Supplementary Figure S21: Analaysis of B lineages. (a) Diffusion maps of unintegrated scRNA-

seq (left) and scATAC-seq data (right). (b) Diffusion maps of integrated data, colored by cell

types (top) and modality (bottom), generated by scJoint, Seurat, Liger and Conos. (c) Distribu-

tion of pseudotime for scRNA-seq, scATAC-seq, scJoint, Seurat, Liger and Conos. (d) Trajectory

conservation score for scJoint, Seurat, Liger and Conos, using the trajectories built by scATAC-

seq (left) and scRNA-seq (right) as reference.
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Supplementary Figure S22: Analaysis of monocyte lineages. (a) Diffusion maps of unintegrated

scRNA-seq (left) and scATAC-seq data (right). (b) Diffusion maps of integrated data, colored

by cell types (top) and modality (bottom), generated by scJoint, Seurat, Liger and Conos. (c)

Distribution of pseudotime for scRNA-seq, scATAC-seq, scJoint, Seurat, Liger and Conos. (d)

Trajectory conservation score for scJoint, Seurat, Liger and Conos, using the trajectories built by

scATAC-seq (left) and scRNA-seq (right) as reference.
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Supplementary Figure S23: tSNE plots of mouse cell atlas subset data with λ = 1, 5, 15, 20
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5, 10
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3. Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime

robustly reconstructs lineage branching. Nature methods 13, 845–848 (2016).

4. Wang, H. et al. Cosface: Large margin cosine loss for deep face recognition in Proceedings

of the IEEE conference on computer vision and pattern recognition (2018), 5265–5274.

29




