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Topological data analysis

Homology and simplicial complexes. Persistent homology is based on the topological con-

cept of homology (for intuitive introductions, see, for example, references (23, 71); for more

formal introductions see references (72–74)). Homology allows one to study shapes and forms

disregarding any changes caused by stretching or bending. One can study the properties of

a topological space by partitioning it into smaller, topologically simpler pieces, which when

reassembled include the same aggregate topological information as the original space. Topo-

logical spaces can be very simple. Two trivial examples are the empty set X = ; or a space

that consists of one single point X = {x}. If we want to capture the topological properties of

the second example X = {x}, we could simply choose a single node to represent it. However,

a node or even a collection of nodes does not allow one to capture the topological properties of

more complicated spaces, such as a 2-sphere or the surface of the earth. In such cases, one needs

a simple object that carries the information that the space is connected but also encloses a hole.

Consider, for example, a collection of triangles glued together to form a hollow tetrahedron;

this is an example of a mathematical object called a simplicial complex. The building blocks

that one uses to approximate topological spaces are called n-simplices which one can think of as

generalised triangles. The parameter n indicates the dimension of the simplex. Every n-simplex

contains n+1 independent nodes: a point is a 0-simplex, an edge is a 1-simplex, a triangle

is a 2-simplex, and a (solid) tetrahedron is a 3-simplex. By using a numbering xi of

vertices, we can write a 0-simplex as [x0], a 1-simplex as [x0, x1], a 2-simplex as [x0, x1, x2],

and a 3-simplex as [x0, x1, x2, x3]. The lower-dimensional simplices form so-called faces of

the associated higher-dimensional objects. One combines different simplices into a simplicial

complex X to capture all different aspects of a topological space. Two simplices that are part of

a simplicial complex are allowed to intersect only in common faces. The dimension of a simpli-

cial complex is defined to be the dimension of its highest-dimensional simplex. A subcollection



of a simplicial complex X is called a subcomplex of X if it forms a simplicial complex itself.

For every simplicial complex X we can define a vector space Cn(X) that is spanned by its

n-simplices with coefficients in the field Z/2Z. The elements of the vector space Cn(X) are

called n-chains. We can now define a linear map, the so-called boundary operator, between

vector spaces Cn(X) and Cn�1(X) which takes every n-simplex x to the (alternating) sum of

its faces, i.e. its boundary:

@n : Cn(X) ! Cn�1(X),

x 7!
nX

j=0

(�1)j[x0, . . . , xj�1, xj+1, . . . , xn], (1)

i.e. in the j-th summand we omit the vertex xj from the vertices spanning the (n� 1)-simplex.

Note that the sum in Equation (1) is over the field Z/2Z where (�1) = 1, i.e. we can omit the

(�1)j term in the above equation. We can use the boundary operator to connect all n-chains of

a simplicial complex X in a sequence, the so-called chain complex C = {Cn, @n}:

. . .
@n+2�! Cn+1

@n+1�! Cn
@n�! Cn�1

@n�1�! . . .
@1�! C0 (2)

c 7�! @nc. (3)

We can represent a collection of edges that are connected to form a loop in a simplicial complex

as a 1-chain, for example, [x0, x1] + [x1, x2] + · · ·+ [xj, x0]. If we apply the boundary operator

to this 1-chain, we obtain @([x0, x1] + [x1, x2] + · · · + [xj, x0]) = [x1] � [x0] + [x2] � [x1] +

· · · + [x0]� [xj] = 0. In contrast, for a collection of edges that does not form a loop this is not

the case, e.g., @([x0, x1]+ [x1, x2]+ · · ·+[xj�1, xj]) = [xj]� [x0] = [x0]+ [xj] (for coefficients

from Z/2Z). Chains that are in the kernel of @n, i.e. their boundary is zero, are called n-cycles.

One can compute that the composition of two boundary maps yields zero, i.e.

@n@n+1c = 0, (4)



since the boundary of a boundary is empty. The image im @n+1 of the boundary operator is

therefore a subspace of the kernel ker @n and its elements are called n-boundaries.

One can associate a family of vector spaces known as homology groups to a simplicial

complex X based on its cycles and boundaries. For every dimension n � 0 one defines the nth

homology group as:

Hn(X) =
ker @n
im @n+1

. (5)

In dimension 2, the elements of the homology group H2 are called voids; in dimension 1,

the elements of the homology group H1 are called loops; in dimension 0, the elements of the

homology group H0 are called connected components. Two elements in Hn are considered to be

different, if they differ by more than a boundary, i.e. if they represent different n-dimensional

holes. We then say that they belong to different homology classes.

We measure the number of n-dimensional holes of a simplicial complex by considering its

nth Betti number �n:

�n = dimHn(X) = dimker @n � dim im @n+1. (6)

The first three Betti numbers, �0, �1, and �2, represent, respectively, the number of connected

components, the number of 1-dimensional holes, and the number of 2-dimensional holes (i.e.

voids) in a simplicial complex.

Persistent homology. While homology gives information about a single simplicial complex,

PH allows one to study topological features across embedded sequences, so-called filtrations,

of simplicial complexes, which can be constructed from data. A filtration (17, 18, 49) of a

simplicial complex X is a sequence of embedded simplicial complexes,

; = X0 ✓ X1 ✓ X2 ✓ · · · ✓ Xend = X , (7)



starting with the empty complex and ending with the entire simplicial complex X . The simpli-

cial complexes in the filtration are connected by inclusion maps. One can now apply an impor-

tant property of homology, functoriality: any map between simplicial complexes fi,j : Xi ! Xj

induces a map between their n-chains f̃n
i,j : Cn(Xi) ! Cn(Xj) which induces a map between

their homology groups fn
i,j : Hn(Xi) ! Hn(Xj). In particular, this means that there exist maps

between the homology groups of every simplicial complex in a filtration, e.g., there are maps

that relate the voids, loops or connected components in simplicial complexes across a filtration.

One can visualise topological features such as loops or connected components across a filtration

in a summary diagram called a barcode (49, 79). For an appropriate choice of basis (80) of the

homology groups Hn, a barcode represents the information carried by the homology groups and

the maps fn
i,j : Hn(Xi) ! Hn(Xj). A topological feature of dimension n in Hn(Xb) is born in

Hn(Xb), if it is not in the image of fn
b�1,b. For example, intuitively, a loop is born in filtration

step b, if the loop appears closed in the simplicial complex Xb for the first time. A topological

feature from Hn(Xi) dies in Hn(Xd), where i < d, if d is the smallest index such that the feature

mapped to zero by f
n
i,d. If the topological feature is a loop, intuitively it dies in the filtration step

where it is first fully covered by triangles (or other higher-dimensional simplices). Note that

some topological features never die in a filtration, for example, we always have one connected

component in a non-empty simplicial complex that is never mapped to zero. In a barcode, topo-

logical features in the filtration of a simplicial complex are represented by half-open intervals

[b, d). The lifetime of a topological feature, the so-called persistence p, is defined as p = d� b.

For topological features that persist until the last filtration step (and beyond), the persistence is

said to be infinite.



Data set Branching
points

Segments
(edges)

Tumour volume
(initial day of
imaging)

Penetration
depth

Radial
filtration
computation
per network

Intravital 240 – 10 025 260 – 10 060 100 mm3 300 µm Days to weeks

Ultramicroscopy 12 500 –
118 000

16 700 –
169 150

60 mm3 � 5 mm Weeks to
months

Table S1: Summary of data sets, experimental conditions, and computational time.

Computational differences between datasets

The differences in the biology and the imaging of our datasets led to discrepancy in computa-

tional feasibility (see Table S1). In particular, the network sizes and penetration depth of the

imaging differed considerably, which significantly affected the computations for the radial fil-

tration. We first performed the majority of computations for the intravital data on a IBM System

x3550 M4 16 core server with 768 GB RAM over 3 months but were not able to obtain all re-

sults. For the ultramicroscopy data as well as the remaining intravital data, we required a Dual

Intel Xeon Gold 6240M 18 core processor system with 3TB of RAM to complete computations

over further 3 months. While for the intravital data we were able to compute the radial filtra-

tion on all networks in the dataset (in some cases after reduction approaches for the number

of nodes, see Data preprocessing in Materials and Methods), in the ultramicroscopy data, we

were not able to obtain results for one of the control tumours on day 14 of observation despite

reducing the number of nodes (see Section Data preprocessing in Materials and Methods).



Supporting Experimental Information

In order to visualize the response of the tumor vasculature, we used a transgenic mouse model

in which the fluorescent protein tdTomato is expressed in both normal and tumor endothe-

lial cells (EC). We used transgenic mice bearing a Cre recombinase-tamoxifen receptor fu-

sion protein (Cre-ERT2) driven by the VE cadherin promoter. These mice were crossed with

Gt(ROSA)26Sortm9(CAG-tdTomato)Hze mice so that activation of Cre by tamoxifen resulted

in EC expression of tdTomato (schematic shown in Figure S1A). For imaging purposes we only

used mice with greater than 95% fluorescent EC. The segmentation of tumor blood vessels was

based on the TECs expressing tdTomato. We used intravenous injection of Qdots 705 to dis-

tinguish perfused from non-perfused tumor vessels, i.e. vessels labelled with the infused Qdots

and vessels not labelled with it. As further evidence, we note that no Qdot positive, endothe-

lial negative vessels were identified. If the Qdots were in the lymphatics then they would have

identified vessels not lined by vascular endothelium; this did not happen.

Tortuosity in the ultramicroscopy data

The tortuosity descriptor is defined as the ratio of the number of short bars ( 10% of maximal

radius used in the radial filtration) in dimension 0 barcodes to the number of vessel segments.

We divided by the number of vessel segments to ensure the contributions are topological and

are not masked by an increase or decrease of vasculature. However, in the case of bevacizumab

in the ultramicroscopy data, the significant decrease in number of vessel segments (8), which

is also visually apparent when looking at examples of extracted vascular networks (see Fig. 2),

leads to a seemingly contradictory increase of tortuosity (see Figure S2a). This is supported by

a correlation between our tortuosity measure and the size of voids which we observed in this

dataset (see Fig. S28). When considering the raw number of short bars without dividing by the

number of vessel segments, we observe the expected effect of bevacizumab on tortuosity (see



Figure S1: tdTomato expression in ECs and TECs in VE-TOM mice. A) Schematic of the Ve-
Cad (Cre-ERT2) system. Administration of tamoxifen by gavaging in adult VE-TOM mice activates
the Cre-LoxP system in endothelial cells inducing tdTomato expression. B) TECs expressing tdTomato
(cyan), co-stained for CD31 (white). C) TECs expressing tdTomato (cyan), co-stained for CD31 (white).
Representative image of a MC38 tumor. GFP positive tumor cells (yellow), TECs (cyan), and infused
Qdots (purple) indicating perfused vessels. Scale bar in B and C is 50µm.

Figure S2b).

As discussed in Section Computational differences between datasets, the vascular networks

in the ultramicroscopy data are much larger than in the intravital dataset. However, they are less

well resolved in the xy-plane (see Data description in Materials and Methods). This has two

consequences on our analysis of tortuosity: 1) the tortuosity of vessels is likely to be captured



to a lesser degree than in the intravital data, 2) the number of filtration steps needed to be able

to capture tortuosity adequately would need to be significantly higher than the 500 used in the

radial filtration. Indeed, example images from this data (see Fig. 2) do not appear to show

strikingly tortuous vessels. Moreover, our computation of the radial filtration in 500 steps was

already at the edge of computational feasibility (see Section Computational differences between

datasets). Thus further refinement of the filtration is not possible. Alternatively, we can observe

the coarse trends change over time without a normalisation by the number of vessel segments

as shown in Figure S2b. While our topological descriptor therefore quantified a genuine and

significant change in the vascular networks on the ultramicrocopy data, its interpretation here

needs to be made with care.
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Figure S2: Tortuosity in the ultramicroscopy dataset. a) Tortuosity computed as number of short bars
( 10% of maximal radius used in the radial filtration) in dimension 0 barcode per vessel segment. b)
Tortuosity computed as number of short bars ( 10% of maximal radius used in the radial filtration) in
dimension 0 barcode.

Alternative results figures and statistical analysis

We show alternative representations of our results from the main text. In Fig. S3 we present

the results for the intravital data as mean time series for each treatment group with error bars

(standard error of the mean) to highlight that our data is dynamic over time.



In Fig. S4 we present our results including p-values from our statistical analysis. We compute

the (non-exact and unadjusted) p-values for the intravital data using the R function pairwise.wilcox.test()

in RSTUDIO (76) to perform a pairwise Wilcoxon’s rank sum test between the control group and

each of the treatment groups. For the ultramicroscopy data we use the function stat compare means()

from the library ggpubr to perform Wilcoxon’s rank sum test. All our tests are by default two-

sided.

In Fig. S5 we present time-series of the spatio-temporal resolution of the intravital data.
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Figure S3: Topological descriptors extracted from tumour blood vessel networks treated with vas-
cular targeting agents with known effects II. a) Intravital data results. We normalised all descriptors
with respect to values on the day on which treatment is administered (day 0) or, for controls, the day
on which observations commence (day 0). Data was collected from control mice (beige), mice treated
with the vascular targeting agent DC101 (37) (dark pink), mice treated with vascular targeting agent
anti-Dll4 (39) (light pink), mice treated with fractionated irradiation (FIR, brown), and mice treated with
single dose irradiation (IR,blue). Tortuosity was computed as the ratio of short bars ( 10% of maximal
radius used in the radial filtration) in the dimension 0 barcodes of the radial filtration to the number of
vessel segments. Loops are the number of bars in the dimension 1 barcodes of the radial filtration per
vessel segment in the network. b) Ultramicroscopy data results. Due to the snapshot nature of the data
(one time point per tumour), all reported topological descriptors are raw values. Data was collected from
control mice (beige) and mice treated with bevacizumab (purple). We computed tortuosity values and the
number of vessel loops per vessel segment, in the same way as for the intravital data. We also determined
the size of voids (avascular regions) by computing the median length of bars in the dimension 2 barcodes
of the ↵-complex filtration.
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Figure S4: Topological descriptors extracted from tumour blood vessel networks treated with vas-
cular targeting agents with known effects III. a) Intravital data results. We normalised all descriptors 
with respect to values on the day on which treatment is administered (day 0) or, for controls, the day 
on which observations commence (day 0). Data was collected from control mice (beige), mice treated 
with the vascular targeting agent DC101 (37) (dark pink), mice treated with vascular targeting agent 
anti-Dll4 (39) (light pink), mice treated with fractionated irradiation (FIR, brown), and mice treated with
single dose irradiation (IR,blue). Tortuosity was computed as the ratio of short bars ( 10% of maximal
radius used in the radial filtration) in the dimension 0 barcodes of the radial filtration to the number of
vessel segments. Loops are the number of bars in the dimension 1 barcodes of the radial filtration per 
vessel segment in the network. b) Ultramicroscopy data results. Due to the snapshot nature of the data 
(one time point per tumour), all reported topological descriptors are raw values. Data was collected from 
control mice (beige) and mice treated with bevacizumab (purple). We computed tortuosity values and the 
number of vessel loops per vessel segment, in the same way as for the intravital data. We also determined 
the size of voids (avascular regions) by computing the median length of bars in the dimension 2 barcodes 
of the ↵-complex filtration.
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(c) Radial interval III.
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(d) Radial interval IV.
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Figure S5: Mean time series of the normalised number of loops per vessel segment for different
filtration intervals in the intravital dataset. We show the mean of the number of loops normalised
by day 0 and standard error of the mean in different radial intervals. Interval I corresponds to the radial
region closest to the tumour centre, while Interval V represents parts of the vessel network that are farthest
away from the tumour centre. We separate the treatments into two groups to facilitate the distinction of
the trends.



Additional results and statistical analysis

Intravital data: DC101 versus anti-Dll4. We present statistical analysis on the control group

and treatment groups DC101 and anti-Dll4 in the intravital data. We use the function

stat compare means() from the library ggpubr to compute Kruskal-Wallis test p-values

for tortuosity (see Fig. S6), number of loops per vessel segment (see Fig. S7) as well as the

following standard measures for vascular networks: number of vessel segments (see Fig. S8),

number of branching points (see Fig. S9), average vessel diameter (see Fig. S10), maximal

diameter (see Fig. S11), average (mean) vessel length (see Fig. S12), maximal vessel length

(see Fig. S13), average (mean) chord length ratio (see Fig. S14), average (mean) sum of angles

metric (see Fig. S15), and length-diameter ratio (see Fig. S16). All values are normalised by day

0 of observation/treatment and were obtained from the PYTHON code package UNET-CORE (44).
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Figure S6: Box plot showing the number of short bars in the dimension 0 barcode of the radial
filtration divided by the number of vessel segments. The values are normalised by day 0 of initial
treatment for all treatment regimes to facilitate comparisons of trends over time. We show group level
p-values according to the Kruskal-Wallis test.



p = 0.9728 p = 0.0899 p = 0.0055 p = 0.0248

1

2

3

1 2 3 4
Days since treatment

Ba
rs

 (p
er

 s
eg

m
en

t)

Control DC101 Dll4

Loops

Figure S7: Box plot showing the number of bars in the dimension 1 barcode of the radial filtration
divided by the number of vessel segments. The values are normalised by day 0 of initial treatment
for all treatment regimes to facilitate comparisons of trends over time. We show group level p-values
according to the Kruskal-Wallis test.
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Figure S8: Box plot showing the number of vessel segments. The values are normalised by day 0 of
initial treatment for all treatment regimes to facilitate comparisons of trends over time. We show group
level p-values according to the Kruskal-Wallis test.
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Figure S9: Box plot showing the number of branching points. The values are normalised by day 0 of
initial treatment for all treatment regimes to facilitate comparisons of trends over time. We show group
level p-values according to the Kruskal-Wallis test.
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Figure S10: Box plot showing the average (mean) vessel diameter. The values are normalised by day
0 of initial treatment for all treatment regimes to facilitate comparisons of trends over time. We show
group level p-values according to the Kruskal-Wallis test.
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Figure S11: Box plot showing the maximal vessel diameter. The values are normalised by day 0 of
initial treatment for all treatment regimes to facilitate comparisons of trends over time. We show group
level p-values according to the Kruskal-Wallis test.
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Figure S12: Box plot showing the average (mean) vessel length. The values are normalised by day
0 of initial treatment for all treatment regimes to facilitate comparisons of trends over time. We show
group level p-values according to the Kruskal-Wallis test.
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Figure S13: Box plot showing the average (mean) vessel length. The values are normalised by day
0 of initial treatment for all treatment regimes to facilitate comparisons of trends over time. We show
group level p-values according to the Kruskal-Wallis test.
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Figure S14: Box plot showing the average (mean) chord length ratio. The values are normalised by
day 0 of initial treatment for all treatment regimes to facilitate comparisons of trends over time. We show
group level p-values according to the Kruskal-Wallis test.
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Figure S15: Box plot showing the average (mean) sum of angles metric. The values are normalised
by day 0 of initial treatment for all treatment regimes to facilitate comparisons of trends over time. We
show group level p-values according to the Kruskal-Wallis test.
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Figure S16: Box plot showing the length to diameter ratio. The values are normalised by day 0 of
initial treatment for all treatment regimes to facilitate comparisons of trends over time. We show group
level p-values according to the Kruskal-Wallis test.



Intravital data: single dose irradiation versus fractionated dose irradiation. We present

statistical analysis on the control group and radiation treatment groups IR (single-dose irra-

diation) and FIR (fractionated-dose irradiation) in the intravital data. We use the function

stat compare means() from the library ggpubr to compute Kruskal-Wallis test p-values

for tortuosity (see Fig. S17) and number of loops per vessel segment (see Fig. S18). All values

are normalised by day 0 of observation/treatment.
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Figure S17: Box plot showing the number of short bars in the dimension 0 barcode of the radial
filtration divided by the number of vessel segments. The values are normalised by day 0 of initial
treatment for all treatment regimes to facilitate comparisons of trends over time. We show group level
p-values according to the Kruskal-Wallis test.
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Figure S18: Box plot showing the number of bars in the dimension 1 barcode of the radial filtration
divided by the number of vessel segments. The values are normalised by day 0 of initial treatment
for all treatment regimes to facilitate comparisons of trends over time. We show group level p-values
according to the Kruskal-Wallis test.



Intravital data: all treatment groups. We present statistical analysis to determine whether

at least one of the treatment groups in the intravital data behaves significantly differently to the

others in Fig. S19 for our extracted tortuosity measure and in Fig. S20 for the number of loops

per vessel segment. All values are normalised by day 0 of observation/treatment. We compute

the (non-exact) p-values for the using the R function kruskal.test() to compute Kruskal-

Wallis in RSTUDIO (76). We further present the same analysis for parameters not shown in

the main text, i.e. for voids in Fig. S21 and maximal radii used in the radial filtration (i.e. an

approximation of the tumour radii) in Fig. S22. Again, all values are normalised by day 0 of

observation/treatment. We note that both of these parameters do not show significant differences

between treatment groups. In the case of the voids in the intravital dataset this can be explained

by the the low penetration depth of the imaging.
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Figure S19: Box plot showing the number of short bars in the dimension 0 barcode of the radial
filtration divided by the number of vessel segments. The values are normalised by day 0 of initial
treatment for all treatment regimes to facilitate comparisons of trends over time. We show group level
p-values according to the Kruskal-Wallis test.
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Figure S20: Box plot showing the number of bars in the dimension 1 barcode of the radial filtration
divided by the number of vessel segments. The values are normalised by day 0 of initial treatment
for all treatment regimes to facilitate comparisons of trends over time. We show group level p-values
according to the Kruskal-Wallis test.
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Figure S21: Box plot showing median persistence of bars in the dimension 2 barcode of the ↵-
complex filtration. The values are normalised by day 0 of initial treatment for all treatment regimes to
facilitate comparisons of trends over time. We show p-values according to the Kruskal-Wallis test.
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Figure S22: Box plot showing the maximal radius attained in the radial filtration. The values are
normalised by day 0 of initial treatment for all treatment regimes to facilitate comparisons of trends over
time. We show p-values according to the Kruskal-Wallis test.



Finally, we present a correlation analysis between parameters that are conventionally extracted

from vascular networks and our topological parameters in Fig. S23. We compute pairwise

Pearson correlation using the library hmisc and plot our results including a complete linkage

clustering dendrogramme of the parameters using the library corrplot in RSTUDIO (76).
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Figure S23: Heatmap displaying the pairwise Pearson correlation coefficients between different
vascular characteristics derived from the intravital data. The dendrogramme represents complete
linkage clustering using the Euclidean distance measure. We consider the following vascular character-
istics: number of vessel segments (i.e. number of edges), number of branching points (i.e. number of
nodes), number of vessel loops, maximal vessel diameter, maximal radius used in the radial filtration, av-
erage vessel diameter, number of vessel loops per vessel segment, maximal vessel length, average chord
length ratio (clr), average vessel length, median persistence of bars in dimension 2 barcodes (voids),
average sum of angles measure (SOAM), number of short bars per vessel segment in the dimension 0
barcodes, vessel length/diameter ratio. We highlight the topological measures in orange including both
the number of loops and number of loops per vessel segment to highlight the effect of the normalisation.



Ultramicroscopy data. We present box plots of the tumour volume as determined by Dobosz

et al. (8) in Fig. S24 and the maximal radii used in the radial filtration in Fig. S25. We compute

the (non-exact) p-values using function stat compare means from the library ggpubr in

RSTUDIO (76) to perform a pairwise Wilcoxon’s rank sum test between the control group and

the treatment group. All our tests are by default two-sided. We further show the spatio-temporal

resolution of the number of loops in the ultramicroscopy data in Fig. S26. We do not find any

marked differences in either treatment group in different spherical shells around the tumour

centres.
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Figure S24: Box plot showing tumour volume as determined by Dobosz et al. (8). We show p-values
according to Wilcoxon’s rank sum test.
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Figure S25: Box plot showing the maximal radius attained in the radial filtration. We show p-values
according to Wilcoxon’s rank sum test.
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(a) Radial interval I.
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(b) Radial interval II.

p = 0.151 p = 0.016 p = 0.095 p = 1.000

0.20

0.25

0.30

0.35

0.40

0.45

1 3 7 14
Days since treatment

Ba
rs

 (p
er

 s
eg

m
en

t)

Control Treated
Loops Interval 3

(c) Radial interval III.
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(d) Radial interval IV.
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Figure S26: Number of loops per vessel segment for different filtration intervals in the ultrami-
croscopy dataset. We show box plots of the number of loops per vessel segment. Interval I corresponds
to the radial region closest to the tumour centre, while Interval V represents parts of the vessel network
that are farthest away from the tumour centre. We show p-values according to Wilcoxon’s rank sum test.



We present the distribution of loops in the ultramicroscopy data relative to the tumour radii

in Fig. S27. We apply a Anderson-Darling test using the function ad.test() from the library

ksamples in RSTUDIO (76) to the different time points and treatment groups to determine

whether the samples within one groups come from a common (unspecified) distribution. We do

not find this to be the case in any of the groups for any time point.
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Figure S27: Spatial distribution of the number of loops in the ultramicroscopy data. We show the
distribution of loops in individual tumours grouped by treatment regime (top row: bevacicumab treated
tumours; bottom row: control tumours) and time points (column 1: day 1 after treatment; column 2: day
2 after treatment; column 3: day 3 after treatment; column 4: day 4 after treatment). The horizontal axis
represents the radial distance to the tumour centre normalised by tumour radius.



Finally, we present a correlation analysis between parameters that were extracted by Dobosz et

al. (8) and our topological parameters in Fig. S23. We also include the number of segments and

branching points determined by our extraction of the vessel networks with UNET-CORE (44).

Both of these standard parameters correlate strongly with the same parameters extracted by

Dobosz et al. (8). We compute pairwise Pearson correlation using the library hmisc and plot

our results including a complete linkage clustering dendrogramme of the parameters using the

library corrplot in RSTUDIO (76).
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Figure S28: Heatmap displaying the pairwise Pearson correlation coefficients between different
vascular characteristics derived from the ultramicroscopy data. The dendrogramme represents com-
plete linkage clustering using the Euclidean distance measure. We consider the following vascular char-
acteristics: number of vessel segments as computed by (8) (segments old), number of branching points
as computed by (8) (branching points old), number of branching points as computed by unet, number
of vessel segments as computed by unet, number of vessel loops, necrotic tumour volume as computed
by (8), tumour volume as computed by (8), vital tumour volume as computed by (8), maximal radius
used in the radial filtration, number of vessel loops per vessel segment, median persistence of bars in
dimension 2 barcodes (voids), number of short bars per vessel segment in the dimension 0 barcodes. We
highlight the topological measures in orange including both the number of loops and number of loops
per vessel segment to highlight the effect of the normalisation.
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