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Brief introduction to the strain and stress tensors

We would like to remind the reader of a few facts concerning tensors in mechanics.

Both the strain and the stress within the material need to be represented by second-order tensor �elds,

that is, that for each point within the material there is a local tensor associated. For a linear elastic material,

the stress and strain tensors are linearly related to one another, see Eq.  below.

It is not in itself necessary that the variations of these tensors in space are smooth (that is, that for two

given points in the material close enough, the tensors have small di�erence), but some smoothness arises

from the mechanical balance that the stress tensor has to obey (which imposes that some derivatives of the

stress tensor are small) and, as a result, for the strain tensor through Eq. .

An intuitive way to understand what the stress tensor σ(r) corresponds to is to realise that it predicts how

the material would move if a cut of in�nitesimal length ℓwas done in the given location r. ¿is is an idealised

version of the biophysical experiment of laser ablation, where the cut length would be in�nitesimal and the

cut width exactly zero. For simplicity we treat it in the case of a two-dimensional material, which is the case

of our model. Let us denote by the unit vector e the direction orthogonal to the laser ablation. Note of course

that −e is also a unit vector orthogonal to the laser direction, pointing to the other side. To �x ideas and

without loss of generality, let’s de�ne e as the right-pointing vector, and −e as the le -poiting vector. ¿e dot

product of the stress tensor with the direction vector, f = σ ⋅ e, is the vector of (lineic) force that the material
that is, the force per unit length, the total force being ℓf, product of the lineic force with the length of the cut. For simplicity, we
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situated to the right of the cut exerts on the line of cut, and −f = σ ⋅ (−e) the equal and opposite vector of

force that the material situated to the le of the cut exerts on the line of cut. ¿ese equal and opposite forces

pre-exist the cut: before a cut is done, the material is in mechanical balance because there is continuity of the

material across the cut-line and the forces cancel. Once the cut is made, this is not the case anymore, and if

one would want to maintain the material in its original shape in spite of the cut, one would have to “hold”

both sides with respectively a force −f applied to the one to the right and f applied to the one on the le . If

there is nothing to “hold” in place the sides of the cut, there will be motion: in a �rst approximation, if there

is some frictional resistance to it, the initial velocity with which the sides of the cut open will be proportional

to f and −f in the right and le side respectively.

¿e stress is said isotropic if the magnitude of the force f is the same for any cut direction e. In this case,

the vector f is always perfectly aligned with e. If the stress is not isotropic, then for an in�nitesimal cut it can

be shown that there are exactly two directions e and e for which f = σ ⋅ e and f = σ ⋅ e are respectively

aligned with e and e. For any other direction e of the cut, the vector f will not be exactly along e: the

component of f orthogonal to e is called the shear force. ¿e directions e and e are called the principal

directions of the stress, they are orthogonal to one another. Since they are unit vectors, it is su�cient to give

one orientation angle to de�ne completely e and e: for instance, in our case, giving the angle θ of e with

the AP direction in the mesoderm describes the principal directions of the stress completely. It can be shown

that the stress tensor can then be written as σ = σe⊗ e+σe⊗ e, where⊗ is the dyadic product and σ, σ

are called the principal stresses. As a result, the stress tensor for our case of a two-dimensional material, it

has three degrees of freedom, σ, σ and θ, and it can thus be represented as an ellipse or as the cross formed

by the two main axes of an ellipse on the surface of the material (see e.g. Supp. Fig. b) with the caveat that

either or both of σ, σ can be negative (which corresponds to compressive stress in either or both direction,

whereas a positive sign denotes tensile stress). ¿e trace of the stress tensor can then easily be expressed as

σ + σ, it is one of the invariants of the tensor and is convenient to represent a level of stress with a scalar (see

e.g. Fig b).

¿e strain tensor is described in details in the context of morphogenesis by [].

will name "force" the lineic force in what follows.
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Role of viscoelastic relaxation in thepresenceof an exponential increase in stress

We have used a purely elastic model and have found good agreement with in vivo deformations and rates of

deformation. ¿is may seem in contradiction with the fact that actomyosin is a viscoelastic material [], and

that its relaxation should be apparent in the rates of deformation. In this section, we show that the context

of an exponentially increasing stress explains why the material behaviour may not di�er from the one of an

elastic material.

Let us suppose that a material is at rest until time t = , and then submitted to an exponentially increasing

stress, σ = σ(et/τ−). In an elastic material of elastic shear modulusG, the strain will be εe(t) = σ
G(e

t/τ
−).

In a viscous liquid of viscosity η, the strain will be εv(t) = σ
η(τe

t/τ
− t). In a Maxwell viscoelastic liquid of

relaxation time τr and viscosity ηve, the strain will be εve(t) = σ
ηve ((τ+ τr)e

t/τ
− t). For t < τ, the responses

di�er clearly, however the strains are small and thus di�cult to quantify with adequate precision in vivo.

For t > τ, the constant or the linear term in each of these expressions becomes negligible compared to the

exponential part, which is directly linked with the exponential load that is imposed. ¿e di�erence between

the asymptotic behaviours then is only in terms of a multiplicative factor, which means that the behaviours

are indistinguishable in terms of strain patterns. Indeed, they are identical if material parameters are such

thatG = η/τ = ηve/(τ+τr) and could thus be discriminated only if we could experimentally change τwithout

a�ecting the material parameters. ¿is is di�cult to achieve since MyoII, whose rate of increase is /τ, is also

known to a�ect the elasticity and viscosity of actomyosin [].

We thus �nd that while the initial transient di�ers, elastic, viscous and viscoelastic models will give the

same patterns of strain in the case of a �ow forced by exponentially increasing loading of the material.

Numerical simulations

Geometry of the elastic surface of the model

Following [], we approximate the initial embryo shape by a closed surface of equation:
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¿is describes a prolate ellipsoid, with circular cross-sections. ¿e mid-cross-section at x =  is a circle of

radius RDV centered at (x, y, z) = (,, ). For a positive parameter Zp, this ellipsoid is bent with the center

of cross-sections o�set towards increasing z as ∣x∣ increases. In particular, the poles along the long axis are at

the positions (x, y, z) = (±RAP, ,Zp).

As in [], we choose RAP = RDV and Zp = ., which de�nes the shape corresponding to the initial

equilibrium con�guration of the elastic surface in terms of in-plane stress. While all calculations are done in

nondimensional units of RDV , the dimensional counterparts of all quantities are then calculated with RDV =

 µm.

¿e elastic surface Γ(σa) is then de�ned as the surface of minimal elastic energy for a given pre-stress

�eld σa. ¿e spatial dependence of σa is described in the main text, the corresponding rheology is described

in what follows.

Additionally, two constraints are applied to the con�guration of the elastic surface Γ. First, it encloses

a constant volume independent of σa and equal to the initial volume of Γ. ¿is models the fact that the

permeability of the apical surface of the epithelium is low, such that water �uxes across it are assumed to be

zero during the process of initial furrow formation. ¿is gives rise to pressure forces which are dependent on

σa and are of uniformmagnitude in space. Second, Γ is itself enclosed in an undeformable vitellinemembrane.

¿e vitelline membrane is de�ned as a closed surface ΓV parallel to the initial elastic surface Γ, at a distance

. × −RDV ≃ . µm towards the exterior. Non-interpenetration of the elastic surface with the vitelline

membrane is simulated by Surface Evolver constraint algorithm [], a penalty method based on a level set

function ensuring that the elastic surface is in the interior side of ΓV .

Elastic model

¿edeformation of an elastic layer of non-vanishing thickness can bemodelled using a surface with two local

additive contributions: bending and in-plane deformation [, ].

¿e bending surface energy density writes 
κ (c − c)

 where κ is the bending modulus of the surface,

c = 
R +


R its mean curvature (Ri are the principal algebraic curvature radii), and c the (local) intrinsic

curvature, taken to be the initial one in this work [, ].

We now proceed to describe the part of the surface energy density due to in-plane deformation. In a
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continuum description of in-plane deformations, the gradient deformation matrix Fc, with Fcij =
∂Xi
∂xj

where

(X,X), describes the deformed position of a material point initially at the (x,x) position (the indices

stand for any two coordinates describing a surface), allow to de�ne the right Cauchy-Green deformation

tensor (Fc)TFc and the Lagrangian �nite strain tensor є = ((Fc)TFc − I) /, a widely used measure of how a

material piece of surface locally di�ers before and a er deformation.

¿e elasticity of the surface is described by the Hookean model, where the (locally) in-plane stress tensor

σ is linked to the (locally) in-plane strain tensor є. ¿e model surface is considered as isotropic in plane,

which allows to describe full elasticity using only two parameters, the D Young modulus YD and the D

Poisson ratio νD. ¿e surface energy density of in-plane deformation in this model can be expressed in two

di�erent useful forms:

edef =
YD

( + νD)
[Tr(є) +

νD
 − νD

(Trє)]

=
χD


(Trє) + µD (Tr(є) −


(Trє)) ()

where χD and µD are, respectively, the D compression and shear moduli:

χD =
YD

( − νD)
µD =

YD
( + νD)

In-plane stresses write:

σ = χD(Trє)P + µD (є−


(Trє)P) ()

with P = I − n⊗ n the projection tensor along the surface.

We nondimensionalise the parameters with χ̃D = χDRDV/κ and µ̃D = µDRDV/κ. All �gures are shown

for the choices χ̃D =  and νD = .

Numerical approach

We describe here the approach generally used in the Surface Evolver []. Although these implementation

details are not speci�c to our approach, they are necessary to introduce the numerical technique for simulation
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pre-strain in the next paragraph.

In a �nite element description, Fc is approximated locally by F, the matrix of the linear transformation

from the unstrained to the strained facet, written in a local basis. Let S = [S,S] be the  ×  matrix formed

by any  sides of the unstrained facet ABC,

S =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

xB − xA xC − xA

yB − yA yC − yA

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

and W the corresponding matrix of the same facet in the deformed con�guration. ¿en W = FS which

rewrites F = WS−. With FT = (S−)TWT , one gets the numerical implementation for approximating the

Lagrangian �nite strain tensor in each facet of the �nite element mesh:

E =


((S−)TWTWS− − I)

Note that this expression is invariant with respect to permutations between A, B and C.

In practice, since є appears in Eq.  only throughTr (є) andTrє, one can use an alternative representation

of the strain, namely E∗ = (ST)− EST , because due to matrix properties, TrE∗ = TrE and Tr (E∗) = Tr (E).

¿is de�nition is equivalent to E∗ = 
 (W

TWS− (S−)T − I), or E∗ = 
 (GW (GS)

−
− I), where GW =

WTW and GS = STS are the (real and symmetric, hence diagonalisable) Gram matrices of, respectively, the

strained and unstrained facets. Since Gram matrices, that make only intervene the square lengths and the

scalar product of the two sides choosen to determine the facets, are easy to calculate from side lengths only,

the alternative de�nition E∗ is preferred in the minimisation algorithm used for the equilibrium situations

[].

Pre-strain and pre-stress

Pre-strain corresponds to a reduction of the equilibrium con�guration area. In order to apply pre-strain in

a given facet, we multiplied the Gram matrix of the unstrained facet by a factor γ <  (which amounts to

multiply the dimensions of the equilibrium con�guration of the facet by√γ):

Gγ
S = γGS





¿is approach can be compared to morphoelasticity, see [].

¿e alternative deformation tensor hence becomes:

E∗γ =


(

γ
GW (Gγ

S)
−
− I)

=

γ
E −

γ − 
γ

I

¿e trace is easily calculated:

Tr(E∗γ) =

γ
TrE −

(γ − )
γ

¿e stress thus becomes:

σγ = χD(TrE∗γ)I + µD (E∗γ −


(TrE∗γ)I)

= χD [

γ
TrE −

(γ − )
γ

] I + µD ([

γ
E −

γ − 
γ

I] −


[

γ
TrE −

(γ − )
γ

] I)

=
χD
γ

[TrE − (γ − )] I + 
µD
γ

(E −


(TrE)I)

Area pre-strain is thus equivalent to an isotropic pre-stress σa = χD
γ−
γ . Note that the apparent elastic

moduli of the material are also increased by a factor /γ, due to the fact that their equilibrium con�guration

is of dimensions /γ-fold smaller than their intial con�guration, with respect to which strain is calculated.
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Supplementary Figure : Tension anisotropy increases with increased actomyosin contractility. (a) Evolution
of AP and DV stresses at the ventral midline as a function of the pre-stress σa. (b) Principal stresses in each facet
for midline pre-strain εma = .. Black segments, positive principal stress (tensile); red segments, negative principal
stress (compressive) along the corresponding directions. Facet colours, sum of the principal stresses, see d for colour
code. Inserts (i) and (ii), × zoomof the regions outlined inwhite and in yellow. In (ii), tensor components are further
enlarged by a factor . (c) Representation in sagittal and transverse sections of an example % strain in the ventral
region and of the strain it implies in other regions if the embryo shape is unchanged. (d) Principal stresses in each
facet for midline pre-strain εma = .. Same colour code as b, nondim., nondimensional. (e) Same as Fig. a but for
εma = .. (f) Same as Fig. c but for εma = ..
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Supplementary Figure : Surface shape changes in vivo and in themechanicalmodel. (a) Time evolution of apical
area, AP and DV sizes of cells at di�erent distances from the midline, in confocal experiments (lines, n =  embryos,
shaded area, minimum andmaximum) and simulations (symbols). (b) Time evolution of apical area of cells inMuVi
SPIM (solid lines, n =  embryos, shaded area and error bars, minimum and maximum) and confocal experiments
(dash dot dot lines, n =  embryos, shaded area, minimum andmaximum) (c) Localization of kymographs of panels
d–g on the apical surface of the embryo. (d) Kymograph of membrane signal in MuVi SPIM along AP (mid-sagittal
line). M, mid; A, anterior; P, posterior, coordinates from mid-transverse plane in µm. Yellow box delineates the
zone also shown in panel e. (e) Same as d in simulations, with colour coded pre-stress value (see colour bar in g)
and quanti�cation of the decrease of length between mid-transverse point and points marked with symbols. (f)
Kymograph of membrane signal in MuVi SPIM along DV (mid-transverse line). V, ventral; LR, lateral right; LL,
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Supplementary Figure : Embryo shape changes during furrow propagation. (a) See-through view of embryo
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