APPENDIX

Appendix to: Krishnamoorthi R, Bomman S, Benias P, et al. Efficacy and safety of endoscopic duodenal stent versus endoscopic or surgical gastrojejunostomy to treat malignant gastric outlet obstruction: systematic review and meta-analysis

eTable 1. Search strategy.

Database Used: Embase and MEDLINE (via Embase.com) January 2015 to February 16, 2021 Accessed: February 17, 2021

- No. Query
- #13 #9 OR #11 OR #12

#11 NOT ([conference abstract]/lim OR [conference paper]/lim OR [conference review]/lim OR [data
#12 papers]/lim OR [editorial]/lim OR [erratum]/lim OR [letter]/lim OR [note]/lim OR [short survey]/lim OR 'case
report'/de)

- #7 NOT ([conference abstract]/lim OR [conference paper]/lim OR [conference review]/lim OR [data
 #10 papers]/lim OR [editorial]/lim OR [erratum]/lim OR [letter]/lim OR [note]/lim OR [short survey]/lim OR 'case
 report'/de)
- #8 NOT ([conference abstract]/lim OR [conference paper]/lim OR [conference review]/lim OR [data
 papers]/lim OR [editorial]/lim OR [erratum]/lim OR [letter]/lim OR [note]/lim OR [short survey]/lim OR 'case
 report'/de)
- #8 (#1 OR #2) AND [english]/lim AND [humans]/lim AND ([clinical study]/lim OR 'systematic review*':ti) AND [2-7-2020]/sd NOT [17-2-2021]/sd
- #7 (#5 OR #6) AND [english]/lim AND [humans]/lim AND ([clinical study]/lim OR 'systematic review*':ti) AND [2-7-2020]/sd NOT [17-2-2021]/sd
- #6 #3 AND axios AND ('boston scientific' OR 'boston sci' OR bsci OR bsc)
- #5 (#1 OR #2) AND axios AND ('boston scientific' OR 'boston sci' OR bsci OR bsc)
- #4 #1 OR #2
- ('endoscopic gastrojejunostomy' OR ('bypass surgery' NEAR/5 'gastric outlet obstruction')) AND [english]/lim
 #3 AND [humans]/lim AND ([clinical study]/lim OR 'systematic review*':ti) AND [2-7-2020]/sd NOT [17-2-2021]/sd
- ('malignant gastric outlet obstruction' OR ('gastric outlet obstruction' NEAR/10 malignant) OR 'malignant gastroduodenal obstruction' OR 'malignant duodenal obstruction' OR 'malignant pyloric obstruction' OR
 #2 ('gastric outlet obstruction' NEAR/10 benign) OR 'benign gastric outlet obstruction') AND [english]/lim AND [humans]/lim AND ([clinical study]/lim OR 'systematic review*':ti) AND [2-7-2020]/sd NOT [17-2-2021]/sd
- ('lumen apposing metal stent*' OR 'lumen apposing metallic stent*' OR 'lumen apposing stent*' OR ('self expandable metallic stent*' NEAR/5 duodenal) OR ('self expandable metal stent*' NEAR/5 duodenal))
 AND [english]/lim AND [humans]/lim AND ([clinical study]/lim OR 'systematic review*':ti) AND [2-7-2020]/sd NOT [17-2-2021]/sd

1

eTable 2. Assessment of methodologic quality of studies utilizing a modified Newcastle-Ottawa Scale.

Modified Newcastle-Ottawa Scale questions

1. Did the patient(s) represent the whole case(s) of the medical center? Cases included represented the general population of gastric outlet obstruction

- 2. Was the diagnosis correctly made? Were only malignant patients included?
- 3. Was follow-up long enough for outcomes to occur? Reported adequate follow-up time.
- 4. Were all important data cited in the report? Reported clinical success and at least 2 outcomes (NR = did not define "clinical success," but
- study could still score a "Yes" if they reported (undefined) clinical success rate)
- 5. Was the outcome correctly ascertained? Provided definition of clinical success.

Study Ye		Question 1		Question 2		Question 3		Que	Question 4		stion 5	Methodologic Quality
		Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	
Chiu ¹	2015	Х		Х		X		Х		Х		Good
JW Kim ²	2015	Х		Х		X		Х		Х		Good
SH Kim ³	2015	Х		Х		X		Х		Х		Good
H Lee⁴	2015		X (gastric cancer only)	Х		X		Х		Х		Moderate
JE Lee⁵	2015	Х		Х		X		Х		Х		Good
D Oh ⁶	2015	Х		Х		X		Х		Х		Good
SY Oh ⁷	2015	Х		Х		X		Х		Х		Good
Park ⁸	2015		X (gastric cancer only)	Х		X		Х		Х		Moderate
Sato ⁹	2015	Х		Х		X		Х			NR	Moderate
Trotter ¹⁰	2015	Х		Х		X		Х		Х		Good
Fiori ¹¹	2016		X (metastatic adenocarcinoma of antropyloric region only)	Х		Х		X			NR	Poor
Grunwald ¹²	2016	Х		Х		X		Х		Х		Good
Itoi ¹³	2016	Х		Х		Х			X (few AEs specified)		NR	Poor
Jung ¹⁴	2016	Х		Х		X		Х		Х		Good
Kato ¹⁵	2016	Х		Х		X		Х		Х		Good
Khan ¹⁶	2016	Х		X		X		X (barely)		Х		Good
Kobayashi ¹⁷	2016		X (pancreatic cancer only)	X		Х		X		Х		Moderate
Lye ¹⁸	2016	Х	<u> </u>	Х		X		Х		Х		Good
Okuwaki ¹⁹	2016		X (advanced pancreatic	Х		X		Х		Х		Moderate

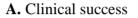
Study	Year	Question 1		Question 2		Question 3		Question 4		Question 5		Methodologic Quality
		Yes No		Yes No		Yes No		Yes No		Yes No		
			cancer or advanced biliary									
			cancer only)									
J-H Park (1) ²⁰	2016	Х		X		X		X			NR	Moderate
J-H Park (2) ²¹	2016		X (gastric cancer only	X		X		X		Х		Moderate
Rademacher ²²	2016	Х		X		X		X		Х		Good
Sasaki ²³	2016	Х		X		X		X		Х		Good
Shin ²⁴	2016	Х		X		X		X		Х		Good
Tsauo ²⁵	2016		X (pancreatic cancer only)	Х		X		Х		X		Moderate
Yamao ²⁶	2016	Х		Х		X		X		Х		Good
Bulut ²⁷	2017	Х		Х		X		X		Х		Good
Chen ²⁸	2017	Х		Х		X		X		Х		Good
Hori ²⁹	2017	Х		X		X		Х		Х		Good
Jang ³⁰	2017		X (gastric cancer only)	X			X (patients excluded for follow-up < 1 month)	X		X		Poor
Khashab ³¹	2017	Х		X		X	,	X		Х		Good
Kim ³²	2017		X (periampullary ca only)	Х		Х		X		X		Moderate
Ojima ³³	2017		X (gastric cancer only)	X		X		X			NR	Poor
Perez-Miranda ³⁴	2017	Х			Х	X		X		Х		Moderate
Takahara ³⁵	2017	Х		X		X		X		Х		Good
Tanaka ³⁶	2017		X (gastric cancer only)	X		X		X			NR	Poor
Tsauo ³⁷	2017	Х		Х		X		X		Х		Good
Ye ³⁸	2017	Х		Х		X		X		Х		Good
Yoshida ³⁹	2017		X (pancreatic cancer only)	Х		Х		X		Х		Moderate
Bekheet ⁴⁰	2018	Х		X		X		X		Х		Good
Choi ⁴¹	2018	Х		Х		X		X		X		Good
Leiyuan42	2018	Х		Х		X		X			NR	Moderate
Uemura ⁴³	2018		X (pancreatic cancer only)	Х		Х		X		Х		Moderate
Yukimoto44	2018	Х	#1	Х			NR	X		X		Moderate
Ge ⁴⁵	2019	Х		Х		X		X		Х		Good
Jang ⁴⁶	2019	Х		X		X		X		Х		Good

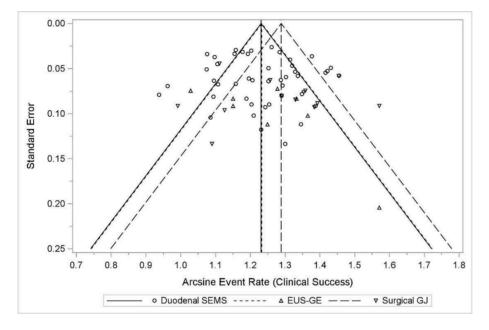
Study	Year	Question 1		Question 2		Question 3		Question 4		Question 5		Methodologic Quality
		Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	
Kerdsirichairat ⁴⁷	2019	Х		Х				Х		Х		Good
Kumar ⁴⁸	2019	Х		Х		X		Х		Х		Good
Ramos ⁴⁹	2019		X (gastric cancer only)	Х		X		Х			NR	Poor
Ratone ⁵⁰	2019	Х		Х		X		Х		Х		Good
Sterpetti ⁵¹	2019	Х		Х		X		X			NR	Moderate
Alcala- Gonzalez ⁵²	2020	Х		Х		Х		X		X		Good
Kastelijn53	2020	Х		Х		X		X		Х		Good
Miwa ⁵⁴	2020	Х		Х		X		Х		Х		Good
Mo ⁵⁵	2020	Х		Х		X		X		Х		Good
Wu ⁵⁶	2020	Х		Х		X		X		Х		Good
Xu ⁵⁷	2020	Х		Х		X		X		Х		Good
Yildirim ⁵⁸	2020	Х		Х		X		X			NR	Moderate
Hindryckx59	2021	Х			Х	X		Х		Х		Moderate
Kouanda ⁶⁰	2021	Х		Х		X		Х		Х		Good
Yamao ⁶¹	2021	Х		Х		Х		Х		Х		Good

Procedure	Outcome	# of Studies	# of Patients	l² (95% CI)
Duodenal SEMS	Technical success	45	4413	65.6% (52.9% to 74.8%)
EUS-GJ	Technical success	8	245	67.4% (31.4% to 84.5%)
Surgical GJ	Technical success	13	564	0.0% (0.0% to 16.4%)
Duodenal SEMS	Clinical success	45	4590	79.3% (72.7% to 84.2%)
EUS-GJ	Clinical success	8	245	54.6% (0.0% to 79.5%)
Surgical GJ	Clinical success	13	588	77.6% (62.1% to 86.8%)
Duodenal SEMS	Preprocedural GOOSS score	27	2655	97.0% (96.3% to 97.5%)
EUS-GJ	Preprocedural GOOSS score	2	65	0.0% (., .)
Surgical GJ	Preprocedural GOOSS score	6	215	67.7% (23.3% to 86.4%)
Duodenal SEMS	Postprocedural GOOSS score	19	2184	95.8% (94.6% to 96.8%)
EUS-GJ	Postprocedural GOOSS score	2	59	95.1% (85.5 % to 98.4%)
Surgical GJ	Postprocedural GOOSS score	5	180	99.0% (98.5% to 99.3%)
Duodenal SEMS	Recurrence of GOO	11	573	83.4% (71.8% to 90.3%)
EUS-GJ	Recurrence of GOO	1	25	
Surgical GJ	Recurrence of GOO	8	342	48.6% (0.0% to 77.1%)
Duodenal SEMS	Reintervention	33	2963	81.3% (74.4% to 86.3%)
EUS-GJ	Reintervention	4	129	44.3% (0.0% to 81.4%)
Surgical GJ	Reintervention	9	418	75.3% (52.5% to 87.2%)
Duodenal SEMS	Procedure Related Complications	43	4285	91.6% (89.6% to 93.2%)
EUS-GJ	Procedure Related Complications	6	189	0.0% (0.0% to 65.4%)
Surgical GJ	Procedure Related Complications	16	746	67.0% (44.3% to 80.5%)
Duodenal SEMS	Bleeding	25	2854	65.1% (46.7% to 77.2%)
EUS-GJ	Bleeding	4	141	57.0% (0.0% to 85.7%)
Surgical GJ	Bleeding	9	412	0.0% (0.0% to 16.7%)
Duodenal SEMS	Perforation	24	2823	21.1% (0.0% to 52.2%)
EUS-GJ	Perforation	3	105	65.7% (0.0% to 90.1%)
Surgical GJ	Perforation	3	170	47.5% (0.0% to 84.6%)
Duodenal SEMS	Stent migration	33	3451	60.7% (42.6% to 73.1%)
EUS-GJ	Stent migration	4	116	69.6% (12.4% to 89.4%)
Duodenal SEMS	Stent occlusion	22	1993	92.2% (89.5% to 94.2%)
EUS-GJ	Stent occlusion	3	69	22.6% (0.0% to 92.0%)
Duodenal SEMS	Tissue ingrowth	22	2172	85.7% (79.7% to 90.0%)
EUS-GJ	Tissue ingrowth	1	24	
Duodenal SEMS	Stent patency	3	140	0.0% (0.0% to 87.6%)
Duodenal SEMS	Tissue overgrowth	20	1962	45.4% (7.8% to 67.7%)
Surgical GJ	Laparoscopic complication	5	196	76.8% (43.8% to 90.5%)
Duodenal SEMS	Deaths reported in AE section	26	2151	70.8% (56.6% to 80.4%)
EUS-GJ	Deaths reported in AE section	4	151	76.5% (35.7% to 91.4%)
Surgical GJ	Deaths reported in AE section	8	421	54.6% (0.0% to 79.5%)

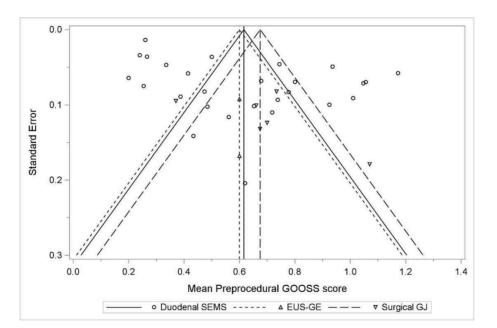
eTable 3. Analysis of heterogeneity by outcome and procedure in all studies.

SEMS self-expanding metal stentEUS-GJ endoscopic ultrasound-guided gastrojejunostomyGOO gastric outlet obstructionGOOSS Gastric Outlet Obstruction Scoring System AE adverse event

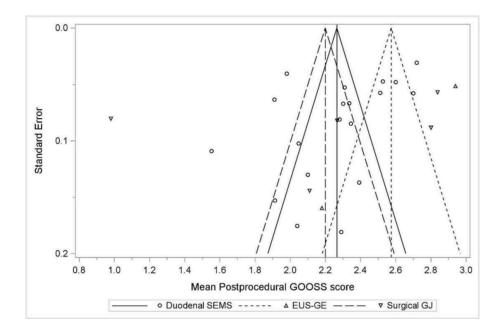

6


eTable 4. Publication bias testing

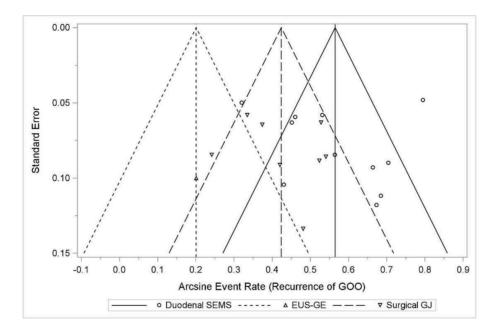
Outcome		ation test of [Begg and		asymn	netry (with o	of funnel plot continuity d Mazumdar]	Linear regression test of funnel plot asymmetry [Eggers]			
	Duodenal SEMS	EUS-GJ	Surgical GJ	Duodenal SEMS	EUS-GJ	Surgical GJ	Duodenal SEMS	EUS-GJ	Surgical GJ	
Technical success	0.0869	0.7084	0.0016	0.0887	0.8031	0.0020	0.6243	0.4396	0.0051	
Clinical success	0.7394	0.1051	0.9513	0.7468	0.1346	1.0000	0.5886	0.1681	0.5438	
Preprocedural GOOSS score	0.5455	3.0000	0.3476	0.5594	3.0000	0.4524	0.0006	3.0000	0.3233	
Postprocedural GOOSS score	0.1955	3.0000	0.6242	0.2079	3.0000	0.8065	0.0517	3.0000	0.5875	
Recurrence of GOO	0.4835	3.0000	0.8046	0.5334	3.0000	0.9015	0.6230	3.0000	0.5985	
Reintervention	0.1453	0.4969	0.1707	0.1496	0.7341	0.2060	0.1658	0.4270	0.0918	
Procedural complications	0.3460	0.0195	0.0701	0.3514	0.0323	0.0774	0.6682	0.0671	0.0739	
Bleeding	0.3382	0.7180	0.8348	0.3501	1.0000	0.9170	0.0626	0.5224	0.1233	
Perforation	0.4560	0.1172	0.6015	0.4712	0.2963	1.0000	0.9056	0.0992	0.8675	
Stent migration	0.7683	0.2786		0.7801	0.4701		0.8298	0.0709		
Stent occlusion	0.5726	0.6015		0.5920	1.0000		0.8978	0.5684		
Tissue ingrowth	0.2587	3.0000		0.2708	3.0000		0.1399	3.0000		
Stent patency	0.1172			0.2963			0.2048			
Tissue overgrowth	0.0349			0.0378			0.0445			
Laparoscopic complication			0.6242			0.8065			0.6699	
Deaths reported in AE section	0.1280	1.0000	1.0000	0.1336	1.0000	1.0000	0.8817	0.7039	0.7236	


All numbers are p-values from the rank correlation or linear regression tests for funnel plot symmetry. * - the test could not be conducted for the EUS-GJ studies because only 1 study was available.

eFigure 1. Funnel plots for studies of duodenal SEMS compared to EUS-GJ and surgical GJ: efficacy outcomes: (A) clinical success, (B) preprocedural GOOSS score, (C) postprocedural GOOSS score, (D) recurrence of GOO, and (E) reintervention; safety outcomes: (F) bleeding (G) perforation, (H) stent migration, (I) stent occlusion, (J) tissue ingrowth, (K) stent patency, (L) tissue overgrowth, (M) deaths reported in AE section

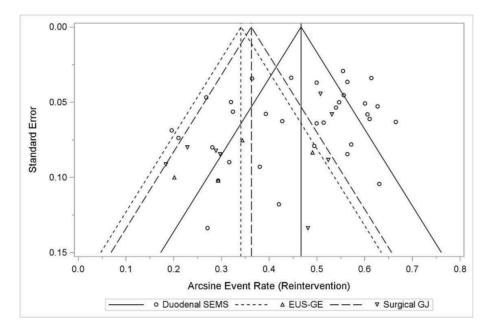


B. Preprocedural GOOSS score

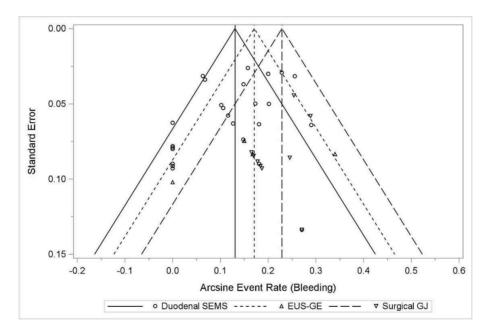


8

C. Postprocedural GOOSS score

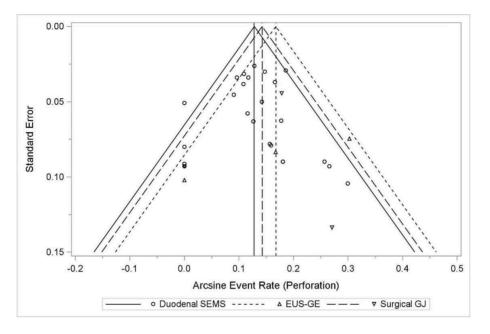


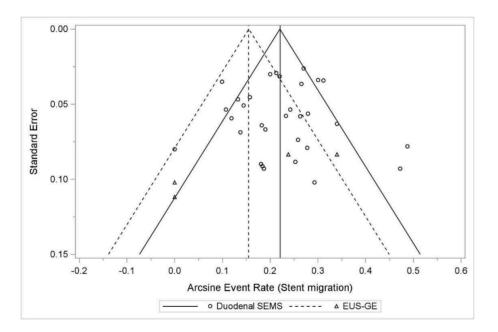
D. Recurrence of GOO



9

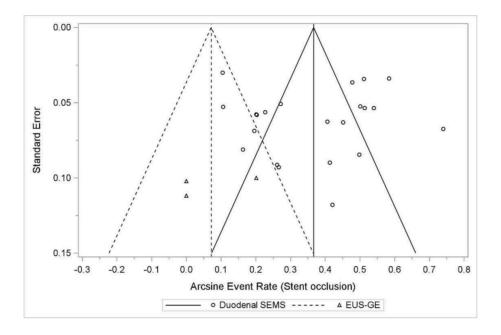
E. Reintervention



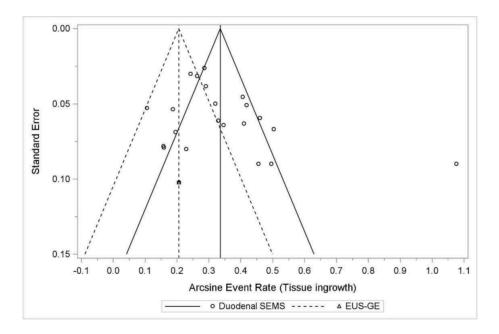


10

G. Perforation

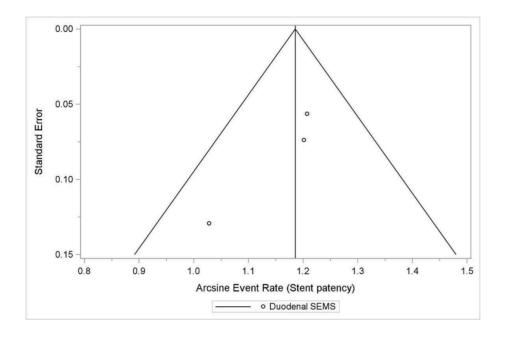


H. Stent migration

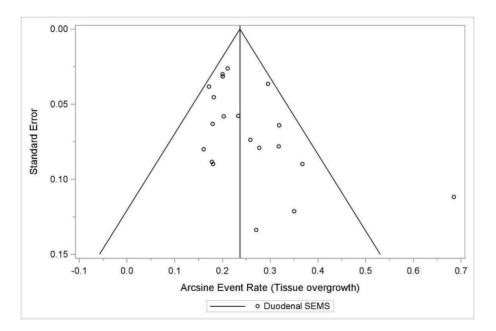


11

I. Stent occlusion

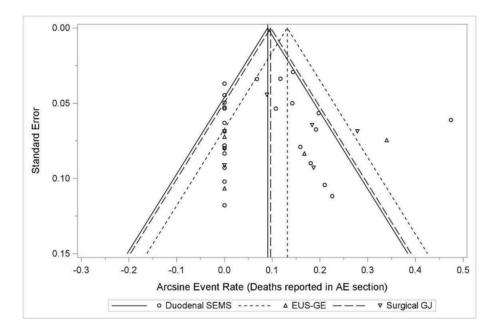


J. Tissue ingrowth



12

K. Stent patency



L. Tissue overgrowth

13

M. Deaths reported in AE section

References

- 1. Chiu KW, Razack A, Maraveyas A. Self-expandable metal stent placement for malignant duodenal obstruction distal to the bulb. Eur J Gastroenterol Hepatol 2015;27:1466-72.
- 2. Kim JW, Jeong JB, Lee KL, et al. Comparison between uncovered and covered selfexpandable metal stent placement in malignant duodenal obstruction. World J Gastroenterol 2015;21:1580-7.
- 3. Kim SH, Chun HJ, Yoo IK, et al. Predictors of the patency of self-expandable metallic stents in malignant gastroduodenal obstruction. World J Gastroenterol 2015;21:9134-41.
- 4. Lee H, Min BH, Lee JH, et al. Covered metallic stents with an anti-migration design vs. uncovered stents for the palliation of malignant gastric outlet obstruction: a multicenter, randomized trial. Am J Gastroenterol 2015;110:1440-9.
- 5. Lee JE, Lee K, Hong YS, et al. Impact of Carcinomatosis on Clinical Outcomes after Self-Expandable Metallic Stent Placement for Malignant Gastric Outlet Obstruction. PLoS One 2015;10:e0140648.
- 6. Oh D, Lee SS, Song TJ, et al. Efficacy and safety of a partially covered duodenal stent for malignant gastroduodenal obstruction: a pilot study. Gastrointest Endosc 2015;82:32-36 e1.
- 7. Oh SY, Edwards A, Mandelson M, et al. Survival and clinical outcome after endoscopic duodenal stent placement for malignant gastric outlet obstruction: comparison of pancreatic cancer and nonpancreatic cancer. Gastrointest Endosc 2015;82:460-8 e2.
- Park CH, Park JC, Kim EH, et al. Impact of carcinomatosis and ascites status on long-term outcomes of palliative treatment for patients with gastric outlet obstruction caused by unresectable gastric cancer: stent placement versus palliative gastrojejunostomy. Gastrointest Endosc 2015;81:321-32.
- 9. Sato T, Hara K, Mizuno N, et al. Gastroduodenal stenting with Niti-S stent: long-term benefits and additional stent intervention. Dig Endosc 2015;27:121-9.
- 10. Trotter JM, Balamurugan R, Dear KL, et al. Non-centralised service for palliative stenting of malignant gastric outlet obstruction. Ann R Coll Surg Engl 2015;97:32-4.
- Fiori E, Sterpetti AV, De Cesare A, et al. Factors Leading to Improved Results for Endoscopic Stenting for Metastatic Antropyloric Adenocarcinoma. A Comparison with Gastrojejunostomy. J Gastrointest Surg 2016;20:1802-1806.
- 12. Grunwald D, Cohen J, Bartley A, et al. The location of obstruction predicts stent occlusion in malignant gastric outlet obstruction. Therap Adv Gastroenterol 2016;9:815-822.
- 13. Itoi T, Ishii K, Ikeuchi N, et al. Prospective evaluation of endoscopic ultrasonography-guided double-balloon-occluded gastrojejunostomy bypass (EPASS) for malignant gastric outlet obstruction. Gut 2016;65:193-5.
- 14. Jung K, Ahn JY, Jung HY, et al. Outcomes of endoscopically inserted self-expandable metal stents in malignancy according to the type of stent and the site of obstruction. Surg Endosc 2016;30:4001-10.
- 15. Kato H, Kawamoto H, Matsumoto K, et al. Outcome of self-expandable metallic stent deployment in patients with malignant gastroduodenal outlet obstruction and Niti-S and WallFlex comparison: a multicenter retrospective clinical study. J Dig Dis 2016;17:518-525.
- 16. Khan H, Zhining F, Ghafoor A, et al. Palliative treatment of malignant gastric outlet obstruction with self expandable metal stents. Journal of Postgraduate Medical Institute 2016;30:213-217.
- 17. Kobayashi K, Kobara H, Masaki T. Splenic arterial injury caused by use of a lumen-apposing

metal stent for walled-off pancreatic necrosis drainage. Dig Endosc 2019;31:331.

- 18. Lye TJ, Goh YC, Eng AK, et al. Endoscopic self-expandable metallic stenting for palliation of malignant gastric outlet obstruction in Southeast Asia. ANZ J Surg 2016;86:464-8.
- Okuwaki K, Kida M, Yamauchi H, et al. Randomized controlled exploratory study comparing the usefulness of two types of metallic stents with different axial forces for the management of duodenal obstruction caused by pancreatobiliary cancer. J Hepatobiliary Pancreat Sci 2016;23:289-97.
- 20. Park JH, Lee JH, Song HY, et al. Over-the-wire versus through-the-scope stents for the palliation of malignant gastric outlet obstruction: A retrospective comparison study. Eur Radiol 2016;26:4249-4258.
- 21. Park JH, Song HY, Yun SC, et al. Gastroduodenal stent placement versus surgical gastrojejunostomy for the palliation of gastric outlet obstructions in patients with unresectable gastric cancer: a propensity score-matched analysis. Eur Radiol 2016;26:2436-45.
- 22. Rademacher C, Bechtler M, Schneider S, et al. Self-expanding metal stents for the palliation of malignant gastric outlet obstruction in patients with peritoneal carcinomatosis. World J Gastroenterol 2016;22:9554-9561.
- 23. Sasaki R, Sakai Y, Tsuyuguchi T, et al. Endoscopic management of unresectable malignant gastroduodenal obstruction with a nitinol uncovered metal stent: A prospective Japanese multicenter study. World J Gastroenterol 2016;22:3837-44.
- 24. Shin YS, Choi CW, Kang DH, et al. Factors associated with clinical failure of self-expandable metal stent for malignant gastroduodenal obstruction. Scand J Gastroenterol 2016;51:103-10.
- 25. Tsauo J, Yoo MW, Song HY, et al. Partially-covered stent placement versus surgical gastrojejunostomy for the palliation of malignant gastroduodenal obstruction secondary to pancreatic cancer. Abdom Radiol (NY) 2016;41:2233-2240.
- 26. Yamao K, Kitano M, Kayahara T, et al. Factors predicting through-the-scope gastroduodenal stenting outcomes in patients with gastric outlet obstruction: a large multicenter retrospective study in West Japan. Gastrointest Endosc 2016;84:757-763 e6.
- 27. Bulut E, Ciftci T, Akhan O, et al. Palliation of malignant gastroduodenal obstruction: fluoroscopic metallic stent placement with different approaches. Diagn Interv Radiol 2017;23:211-216.
- 28. Chen YI, Itoi T, Baron TH, et al. EUS-guided gastroenterostomy is comparable to enteral stenting with fewer re-interventions in malignant gastric outlet obstruction. Surg Endosc 2017;31:2946-2952.
- 29. Hori Y, Naitoh I, Hayashi K, et al. Predictors of stent dysfunction after self-expandable metal stent placement for malignant gastric outlet obstruction: tumor ingrowth in uncovered stents and migration of covered stents. Surg Endosc 2017;31:4165-4173.
- 30. Jang SH, Lee H, Min BH, et al. Palliative gastrojejunostomy versus endoscopic stent placement for gastric outlet obstruction in patients with unresectable gastric cancer: a propensity score-matched analysis. Surg Endosc 2017;31:4217-4223.
- 31. Khashab MA, Bukhari M, Baron TH, et al. International multicenter comparative trial of endoscopic ultrasonography-guided gastroenterostomy versus surgical gastrojejunostomy for the treatment of malignant gastric outlet obstruction. Endosc Int Open 2017;5:E275-E281.
- 32. Kim HJ. Clinical outcomes of biliary and duodenal self-expandable metal stent placements for palliative treatment in patients with periampullary cancer. Gastrointestinal Intervention 2017;6:171-175.

Thieme

- 33. Ojima T, Nakamori M, Nakamura M, et al. Laparoscopic Gastrojejunostomy for Patients with Unresectable Gastric Cancer with Gastric Outlet Obstruction. J Gastrointest Surg 2017;21:1220-1225.
- 34. Perez-Miranda M, Tyberg A, Poletto D, et al. EUS-guided Gastrojejunostomy Versus Laparoscopic Gastrojejunostomy: An International Collaborative Study. J Clin Gastroenterol 2017;51:896-899.
- 35. Takahara N, Isayama H, Nakai Y, et al. A Novel Partially Covered Self-Expandable Metallic Stent with Proximal Flare in Patients with Malignant Gastric Outlet Obstruction. Gut Liver 2017;11:481-488.
- 36. Tanaka T, Suda K, Satoh S, et al. Effectiveness of laparoscopic stomach-partitioning gastrojejunostomy for patients with gastric outlet obstruction caused by advanced gastric cancer. Surg Endosc 2017;31:359-367.
- 37. Tsauo J, Yoo MW, Park JH, et al. Overlapping self-expandable metallic stent for palliation of a long (>10 cm) malignant gastroduodenal obstruction. Acta Radiol 2017;58:565-572.
- 38. Ye BW, Chou CK, Hsieh YC, et al. Metallic Stent Expansion Rate at Day One Predicts Stent Patency in Patients with Gastric Outlet Obstruction. Dig Dis Sci 2017;62:1286-1294.
- 39. Yoshida Y, Fukutomi A, Tanaka M, et al. Gastrojejunostomy versus duodenal stent placement for gastric outlet obstruction in patients with unresectable pancreatic cancer. Pancreatology 2017;17:983-989.
- Bekheet N, Kim MT, Park JH, et al. Fluoroscopic Gastroduodenal Stent Placement in 55 Patients with Endoscopic Stent Placement Failure. Cardiovasc Intervent Radiol 2018;41:1233-1240.
- Choi YK, Ahn JY, Na HK, et al. Winged Partially Covered Self-Expandable Metal Stent to Prevent Distal Migration in Malignant Gastric Outlet Obstruction. Dig Dis Sci 2018;63:3409-3416.
- 42. Leiyuan S, Jianli X, Zhengzhong Z, et al. Comparison of Treatment Outcomes of Endoscopic Stenting and Laparoscopic Gastrojejunostomy for Malignant Gastric Outlet Obstruction. Am Surg 2018;84:991-995.
- 43. Uemura S, Iwashita T, Iwata K, et al. Endoscopic duodenal stent versus surgical gastrojejunostomy for gastric outlet obstruction in patients with advanced pancreatic cancer. Pancreatology 2018;18:601-607.
- 44. Yukimoto T, Morisaki T, Komukai S, et al. The Palliative Effect of Endoscopic Uncovered Self-expandable Metallic Stent Placement Versus Gastrojejunostomy on Malignant Gastric Outlet Obstruction: A Pilot Study with a Retrospective Chart Review in Saga, Japan. Intern Med 2018;57:1517-1521.
- 45. Ge PS, Young JY, Dong W, et al. EUS-guided gastroenterostomy versus enteral stent placement for palliation of malignant gastric outlet obstruction. Surg Endosc 2019;33:3404-3411.
- 46. Jang S, Stevens T, Lopez R, et al. Superiority of Gastrojejunostomy Over Endoscopic Stenting for Palliation of Malignant Gastric Outlet Obstruction. Clin Gastroenterol Hepatol 2019;17:1295-1302 e1.
- 47. Kerdsirichairat T, Irani S, Yang J, et al. Durability and long-term outcomes of direct EUSguided gastroenterostomy using lumen-apposing metal stents for gastric outlet obstruction. Endosc Int Open 2019;7:E144-E150.

17

- 48. Kumar V, Ghoshal UC, Mohindra S, et al. Palliation of malignant gastroduodenal obstruction with self-expandable metal stent using side- and forward-viewing endoscope: Feasibility and outcome. JGH Open 2019;3:65-70.
- 49. Ramos M, Barchi LC, de Oliveira RJ, et al. Gastric partitioning for the treatment of malignant gastric outlet obstruction. World J Gastrointest Oncol 2019;11:1161-1171.
- 50. Ratone JP, Caillol F, Zemmour C, et al. Outcomes of duodenal stenting: Experience in a French tertiary center with 220 cases. Dig Liver Dis 2020;52:51-56.
- 51. Sterpetti AV, Fiori E, Sapienza P, et al. Complications After Endoscopic Stenting for Malignant Gastric Outlet Obstruction: A Cohort Study. Surg Laparosc Endosc Percutan Tech 2019;29:169-172.
- 52. Alcala-Gonzalez L, Masachs Perecaula M, Dot Bach J, et al. Endoscopic stenting for gastroduodenal outlet obstruction of a malignant origin, real life experience in a single center. Rev Esp Enferm Dig 2020;112:712-715.
- 53. Kastelijn JB, Moons LMG, Garcia-Alonso FJ, et al. Patency of endoscopic ultrasound-guided gastroenterostomy in the treatment of malignant gastric outlet obstruction. Endosc Int Open 2020;8:E1194-E1201.
- 54. Miwa H, Sugimori K, Kaneko T, et al. Clinical outcome of a highly flexible duodenal stent for gastric outlet obstruction: A multicenter prospective study. JGH Open 2020;4:729-735.
- 55. Mo JW, Kim YM, Kim JH, et al. Clinical outcomes after multiple self-expandable metallic stent placement using stent-in-stent technique for malignant gastric outlet obstruction. Medicine (Baltimore) 2020;99:e19432.
- 56. Wu CH, Lee MH, Tsou YK, et al. Efficacy and Adverse Effects of Self-Expandable Metal Stent Placement for Malignant Duodenal Obstruction: The Papilla of Vater as a Landmark. Cancer Manag Res 2020;12:10261-10269.
- 57. Xu MM, Dawod E, Gaidhane M, et al. Reverse Endoscopic Ultrasound-Guided Gastrojejunostomy for the Treatment of Superior Mesenteric Artery Syndrome: A New Concept. Clin Endosc 2020;53:94-96.
- 58. Yildirim R, Candas B, Usta AA, et al. Efficacy of stomach-partitioning on gastric emptying in patients undergoing palliative gastrojejunostomy for malign gastric outlet obstruction. Ulus Travma Acil Cerrahi Derg 2020;26:678-684.
- 59. Hindryckx P, Degroote H. Lumen-apposing metal stents for approved and off-label indications: a single-centre experience. Surg Endosc 2021;35:6013-6020.
- 60. Kouanda A, Binmoeller K, Hamerski C, et al. Endoscopic ultrasound-guided gastroenterostomy versus open surgical gastrojejunostomy: clinical outcomes and cost effectiveness analysis. Surg Endosc 2021;35:7058-7067.
- 61. Yamao K, Kitano M, Chiba Y, et al. Endoscopic placement of covered versus uncovered selfexpandable metal stents for palliation of malignant gastric outlet obstruction. Gut 2021;70:1244-1252.