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Supplementary information
Relating functional and statistical connectivity
Functional connectivity is not exactly the same as statistical connectivity, especially if not all neurons are
observed. Then, common input from a third neuron can create or alter an apparent connection between
two other neurons. But the two are certainly related. Here, we show that in a simple model of neural
firing, when all neurons are observed, statistical and functional connectivity are directly related.

Our dynamical model will be that of coupled linear leaky integrate-and-fire neurons with a soft
threshold for spiking.

Neuron i’s membrane potential is given by Vi, and evolves according to the equation

dVi

dt
= −1

τ
Vi +Θi + Ii(t) +

∑
j

Jij
∑
a

g(t− t
(a)
j ), (S1)

which is essentially a simplified electrical circuit model of the neural activity. There are three main terms.
The term − 1

τ Vi +Θi implicitly assumes that ion channel conductances are constants; the time constant
τ relates to the membrane resistance and capacitance, while Θi depends on the equilibrium potentials
and conductances associated with the various ion channels. The term Ii(t) allows for current injection to
affect the membrane potential; we ignore this term and set it to 0. Finally, the term

∑
j Jij

∑
a g(t−t

(a)
j )

allows the firing of neuron j at a time of t(a)j to increase or decrease the rate of change of the membrane
potential of neuron i by Jijg(t − t

(a)
j ), where Jij is a “synaptic connectivity” and g is any function,

usually chosen to be exponential. More generally, the hard threshold is replaced by a “soft threshold”
in which the probability of a neuron firing in a time bin of size ∆t is some function of the current
membrane potential. That is, neuron i fires with rate f(Vi − Vth) for some (increasing) function f .
This formulation allows for a neuron to fire even when it is below threshold. This is not necessarily
biophysically reasonable, but it provides a better statistical match to Maximum Entropy models. The

soft threshold leads to a hard threshold when f(x) =

{
∞, if x ≥ 0

0, if x < 0
.
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Our next goal is to get statistics of P (σi = 1) and P (σj = 1, σi = 1) for the dynamical model, from
which we can infer a relationship between dynamical parameters and MaxEnt parameters. Assuming
stationarity, we have

P (σi = 1) ≈ ⟨f(Vi − Vth)⟩∆t. (S2)

We can think of this in the following way: there is some mean-field activity; neurons are firing, producing
spikes of neuron i with some frequency. In general, it is not permissible to set ⟨f(Vi−Vth)⟩ to f(⟨Vi⟩−Vth);
higher-order terms might be non-negligible.

Next, we have to calculate P (σj = 1, σi = 1). We can case this out into two cases, one in which
neuron i fires first and one in which neuron j fires first. Roughly speaking, the weights of this happening
correspond to the mean-field probabilities of them firing independently. The weighting factor is ⟨f(Vi/j−
Vth + Jij/ji)⟩∆t, since e−∆t/τi/j is roughly 1 when ∆t is quite small. Taylor expanding gives ⟨f(Vi/j −
Vth)⟩+ Jij/ji⟨ d

dV f(V − Vth)⟩+O(J2). After some algebra, we find that

Ĵij + Ĵji ≈ log

(
1 +

1

2

(
⟨f ′⟩i
λi

Jji +
⟨f ′⟩j
λj

Jij

))
. (S3)

When we have a hard threshold, then ⟨f ′⟩ is simply the value of the probability density function at
the threshold voltage, or the firing rate. Hence, in that case,

Ĵij + Ĵji ≈ log

(
1 +

Jji + Jij
2

)
. (S4)

This development mirrors that of Ref.1, but differs in that we are assuming that the time bin size ∆t
for the MaxEnt method is quite small. As such, we end up finding a direct relationship between the two
connectivities.

Our Eq. S4 explain the previously unexplained correspondence between Ĵij and Jij + Jji shown in
the Appendix of Ref.1. In practice, we have found it difficult to find a regime such that the conditions
of Eq. S4 hold.

Influence of inactive electrodes on MaxEnt connectivity estimation
We calculate MaxEnt connectivity based on all electrodes (Jall), and based on active electrodes only
(Jactive), and compare results for connections between active electrodes. Figure S1 is a typical example,
showing a relatively high correlation coefficient between Jall and Jactive. All 20 analysed samples yielded
similar results, with an average correlation coefficient of 0.87± 0.02. A closer analysis reveals that there
is a strong correlation between the excitatory connections in both approaches, shown in blue in Figure
S1 (R = 0.86 ± 0.02), and also a strong correlation between the inhibitory connections, shown in green
(R = 0.87± 0.02). This resulted in a Euclidean distance between Jall and Jactive of ≈ 8.78± 1.24, which
is in line with distances between subsequent connectivity matrices obtained from continuous spontaneous
recordings which were ≈ 22.52± 1.95 (see figure on spontaneous connectivity changes in main text).

Theoretical relationship between CFP and MaxEnt functional connectivity
We can relate the two statistical models. The key is to compute P (σj(t+τ) = 1|σi(t) = 1), or CFPij(τ),
assuming that the MaxEnt model is correct, and thereby relate the CFP connectivity matrix M to the
MaxEnt connectivity matrix J . Our assumptions are that we are in a small-coupling limit, i.e. that the
connections are weak relative to the innate propensity of each neuron to fire.

Under the CFP model, the probability that two neurons i and j end up spiking in the same time
bin comes from two separate integrals that ignore the contributions of other neurons (or simply assumes
that those contributions wash out).

We start by relating the probability of two neurons firing in the same time bin to the probability
density of those two neurons firing:

P (σi = 1, σj = 1) =

∫ ∆t

0

∫ ∆t

0

P (σi(t), σj(t
′))dtdt′. (S5)
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Figure S1: Example of correlation between the connectivity matrix Jall, obtained by including all
electrodes, and Jactive based on active electrodes only. There is a strong correlation between the strengths
of excitatory connections (blue; R = 0.89), and between the strengths of inhibitory connections (green;
R = 0.90). Black line shows fitted linear trend.

Either neuron i fires first, or neuron j fires first:

P (σi = 1, σj = 1) =

∫ ∆t

0

∫ ∆t

0

1t<t′P (σi(t))P (σj(t
′)|σi(t))dtdt

′

+

∫ ∆t

0

∫ ∆t

0

1t′<tP (σj(t
′))P (σi(t)|σj(t

′))dtdt′ (S6)

=

∫ ∆t

0

λidt

∫ ∆t

t

CFPij(t
′)dt′ +

∫ ∆t

0

λjdt

∫ ∆t

t

CFPji(t
′)dt′. (S7)

The expression for CFPij(t) gives

P (σi = 1, σj = 1) =
1

2
λi

(
oij +Mij

w2
ij

w2
ij + T 2

ij

)
∆t2 +

1

2
λj

(
oji +Mji

w2
ji

w2
ji + T 2

ji

)
∆t2

+O(∆t3), (S8)

Here Mi,j , Ti,j , oi,j and wi,j are obtained from CFP. Mi,j is interpreted as the strength of the connection,
Ti,j as the latency. oi,j represents uncorrelated background activity and wi,j accounts for the width of
the peak. We have assumed that in the absence of neuron j firing, the probability of neuron i firing in
a small time bin is

P (σi = 1) = λi∆t, (S9)

where we have assumed that (oij +Mij)∆t ≪ 1 = λi∆t. Here the firing rate λ is taken to be the mean
firing rate over time, which includes the responses to other neurons in addition to neuron i’s baseline
firing rate. This same probability in the small coupling limit (Jij ≪ θi, θj) in the MaxEnt model is
derived as follows. Let J be the average value of Jij . First, we approximate the partition function in the
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small coupling limit as

Z ≈
∑

σi=0,1

e(θ
⊤σ) (S10)

=
∏
i

(1 + eθi) (S11)

with

r =
∑
i

⟨σi⟩ =

(∑
i

λi

)
∆t, (S12)

which yields

P (σi = 1) ≈ eθi

1 + eθi
(S13)

and

P (σi = 1, σj = 1) ≈ e(θi+θj+Jij+Jji)

(1 + eθi)(1 + eθj )
. (S14)

Now, we match these two models to get

λi∆t =
eθi

1 + eθi
, (S15)

and

eJij+Jji =
1

λiλj

(
1

2
λi

(
oij +Mij

w2
ij

w2
ij + T 2

ij

)
+

1

2
λj

(
oji +Mji

w2
ji

w2
ji + T 2

ji

))
, (S16)

which solves as

Jij + Jji =
1

2
log

(
1

2

1

λiλj

(
1

2
λi

(
oij +Mij

w2
ij

w2
ij + T 2

ij

)
+

1

2
λj

(
oji +Mji

w2
ji

w2
ji + T 2

ji

)))
, (S17)

ignoring corrections of O(∆t). Note that we can only make a statement about Jij + Jji. When it is safe
to assume that Tij ≪ wij ,

Jij + Jji =
1

2
log

(
1

2

(
oij +Mij

λj
+

oji +Mji

λi

))
(S18)

Hence, Jij + Jji directly reflects Mij , Mji, normalized by various other parameters related to the firing
patterns and shifted by a factor that depends on the mean Jij and the mean firing rate. Note also that
while θi has a strong dependence on ∆t, Jij does not depend on the size of time bins to first order in ∆t.

If one does not assume that ∆t is small, additional terms can be added, yielding corrections of the
form

eJij+Jji =
1

λiλj

(1
2
λi

(
oij +Mij

w2
ij

w2
ij + T 2

ij

)
+

1

2
λj

(
oji +Mji

w2
ji

w2
ji + T 2

ji

)
+
2

3

(
λiMijw

2
ij

(T 2
ij + w2

ij)
2
+

λjMjiw
2
ji

(T 2
ji + w2

ji)
2

)
∆t
)
, (S19)

ignoring corrections of O(∆t2). This introduces another culture-dependent shift in the zeroth-order rela-
tionship between estimated MaxEnt functional connectivities and true MaxEnt functional connectivities
from Eq. S17.

The timescale ∆t must be small enough so that Jij+Jji

min(|θi|,|θj |) is small and so that the additional
correction term shown above is typically small.

Computational load for MaxEnt and CFP scaled with the number of active electrodes and with the
total number of recorded spikes. We applied MaxEnt and CFP to 1h recordings of spontaneous activity
using HP Elite Desk 800 G5, processor Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz 3.00 GHz, RAM
64,0 GB, 64-bit operating system. Figure S2 shows that CFP computational load increased exponentially
with increasing number of active electrodes or total number of spikes, while MaxEnt computational time
scaled with the number of data points.

4



10 20 30 40 50 60
0

20

40

60

80

M
ax

En
t c

om
pu

ta
tio

na
l t

im
e 

(s
)

n active electrodes
10 20 30 40 50 60

0

20

40

60

80

C
FP

 c
om

pu
ta

tio
na

l t
im

e 
(s

)

n active electrodes

0 100000 200000 300000 400000 500000
0

20

40

60

80

M
ax

En
t c

om
pu

ta
tio

na
l t

im
e 

(s
)

n spikes per hour
0 100000 200000 300000 400000 500000

0

20

40

60

80

C
FP

 c
om

pu
ta

tio
na

l t
im

e 
(s

)

n spikes per hour

Figure S2: Relation between computational time for MaxEnt (orange) and CFP (blue) and data
characteristics. Top graphs show relationship between computational time and the number of active
electrodes ( left: MaxEnt; right: CFP). Bottom graphs show computational time as a function of the
number of spikes recorded in 1h ( left: MaxEnt; right: CFP).

An analysis of the goodness of fit of Minimum Probability Flow
When finding parameters of our Maximum Entropy model, we are faced with the task of minimizing
some sort of distance between model and data. In this case, we have

pmodel(x⃗) =
1

Z
exp

(
θ⃗⊤x⃗+ x⃗⊤Jx⃗

)
(S20)

where
Z =

∑
x⃗

exp
(
θ⃗⊤x⃗+ x⃗⊤Jx⃗

)
(S21)

is the partition function. Typically, practitioners take a maximum likelihood approach, in which we
minimize the Kullback-Leibler divergence between model and data:

DKL[pdata(x⃗)||pmodel(x⃗)] =
∑
x⃗

pdata(x⃗) log
pdata(x⃗)

pmodel(x⃗)
(S22)

=
∑
x⃗

pdata(x⃗) log pdata(x⃗)−
∑
x⃗

pdata(x⃗) log pmodel(x⃗) (S23)

= −H[pdata]− logL (S24)

where H[pdata] is the entropy of the data distribution and logL is the log likelihood. This well-known rela-
tionship between Kullback-Leibler divergence and log likelihood implies that minimizing an information-
theoretic distance between the model and data distributions is equivalent to choosing parameters by
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maximizing the (log) likelihood. Note that we have no control over the entropy of the data distribution,
and so the H[pdata] term is irrelevant to our parameter estimation procedure. If we now proceed further
expand the log likelihood, we find

logL =
∑
x⃗

pdata(x⃗) log pmodel(x⃗) (S25)

=
∑
x⃗

pdata(x⃗)
((

θ⃗⊤x⃗+ x⃗⊤Jx⃗
)
− logZ

)
(S26)

= θ⃗⊤⟨x⃗⟩data +
∑
i,j

Ji,j⟨xixj⟩data − logZ (S27)

where the ⟨·⟩data indicate that an average is taken with respect to the data distribution. If we search for
parameters J, θ that maximize the log likelihood, we look for parameters such that the gradient of the
log likelihood is 0:

∇θ logL = ⟨x⃗⟩data − ⟨x⃗⟩model (S28)
∇J logL = ⟨x⃗x⃗⊤⟩data − ⟨x⃗x⃗⊤⟩model, (S29)

where some straightforward manipulation has been omitted.
It seems that we have a straightforward procedure for finding J, θ, in which we try to maximize logL

via some sort of gradient ascent using the gradients calculated above. But the averages with respect
to the model distribution are fraught with difficulty, since we must (naively) sum over all possible x⃗.
This can be prohibitively expensive. For example, suppose that there are 60 neurons– then there are 260

possible binary vectors.
The typical way around this problem is to use contrastive divergence2, in which some form of Monte

Carlo is used to approximate the model averages ⟨x⃗⟩model, ⟨x⃗x⃗⊤⟩model. But about a decade ago, an
alternative approach was discovered. Instead of trying to minimize the Kullback-Leibler divergence be-
tween data and model distributions, in Minimum Probability Flow (MPF), we imagine that there is some
dynamics that takes the data distribution to the model distribution and try to minimize DKL[pdata||pt],
where pt is the transformed data distribution a time t later. This gives the following objective function

K(θ, J) = DKL[pdata||pt(θ, J)] (S30)

For small t this reduces to an objective function of

K(θ, J) = DKL[pdata||pt(θ, J)]|t=0 + t

(
∂DKL[pdata||pt(θ, J)]

∂t

)∣∣∣∣
t=0

(S31)

Then, following the derivation by Sohl-Dickstein and colleagues (Eqs. A1 - A9 of Appendix A)3, we
obtained

K(θ, J) =
∑
x⃗∈D

∑
x⃗′ /∈D

gx⃗,x⃗′ exp

(
E(x⃗′)− E(x⃗)

2

)
pdata(x⃗) (S32)

where D is the set of binary vectors in the data, E(x⃗) = x⃗⊤θ + x⃗⊤Jx⃗ and gij is an arbitrary symmetric
connectivity factor. This is the probability flow that we try to minimize. An appropriate choice of gij
yields a highly tractable objective function, and regardless of the choice of gij , this objective function
is convex. (We used gij = 1 only when i and j were one bit flip away.) It was shown in Refs.3 that
when pdata could be fit exactly by a Maximum Entropy model, MPF would find that Maximum Entropy
model very quickly– more quickly than contrastive divergence, for example.

We first ask whether or not MPF will do a good job of fitting a data distribution that is likely
not exactly a Maximum Entropy model. We simulated a small number of simulated neurons (small
enough that contrastive divergence is not required) and suppose that pdata(x⃗) is chosen from a Dirichlet
distribution. Then, there is no real structure to speak of in pdata(x⃗). It is still a well-posed question
to find the best possible Maximum Entropy model. But now, MPF and maximum likelihood might
yield different answers. In addition to log likelihood, we monitor the total variational distance TV D =∑

x⃗ |pdata(x⃗) − pmodel(x⃗)| between the model and data distributions. We find that, with enough data,
they yield almost indistinguishable answers in terms of goodness of fit. Fig. S3 shows an example run.
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Figure S3: A distribution over binary vectors was randomly drawn from a Dirichlet distribution with
concentration parameter 1 and then fit with both MPF and MLE using varying numbers of samples.
At left, the total variational distance between model and data distributions. Increasing the number of
samples causes MLE to better fit the model to the data, while it results in essentially no change for MPF.
At right, the log likelihood of the data under the model when fit using MPF and MLE; high likelihood
is better. When MPF data points are not present, the log likelihood is negative infinity.

However, closer inspection reveals that the model and data can match without the inferred con-
nectivity matching the true connectivity well. We simulated a neural system that behaves according
to a known MaxEnt model, and then inferred parameters J and θ using MPF and MLE. The ground
truth J ’s and θ’s did not match the inferred J ’s and θ’s, even though the first-order, second-order, and
third-order moments all matched. This is a typical property of a sloppy model4. This implies that
we cannot completely trust the J ’s and θ’s inferred by either MLE or MPF. It is therefore somewhat
of a surprise that the results in the main text validate the match between CFP and inferred MaxEnt
functional connectivities.

Finally, unexpectedly, MPF does not seem to be correctly fitting the MaxEnt model on the real
neural data, in that the moments of the MPF-fitted MaxEnt model do not match the first and second-
order moments of the experimental data. We checked this by using a Markov Chain Monte Carlo
sampler (validated first on a subset of twenty neurons) on the 60-neuron MPF-fitted MaxEnt model and
comparing the calculated first and second-order moments to the first and second-order moments of the
experimental data. There was poor agreement as shown in Fig. S4. This could be a product of the
sampler used, as proposal distribution can greatly affect results.

The last two facts combined lead us to a surprising conclusion. The MPF-inferred MaxEnt functional
connectivities do not match the functional connectivities that we would infer if we demanded exact
matches with the first and second-order moments. But the results in the main text suggest that the
MPF-inferred MaxEnt functional connectivities are still correlated with the functional connectivities that
we would infer if perfect matches with first and second-order moments were demanded. We can make
no guarantees about functional connectivities inferred using contrastive divergence or other methods.
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Figure S4: A scatterplot between the predicted means ⟨xi⟩ and correlations ⟨xixj⟩ − ⟨xi⟩⟨xj⟩ and the
means and correlations from the data for one representative experiment. The data show a wide range of
means and correlations, but the predicted means and correlations tend to be 1 and 0, respectively.
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