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Supplementary Figure 1. Ribosome upregulation in FmrI-% neurons. (a-b) Similar to what
is seen in the FmrI™” proteome, network analysis of upregulated GO terms in Fmrl” CAl
TRAP-Seq (adjusted p value < 0.1) and SNAP TRAP-Seq (adjusted p value < 0.01) identifies
ribosome and translation related GO terms as a prominent cluster. Node size and colour denotes
significance and thickness of lines denotes the number of genes shared between nodes. (¢) The
increased RP expression persists after normalizing the CA1-TRAP-Seq to RNA-seq population
(two sample z test, z = 2.16, p = 0.031), suggesting an increase in translation. However, a



significant increase in RP transcripts is also seen in the total mRNA population of FmrI™
hippocampus (two sample z test, z = 7.47, p =7.78X10°'%), indicating that abundance is also
increased. (d) Mapping statistics and PCA plot for the SNAP-TRAP samples are shown, as are
the DESeq?2 results with significant genes detected in red. (¢) Raw immunoblots and total
protein memcode staining used to quantify Rpl10a and Rps25 expression in Fig. 1 are shown.
As samples are loaded blind to genotype, the arrangement is random and must be re-ordered
for the main figure with spaces denoting lanes that are not run next to each other. (f) Similar to
results seen with total nucleolar volume in FmrI” neurons, calculation of the average nucleolar
volume per neuron reveals a significant increase versus WT (two tailed paired t-test, WT = 100
+ 4.235%, Fmrl™ = 128 + 4.235%, * p = 0.0296, N = 5 littermate pairs). No significant
difference was observed in reconstructed NeuN volume of FmrI™ versus WT neurons (two
tailed paired t-test, WT = 100 £ 14.49%, Fmrl™=107.9 + 10.0%, p =0.6072, N= 6 littermate
pairs, KS test p = 0.65, N= 59 cells). Data are presented as mean values +/- SEM. Source data
are provided as a Source Data file.
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Supplementary Figure 2. LTD TRAP-seq. (a) Mapping statistics and PCA plot for Veh and
DHPG treated WT and Fmr1”” samples are shown. (b) DHPG stimulations were performed on
additional WT and FmrI” hippocampal slices, and CA1-TRAP performed. qPCR analyses
validate the upregulation of immediate early genes Npas4 (WT veh = 1 + 0.24%, WT DHPG
=4.89 + 0.59%. Fmrl™” veh = 0.53 £ 0.09%, Fmrl”” DHPG = 3.86 + 0.40%, N = 4 littermate
pairs (Two-way ANOVA treatment p < 0.0001, WT p <0.0001, KO p <0.0001) and Arc (WT
veh =1 £ 0.13%, WT DHPG = 1.96 + 0.26%. Fmrl™” veh = 1.01 + 0.09%, FmrI”* DHPG =



2.02 + 0.14%, N = 6 littermate pairs (Two-way ANOVA p <0.0001, WT p=0.0002, KO p =
0.0002) in both genotypes. (¢) GSEA of transcripts upregulated in WT CA1-TRAP shows
enrichment in ribosomal, mitochondrial and splicing terms (adjusted p value <0.01). (d) GSEA
of transcripts downregulated with DHPG in WT reveals enrichment of terms related to synaptic
function, structure, and ion transport (adjusted p value < 0.01). (e-f) Analysis of significantly
upregulated genes both in WT DHPG and FmrI”* CA1-TRAP (p < 0.05) identifies transcripts
involved in ribosome/translation, as well as in mitochondria, cytoskeleton and signalling. (g)
Raw immunoblots and total protein memcode staining used to quantify Rpl10a and Rps4x
expression in Fig. 2 are shown. As samples are loaded blind to genotype, the arrangement is
random and must be re-ordered for the main figure with spaces denoting lanes that are not run
next to each other. Data are presented as mean values +/- SEM. Source data are provided as a
Source Data file.



Supplementary Figure 3
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Supplementary Figure 3. A length-dependent translation imbalance is present in Fmrl*
neurons. (a) The significantly changed population in CA1-TRAP shows the same length-
dependent imbalance in CDS length and 3’UTR length, with a trend towards an imbalance in
total transcript length and 5’UTR length. GC content exhibits no difference (CDS down vs
average p = 0.012, 3’UTR up versus average p= 0.0078). (b) To test whether the length shift
in translating mRNAs in Fmr 1" neurons was due to a difference in mRNA abundance, DESeq2
normalized counts for each transcript identified in the TRAP was divided by DESeq2
normalized counts in the total population after CA1 gene filtering. Analysis of translating
mRNAs normalized to total shows the same increased length in the downregulated population,
indicating this effect is not due to a change in overall transcript abundance (two sample z test,
Upvsallz=-1.94,p=0.051, Down vs all z=4.17, p = 3.039 X 10°). (¢) An inherent bias in
RNA-seq analyses can result in identification of more significant differences in long transcripts
53, To investigate whether this bias might contribute to the observed length shift in Fmrl™
CA1-TRAP, we performed a correlation analysis between p-value vs CDS length. This analysis



reveals no significant correlation, indicating length bias does not explain the changes observed
in Fmr1”” CA1-TRAP (Pearson’s correlation test r = 0.0008, p = 0.93). (d) Comparison of the
upregulation of RPs to 5 randomly generated gene sets of the same length shows the elevation
in RPs is more significant than what would be predicted from length (RP versus total two
sample z test p = 1.03 X 10"%°, short transcripts versus RPs highest adjusted p = 4.35X107). (e)
A correlation analysis of the Fmrl™ proteomics dataset reveals no significant correlation
between p-value and CDS length (Pearson’s correlation test r = -0.0229, p = 0.33). ()
Comparison of the average CDS length of mRNAs encoding proteins in the most over- and
underexpressed gene sets in the Fmrl” proteome shows how the CDS length bias in the FmrI-
v translating population can manifest in functionally relevant changes in synaptic protein
makeup. (g) There is a significant overlap between the targets significantly downregulated in
the Fmrl™ proteome and those significantly downregulated in SNAP-TRAP and CA1-TRAP
populations (threshold p < 0.05, hypergeometric test p = 7.71 X 10, p = 0.034, SNAP-TRAP
and CA1-TRAP respectively). (h) Autism risk factors identified as high-confidence by SFARI
exhibit significantly longer CDS lengths compared the average TRAP population (two sample
z test, all vs SFARI z = 11.234, *p < 2.2X107'9, all vs high SFARI z = 6.2066 *p = 5.415X10"
19) (i) Similar to the SNAP-TRAP population, SFARI targets are downregulated in the CA1-
TRAP population (two sample z test, z = -4.20, p = 2.619X107). (j) A significant negative
correlation seen between CDS length and expression of SFARI transcripts in the Fmrl™
SNAP-TRAP population (Pearson’s correlation test r = -0.3714, *p = 0.003). This correlation
is not observed in the total FmrI™ transcriptome (Pearson’s correlation test r = -0.17, p =
0.593). Similar to the SNAP-TRAP population, SFARI targets in the Fmrl”’ CA1-TRAP
population exhibit a significant negative correlation between transcript length and expression
(Pearson’s correlation test r = -0.126, p = 0.0001). (k) Gene length and transcript CDS length
are correlated in the CA1 TRAP-seq population (Pearson’s correlation test r = 0.40, p <2.2 X
107'%). However, a comparison between long genes with short CDS transcripts versus short
genes with long CDS transcripts within the SFARI population reveals the differential
expression in Fmrl” CA1-TRAP is driven by the CDS length of the transcript (Long CDS
short length: Minima -0.386, Maxima -0.225, Centre -0.13, Whiskers -0.015, 0.074. Short CDS
long length: Minima -0.190, Maxima -0.043, Centre 0.003, Whiskers 0.061, 0.107, Wilcox
rank sum test p = 0.03766). Source data are provided as a Source Data file.
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Supplementary Figure 4. DHPG induces a length-dependent shift in translation in CA1
pyr neurons. (a) Although there are few significantly different changes evoked with DHPG in
the FmrI” CA1-TRAP, a small but significant length-dependent shift is seen in the population
(two sided KS test <lkb vs >4kb p = 3.863 x 10'"). (b) Mapping statistics, PCA plot, and
DESeq?2 results for the DHPG transcriptome RNA-seq samples are shown (n = 3 littermate
pairs). (c) Analysis of the total transcriptome of WT and FmrI” hippocampus shows that
DHPG does not cause the same length-dependent shift as seen in the CA1-TRAP. In fact, there
is a slight significant increase in length in the DHPG-upregulated population in WT, which is
opposite to the CA1-TRAP fraction (two sample z test, WT: up z = -2.758, *p = 0.0058, down
z=0.2599 p =0.7949, KO: up z = 0.64304 p = 0.52019, down z = -1.023 p = 0.30638). (d)
Analysis of FMRP targets in the total transcriptome of DHPG-treated WT slices shown no
significant shift in expression (two sample z test, z = -2.039, p = 0.041). (e) Clustering of GO



terms significantly enriched in the population of transcripts downregulated in WT DHPG is
driven by many synaptic elements including large groups of cadherins/protocadherins
(Pcdhac2, Pcdhl, Celsr3, Celsr2, Cdhl8, Cdh2, Pcdhgc5, etc.) and cell adhesion molecules
(L1cam, Nrcam, Focad, Cadm3, etc.). (f) The ion channel cluster downregulated in WT DHPG
is driven by multiple targets that are involved in calcium regulation downstream of mGluy/s
activation, including voltage-gated calcium channel transcripts (Cacnalb, Cacnalc, Cacnali,
Cacnalad?) and ryanodine receptors (Ryr2 and Ryr3). (g) Comparison of the populations
significantly downregulated in WT DHPG and in FmrI” CA1-TRAP reveals a significant
overlap of 42 transcripts (Hypergeometric test, p = 0.0144).
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Supplementary Figure 5. CX-5461 inhibits the length-dependent translation shift in
DHPG-treated CA1 pyr neurons. (a) Mapping statistics for the CX+DHPG TRAP-seq
samples are shown. (b) Replicating the results of our first DHPG CA1-TRAP experiment, the
CX+DHPG dataset shows a significant increase in RP expression in vehicle treated WT after
stimulation with DHPG (two sample z test z = 3.0385, p = 0.0023). Also replicating our first
experiment, there is no significant increase in RP expression in DHPG-treated Fmrl™ CAl-
TRAP (two sample z test z = 1.794207, p = 0.0727). (¢) TRAP-seq shows that CX-5461
treatment does not alter the upregulation of immediate early gene Npas4 with DHPG
stimulation in either WT or FmrI”, indicating no change in responsiveness to mGluys
activation. (DESeq2: WT vs CX p = 0.4543625, WT vs DHPG p = 1.31x107"", WT vs
CXDHPG p = 1.20x107", KO vs CX p = 0.5548928, KO vs DHPG p = 9.38x10!%, KO vs
CXDHPG p = 4.96x107'3. N = 3 animals per group, except KO CXDHPG which N = 2). (d) A
qPCR analysis of additional experiments validate these results (WT: Veh = 1 £ 0.24%, CX =
0.62 +0.14%, DHPG =4.89 + 0.59%. CX DHPG = 5.62 + 0.83%. Fmr1™”:Veh =0.53 £ 0.09%,
CX=0.53+0.06%, DHPG =3.86 + 0.40%, CX DHPG =4.64 + 0.38%. N =4 littermate pairs.
Two-way ANOVA treatment p <0.0001, WT Veh vs CX FDR = 0.052, Veh vs DHPG *FDR
=0.0111, Veh vs CXDHPG *FDR 0.0117, Fmr1” Veh vs CX FDR = 0.3396, Veh vs DHPG
*FDR = 0.0019, Veh vs CXDHPG *FDR = 0.0019). (e) Transcripts identified as significantly
upregulated/downregulated in the first DHPG CAI1-TRAP experiment are significantly
upregulated/downregulated with DHPG in the WT CA1-TRAP population in the CX+DHPG
dataset (two sample z test, LTD up: z = 4.634, *p = 3.588X10°, LTD down: z = -4.7643, *p =
1.895X10°®). Data are presented as mean values +/- SEM. Source data are provided as a Source
Data file.
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