Using spatialLIBD with 10x Genomics pub-
lic datasets

Package

Abby Spangler*', Brenda Pardo'*, and Leonardo Collado-

Torres*3

Lieber Institute for Brain Development, Johns Hopkins Medical Campus

2Licenciatura de Ciencias Genémicas, Escuela Nacional de Estudios Superiores Unidad Ju-

riquilla, Universidad Nacional Auténoma de México
3Center for Computational Biology, Johns Hopkins University

*aspangle@gmail.com prardo@lcgej.unam.mx ilcolladotor@gmail.com

30 March 2022

spatialLIBD 1.7.14

Contents

1.1 Install spatiallIBD
1.2 Required knowledge
1.3 Citing spatiallIBD v o v oo

2 Download data from 10x Genomics

2.1 Loadpackages.o
2.2 Download spaceranger outputfiles

3 Modify spe for spatialLIBD.

3.1 Add gene annotation information
3.2 Filterthe speobject.o
3.3 Checkobject.

4 Explorethedata

4.1 Run the interactive website
5 Wrapperfunctions

6 Publishing your web application

W W w w

Using spatialLIBD with 10x Genomics public datasets

7 Limitations

7.1 Memory

7.2 Responsespeedso

7.3 Imageresolution

7.4 Customization

8 Reproducibility

9 Bibliography

Using spatialLIBD with 10x Genomics public datasets

Basics

1.1

1.2

1.3

Install spatiallLIBD

R is an open-source statistical environment which can be easily modified to enhance its
functionality via packages. spatialLIBD (Pardo, Spangler, Weber, Hicks, Jaffe, Martinowich,
Maynard, and Collado-Torres, 2021) is an R package available via the Bioconductor repository
for packages. R can be installed on any operating system from CRAN after which you can
install spatialLIBD by using the following commands in your R session:

if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")

BiocManager::install("spatialLIBD")

Check that you have a valid Bioconductor installation
BiocManager: :valid()

To run all the code in this vignette, you might need to install other R/Bioconductor packages,
which you can do with:

BiocManager::install("spatialLIBD", dependencies = TRUE, force = TRUE)

If you want to use the development version of spatialLIBD, you will need to use the R version
corresponding to the current Bioconductor-devel branch as described in more detail on the
Bioconductor website. Then you can install spatiallLIBD from GitHub using the following
command.

BiocManager::install("LieberInstitute/spatialLIBD")

Required knowledge

Please first check the Introduction to spatialLIBD vignette available through GitHub or Bio-
conductor.

Citing spatiallLIBD

We hope that spatialLIBD will be useful for your research. Please use the following information
to cite the package and the overall approach. Thank you!

Citation info
citation("spatiallLIBD")

#> Pardo B, Spangler A, Weber LM, Hicks SC, Jaffe AE, Martinowich K,

#> Maynard KR, Collado-Torres L (2021). "spatiallLIBD: an R/Bioconductor
#> package to visualize spatially-resolved transcriptomics data."

#> _bioRxiv_. doi: 10.1101/2021.04.29.440149 (URL:

#> https://doi.org/10.1101/2021.04.29.440149), <URL:

#> https://www.biorxiv.org/content/10.1101/2021.04.29.440149v1>.

https://bioconductor.org/packages/3.15/spatialLIBD
http://bioconductor.org
https://cran.r-project.org/
https://bioconductor.org/packages/3.15/spatialLIBD
http://bioconductor.org/developers/how-to/useDevel/
http://research.libd.org/spatialLIBD/articles/spatialLIBD.html
https://bioconductor.org/packages/spatialLIBD
https://bioconductor.org/packages/spatialLIBD
https://bioconductor.org/packages/3.15/spatialLIBD

Using spatialLIBD with 10x Genomics public datasets

#> Maynard KR, Collado-Torres L, Weber LM, Uytingco C, Barry BK, Williams
#> SR, II JLC, Tran MN, Besich Z, Tippani M, Chew J, Yin Y, Kleinman JE,
#> Hyde TM, Rao N, Hicks SC, Martinowich K, Jaffe AE (2021).

#> "Transcriptome-scale spatial gene expression in the human dorsolateral
#> prefrontal cortex." _Nature Neuroscience_. doi:

#> 10.1038/541593-020-00787-0 (URL:

#> https://doi.org/10.1038/s41593-020-00787-0), <URL:

#> https://www.nature.com/articles/s41593-020-00787-0>.

#> To see these entries in BibTeX format, use 'print(<citation>,

#> bibtex=TRUE)', 'toBibtex(.)', or set
#> 'options(citation.bibtex.max=999)".

Download data from 10x Genomics

2.1

2.2

In this vignette we'll show you how you can use spatialLIBD (Pardo, Spangler, Weber, et
al., 2021) for exploring spatially resolved transcriptomics data from the Visium platform by
10x Genomics. That is, you will learn how to use spatialLIBD for data beyond the one it
was initially developed for (Maynard, Collado-Torres, Weber, Uytingco, Barry, Williams, |,
Tran, Besich, Tippani, Chew, Yin, Kleinman, Hyde, Rao, Hicks, Martinowich, and Jaffe,
2021). To illustrate these steps, we will use data that 10x Genomics made publicly avail-
able at https://support.10xgenomics.com/spatial-gene-expression /datasets. We will use files
from the human lymph node example publicly available at https://support.10xgenomics.com/
spatial-gene-expression /datasets/1.1.0/V1_Human_Lymph_Node.

Load packages

To get started, lets load the different packages we'll need for this vignette. Here's a brief
summary of why we need these packages:

= BiocFileCache: for downloading and saving a local cache of the data

= SpatialExperiment: for reading the spaceranger files provided by 10x Genomics
= rtracklayer: for importing a gene annotation GTF file

= Jobstr: for checking how much memory our object is using

= spatialLIBD: for launching an interactive website to explore the data

Load packages in the order we'll use them next
library("BiocFileCache")
library("SpatialExperiment")
library("rtracklayer")

library("lobstr")

library("spatiallLIBD")

Download spaceranger output files

Next we download data from 10x Genomics available from the human lymph node exam-
ple, available at https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/
V1_Human_Lymph_Node. We don't need to download all the files listed there since Spa-

https://bioconductor.org/packages/3.15/spatialLIBD
https://www.10xgenomics.com/products/spatial-gene-expression
https://www.10xgenomics.com/products/spatial-gene-expression
https://bioconductor.org/packages/3.15/spatialLIBD
https://support.10xgenomics.com/spatial-gene-expression/datasets
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Human_Lymph_Node
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Human_Lymph_Node
https://bioconductor.org/packages/3.15/BiocFileCache
https://bioconductor.org/packages/3.15/SpatialExperiment
https://bioconductor.org/packages/3.15/rtracklayer
https://CRAN.R-project.org/package=lobstr
https://bioconductor.org/packages/3.15/spatialLIBD
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Human_Lymph_Node
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Human_Lymph_Node
https://bioconductor.org/packages/3.15/SpatialExperiment
https://bioconductor.org/packages/3.15/SpatialExperiment

Using spatialLIBD with 10x Genomics public datasets

tialExperiment doesn’t need all of them for importing the data into R. These files are part of
the output that gets generated by spaceranger which is the processing pipeline provided by
10x Genomics for Visium data.

We'll use BiocFileCache to keep the data in a local cache in case we want to run this example
again and don’t want to re-download the data from the web.

Download and save a local cache of the data provided by 10x Genomics
bfc <- BiocFileCache: :BiocFileCache()
lymph.url <-
paste0(
"https://cf.1l0xgenomics.com/samples/spatial-exp/",
"1.1.0/V1_Human_Lymph_Node/",
c(
"V1_Human_Lymph_Node_filtered_feature_bc_matrix.tar.gz",
"V1 Human_Lymph_Node spatial.tar.gz",
"V1 Human_Lymph_Node_analysis.tar.gz"

)
lymph.data <- sapply(lymph.url, BiocFileCache::bfcrpath, x = bfc)

10x Genomics provides the files in compressed tarballs (. tar.gz file extension). Which is why
we'll need to use utils::untar() to decompress the files. This will create new directories
and we will use list.files() to see what files these directories contain.

Extract the files to a temporary location

(they'll be deleted once you close your R session)

xx <- sapply(lymph.data, utils::untar, exdir = file.path(tempdir(), "outs"))
The names are the URLs, which are long and thus too wide to be shown here,
so we shorten them to only show the file name prior to displaying the

utils::untar() output status

names (xx) <- basename(names (xx))

XX
#> V1_Human_Lymph_Node_filtered feature_bc_matrix.tar.gz.BFC2
#> (0]
#> V1_Human_Lymph_Node_spatial.tar.gz.BFC3
#> [¢]
#> V1_Human_Lymph_Node_analysis.tar.gz.BF(C4
#> (0]

List the files we downloaded and extracted
These files are typically SpaceRanger outputs
lymph.dirs <- file.path(
tempdir(), "outs",
c("filtered_feature_bc_matrix", "spatial", "raw_feature_bc_matrix", "analysis")
)
list.files(lymph.dirs)

#> [1] "aligned_fiducials. jpg" "barcodes. tsv.gz"

#> [3] "clustering" "detected tissue_image. jpg"
#> [5] "diffexp" "features.tsv.gz"

#> [7] "matrix.mtx.gz" "pca"

#> [9] "scalefactors_json.json" "tissue_hires_image.png"

#> [11] "tissue_lowres_image.png" "tissue positions_list.csv"

https://bioconductor.org/packages/3.15/SpatialExperiment
https://bioconductor.org/packages/3.15/SpatialExperiment
https://bioconductor.org/packages/3.15/BiocFileCache

Using spatialLIBD with 10x Genomics public datasets

#> [13] "tsne" "umap"

Now that we have the files that we need, we can import the data into R using read10xVisium()
from SpatialExperiment. We'll import the low resolution histology images produced by spac
eranger using the images = "lowres" and load = TRUE arguments.
filtered gene expression data using the data = "filtered" argument. The count matrix can
still be quite large, which is why we'll use the type = "sparse" argument to load the data

into an R object that is memory-efficient for sparse data.

Import the data as a SpatialExperiment object
spe <- SpatialExperiment::readl@xVisium(

samples = tempdir(),

sample_id = "Llymph",

type = "sparse", data = "filtered",

images = "lowres", load = TRUE
)

We'll also load the

Inspect the R object we just created: class, memory, and how it looks in

general

class(spe)

#> [1] "SpatialExperiment"

#> attr(, "package")

#> [1] "SpatialExperiment"
lobstr::obj_size(spe) / 1024°2 ## Convert to MB
#> 281.9031 B

spe

#> class: SpatialExperiment

#> dim: 36601 4035

#> metadata(0):

#> assays(1): counts

#> rownames (36601): ENSGOO000243485 ENSGO0000237613 ...
#> ENSGO0000277196

#> rowData names(1): symbol

ENSGOO000278817

#> colnames(4035): AAACAAGTATCTCCCA-1 AAACAATCTACTAGCA-1 ...

#> TTGTTTGTATTACACG-1 TTGTTTGTGTAAATTC-1

#> colData names(4): in_tissue array_row array_col sample_id

#> reducedDimNames (0) :
#> mainExpName: NULL
#> altExpNames(0) :

#> spatialCoords names(2) : pxl_col_in_fullres pxl_row_in_fullres

#> imgData names(4): sample_id image_id data scaleFactor

The counts are saved in a sparse matrix R object
class(counts(spe))

#> [1] "dgCMatrix"

#> attr(,"package")

#> [1] "Matrix"

https://bioconductor.org/packages/3.15/SpatialExperiment

Using spatialLIBD with 10x Genomics public datasets

Modify spe for spatialLIBD

3.1

Now that we have an SpatialExperiment R object (spe) with the data from 10x Genomics
for the human lymph node example, we need to add a few features to the R object in order
to create the interactive website using spatialLIBD::run_app(). These additional elements
power features in the interactive website that you might be interested in.

First we start with adding a few variables to the sample information table (colData()) of our
spe object. We add:

= key: this labels each spot with a unique identifier. We combine the sample ID with
the spot barcode ID to create this unique identifier.

= sum_umi: this continuous variable contains the total number of counts for each sample
prior to filtering any genes.

= sum_gene: this continuous variable contains the number of genes that have at least 1
count.

Add some information used by spatiallIBD
spe <- add_key(spe)

spe$sum_umi <- colSums(counts(spe))
spe$sum_gene <- colSums(counts(spe) > 0)

Add gene annotation information

The files SpatialExperiment:: read10xVisium() uses to read in the spaceranger outputs into
R do not include much information about the genes, such as their chromosomes, coordinates,
and other gene annotation information. We thus recommend that you read in this information
from a gene annotation file: typically a gtf file. For a real case scenario, you'll mostly likely
have access to the GTF file provided by 10x Genomics. However, we cannot download that
file without downloading other files for this example. Thus we'll show you the code you would
use if you had access to the GTF file from 10x Genomics and also show a second approach
that works for this vignette.

Initially we don't have much information about the genes
rowRanges (spe)

#> GRangesList object of length 36601:

#> $ENSGO0000243485

#> GRanges object with 0 ranges and O metadata columns:

#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> -------

#> seqinfo: no sequences

#>

#> $ENSGOO000237613
#> GRanges object with O ranges and 0 metadata columns:

#> segnames ranges strand
#> <Rle> <IRanges> <Rle>
#> -

#> seqginfo: no sequences

#>

#> $ENSGOO0O00186092
#> GRanges object with O ranges and O metadata columns:

Using spatialLIBD with 10x Genomics public datasets

#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> -

#> seqginfo: no sequences

#>

#> .

#> <36598 more elements>

3.1.1 From 10x

Depending on the version of spaceranger you used, you might have used differ-
ent GTF files 10x Genomics has made available at https://support.10xgenomics.
com/single-cell-gene-expression /software/downloads/latest and described at https:
//support.10xgenomics.com/single-cell-gene-expression /software /release-notes/build.
These files are too big though and we won't download them in this example. For instance,
References - 2020-A (July 7, 2020) for Human reference (GRCh38) is 11 GB in size and
contains files we do not need for this vignette. If you did have the file locally, you could use
the following code to read in the GTF file prepared by 10x Genomics and add the information
into your spe object that SpatialExperiment::read10xVisium() does not include

For example, in our computing cluster this GTF file is located at the following path and is
1.4 GB in size:

$ cd /dcs04/lieber/lcolladotor/annotationFiles_LIBD001/10x/refdata-gex-GRCh38-2020-A
$ du -sh --apparent-size genes/genes.gtf
1.4G genes/genes.gtf

If you have the GTF file from 10x Genomics, we show next how you can read the information
into R, match it appropriately with the information in the spe object and add it back into
the spe object.

You could:

x download the 11 GB file from

https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-2020-A.tar.gz
x decompress it

Read in the gene information from the annotation GTF file provided by 10x
gtf <-
rtracklayer: :import(
"/path/to/refdata-gex-GRCh38-2020-A/genes/genes.gtf"

Subject to genes only
gtf <- gtf[gtf$type == "gene"]

Set the names to be the gene IDs
names (gtf) <- gtf$gene_id

Match the genes
match_genes <- match(rownames(spe), gtf$gene_id)

They should all be present if you are using the correct GTF file from 10x

https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest
https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest
https://support.10xgenomics.com/single-cell-gene-expression/software/release-notes/build
https://support.10xgenomics.com/single-cell-gene-expression/software/release-notes/build

Using spatialLIBD with 10x Genomics public datasets

3.1.2

stopifnot(all('is.na(match_genes)))

Keep only some columns from the gtf (you could keep all of them if you want)
mcols(gtf) <-
mcols(gtf)[, c(
"source",
“type",
"gene_id",
"gene_version",
"gene_name",
"gene_type"
)]

Add the gene info to our SPE object
rowRanges (spe) <- gtf[match_genes]

Inspect the gene annotation data we added
rowRanges (spe)

From Gencode

In this vignette, we'll use the GTF file from Gencode v32. That's because the build
notes from References - 2020-A (July 7, 2020) and Human reference, GRCh38 (GEN-
CODE v32/Ensembl 98) at https://support.10xgenomics.com /single-cell-gene-expression/
software/release-notes/build#GRCh38_2020A show that 10x Genomics used Gencode v32.
They also used Ensembl version 98 which is why a few genes we have in our object are
going to be missing. We show next how you can read the information into R, match it
appropriately with the information in the spe object and add it back into the spe object.

Download the Gencode v32 GTF file and cache it
gtf_cache <- BiocFileCache: :bfcrpath(
bfc,
paste0 (
"ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/",
"release_32/gencode.v32.annotation.gtf.gz"

Show the GTF cache location

gtf_cache

#> |
#> "/Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/425b635f3f8e_gencode.v32.annotation.gtf

Import into R (takes ~1 min)
gtf <- rtracklayer::import(gtf_cache)

Subset to genes only
gtf <- gtf[gtfstype == "gene"]

Remove the .x part of the gene IDs
gtfégene_id <- gsub("\\..x", "", gtf$gene_id)

https://support.10xgenomics.com/single-cell-gene-expression/software/release-notes/build#GRCh38_2020A
https://support.10xgenomics.com/single-cell-gene-expression/software/release-notes/build#GRCh38_2020A

Using spatialLIBD with 10x Genomics public datasets

Set the names to be the gene IDs
names (gtf) <- gtf$gene_id

Match the genes
match_genes <- match(rownames(spe), gtf$gene_id)
table(is.na(match_genes))

#>

#> FALSE TRUE
#> 36572 29

Drop the few genes for which we don't have information
spe <- spe[!is.na(match_genes), 1
match_genes <- match_genes[!is.na(match_genes)]

Keep only some columns from the gtf

mcols(gtf) <- mcols(gtf)[, c("source", "type", "gene_id", "gene_name", "gene_type")]

Add the gene info to our SPE object
rowRanges (spe) <- gtf[match_genes]

Inspect the gene annotation data we added
rowRanges (spe)
#> GRanges object with 36572 ranges and 5 metadata columns:

ENSG0O0000243485
ENSG0O0000237613
ENSG0O0000186092
ENSGOO000238009
ENSGOO000239945

ENSG00000212907
ENSGO0000198886
ENSGOO000198786
ENSGOOO00198695
ENSGOOO00198727

ENSG0O0000243485
ENSG0O0000237613
ENSGOO000186092
ENSG0O0000238009
ENSG00000239945

ENSGO0000212907
ENSGOOO00198886
ENSGO0000198786
ENSGO0000198695
ENSGO0000198727

segnames ranges strand | source type
<Rle> <IRanges> <Rle> | <factor> <factor>
chrl 29554-31109 + | HAVANA gene
chrl 34554-36081 - | HAVANA gene
chrl 65419-71585 + | HAVANA gene
chrl 89295-133723 - HAVANA gene
chrl 89551-91105 [HAVANA gene
chrM 10470-10766 + | ENSEMBL gene
chrM 10760-12137 + | ENSEMBL gene
chrM 12337-14148 + | ENSEMBL gene
chrM 14149-14673 - | ENSEMBL gene
chrM 14747-15887 + | ENSEMBL gene
gene_id gene_name gene_type
<character> <character> <character>
ENSG00000243485 MIR1302-2HG UncRNA
ENSG00000237613 FAM138A LncRNA
ENSGO0000186092 OR4F5 protein_coding
ENSG0O0000238009 AL627309.1 LncRNA
ENSG00000239945 AL627309.3 LncRNA
ENSGO0000212907 MT-ND4L protein_coding
ENSGOOO00198886 MT-ND4 protein_coding
ENSGOO000198786 MT-ND5 protein_coding
ENSGOOO00198695 MT-ND6 protein_coding
ENSGOO000198727 MT-CYB protein_coding

10

Using spatialLIBD with 10x Genomics public datasets

3.1.3

3.2

#> seqinfo: 25 sequences from an unspecified genome; no seqlengths

Enable a friendlier gene search

Regardless of which method you used to obtain the gene annotation information, we can now
proceed by adding the gene symbol and gene ID information that helps users search for genes
in the shiny app produced by spatialLIBD. This will enable users to search genes by gene
symbol or gene ID. If you didn't do this, users would only be able to search genes by gene ID
which makes the web application harder to use.

We also compute the total expression for the mitochondrial chromosome (chrM) as well as
the ratio of chrM expression. Both of these continuous variables are interesting to explore and
in some situations could be useful for biological interpretations. For instance, in our pilot data
(Maynard, Collado-Torres, Weber, et al., 2021), we noticed that the expr_chrM_ratio was
associated to DLPFC layers. That is, spots with high expr_chrM_ratio were not randomly
located in our Visium slides.

Add information used by spatiallIBD
rowData(spe)$gene_search <- paste0(
rowData(spe)$gene_name, "; ", rowData(spe)$gene_id

Compute chrM expression and chrM expression ratio

is_mito <- which(segnames(spe) == "chrM")

spe$expr_chrM <- colSums(counts(spe)[is_mito, , drop = FALSE])
spe$expr_chrM_ratio <- spe$expr_chrM / spe$sum_umi

Filter the spe object

We can now continue with some filtering steps since this can help reduce the object size in
memory as well as make it ready to use for downstream processing tools such as those from
the scran and scuttle packages. Though these steps are not absolutely necessary.

Remove genes with no data
no_expr <- which(rowSums(counts(spe)) == 0)

Number of genes with no counts
length(no_expr)
#> [1] 11397

Compute the percent of genes with no counts
length(no_expr) / nrow(spe) * 100

#> [1] 31.16318

spe <- spe[-no_expr, , drop = FALSE]

Remove spots without counts

summary (spe$sum_umi)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 23 15917 20239 20738 25252 54931

If we had spots with no counts, we would remove them

11

https://bioconductor.org/packages/3.15/scran
https://bioconductor.org/packages/3.15/scuttle

Using spatialLIBD with 10x Genomics public datasets

3.3

if (any(spe$sum_umi == 0)) {
spots_no_counts <- which(spe$sum_umi == 0)
Number of spots with no counts
print(length(spots_no_counts))
Percent of spots with no counts
print(length(spots_no_counts) / ncol(spe) * 100)
spe <- spe[, -spots_no_counts, drop = FALSE]

Check object

Next, we add the ManualAnnotation variable to the sample information table (colbata())
with "NA". That variable is used by the interactive website to store any manual annotations.

Add a variable for saving the manual annotations
spe$ManualAnnotation <- "NA"

Finally, we can now check the final object using spatialLIBD: :check_spe(). This is a helper
function that will warn us if some important element is missing in spe that we use later for
the interactive website. If it all goes well, it will return the original spe object.

Check the final dimensions and object size
dim(spe)

#> [1] 25175 4035

lobstr::obj_size(spe) / 1024°2 ## Convert to MB
#> 283.9554 B

Run check_spe() function
check_spe(spe)

#> class: SpatialExperiment
#> dim: 25175 4035

#> metadata(0):

#> assays(1): counts

#> rownames(25175): ENSGOOO00238009 ENSGOOOO0241860 ... ENSGOOOOO198695
#> ENSGO0000198727
#> rowData names(6): source type ... gene_type gene_search

#> colnames (4035): AAACAAGTATCTCCCA-1 AAACAATCTACTAGCA-1 ...

#> TTGTTTGTATTACACG-1 TTGTTTGTGTAAATTC-1

#> colData names(10): in_tissue array_row ... expr_chrM_ratio

#> ManualAnnotation

#> reducedDimNames (0) :

#> mainExpName: NULL

#> altExpNames (0) :

#> spatialCoords names(2) : pxl_col_in_fullres pxl_row_in_fullres
#> imgData names(4): sample_id image_id data scaleFactor

12

Using spatialLIBD with 10x Genomics public datasets

Explore the data

With our complete spe object, we can now use spatiallLIBD for visualizing our data. We can
do so using functions such as vis_gene() and vis_clus() that are described in more detail
at the Introduction to spatialLIBD vignette available through GitHub or Bioconductor.

Example visualizations. Let's start with a continuous variable.
spatialLIBD: :vis_gene(

spe = spe,
sampleid = "Llymph",
geneid = "sum_umi",
assayname = "“counts”

lymph sum_umi

min >0

We next create a random cluster label to visualize
set.seed(20210428)
spe$random_cluster <- sample(1l:7, ncol(spe), replace = TRUE)

Next we visualize that random cluster
spatialLIBD::vis_clus(

spe = spe,
sampleid = "Llymph",
clustervar = "random_cluster"

13

https://bioconductor.org/packages/3.15/spatialLIBD
http://research.libd.org/spatialLIBD/articles/spatialLIBD.html
https://bioconductor.org/packages/spatialLIBD

Using spatialLIBD with 10x Genomics public datasets

4.1

lymph

~NoO O~ WNE

Run the interactive website

We are now ready to create our interactive website for the human lymph node data. The in-
teractive website is a shiny web application that uses plot/y to power several of the interactive
features. We can create the interactive website using the spatialLIBD::run_app() function.

The

default arguments of that function are customized for the data from our initial study

(Maynard, Collado-Torres, Weber, et al., 2021), so we will need to make some adjustments:

sce_layer, modeling_results and sig_genes will be set to NULL since do not have any
pseudo-bulk results for this example data.

title: we will use a custom title that reflect our data

spe_discreate_vars: we don't have really any discrete variables to show beyond Manu
alAnnotation which is used for the manual annotations and random_cluster that we
created in the previous section.

spe_continous_vars: we have computed several continuous variables while adapting
our spe object for spatialLIBD, so we'll list these variables below in order to visually
inspect them.

default_cluster: this is used for indicating the default discrete variable and for now
we'll set it to our random_cluster

Run our shiny app
if (interactive()) {

run_app (
spe,
sce_layer = NULL,
modeling_results = NULL,
sig_genes = NULL,
title = "spatialLIBD: human lymph node by 10x Genomics",

spe_discrete_vars = c("random_cluster", "ManualAnnotation"),
spe_continuous_vars = c("sum_umi", "sum_gene", "expr_chrM", "expr_chrM_ratio"),
default_cluster = "random_ cluster"

14

https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=plotly
https://bioconductor.org/packages/3.15/spatialLIBD

Using spatialLIBD with 10x Genomics public datasets

We also recommend creating custom website documentation files as described in the doc-
umentation of spatialLIBD::run_app(). Those documentation files will help you describe
your project to your users in a more personalized way. The easiest way to start is to copy our
documentation files to a new location and adapt them. You can locate them at the following
path.

Locate our documentation files
docs_path <- system.file("app", "
docs_path

#> [1] "“/Library/Frameworks/R. framework/Versions/4.2-arm64/Resources/library/spatiallLIBD/app/www"
list.files(docs_path)

#> [1] "documentation_sce_layer.md" "documentation_spe.md"

#> [3] "favicon.ico" "footer.html"

#> [5] "README.md"

www", package = "spatiallLIBD")

5 Wrapper functions

To facilitate reading in the data and preparing it to visualize it interactively using spatial
LIBD::run_app(), we implemented read10xVisiumWrapper () which expands SpatialExperi
ment::readl0xVisium() and performs the steps described in this vignette. In this example,
we'll load all four images created by SpaceRanger: lowres, hires, detected, and aligned. That
way we can toggle between them on the web application.

Import the data as a SpatialExperiment object
spe_wrapper <- readlOxVisiumWrapper (
samples = file.path(tempdir(), "outs"),
sample_id = "Llymph",
type = "sparse", data = "filtered",
images = c("lowres", "hires", "detected", "aligned"), load = TRUE,
reference_gtf = gtf_cache

#> 2022-03-30 18:13:02 SpatialExperiment::readl@xVisium: reading basic data from SpaceRanger
#> 2022-03-30 18:13:09 readlOxVisiumAnalysis: reading analysis output from SpaceRanger
#> 2022-03-30 18:13:10 addlOxVisiumAnalysis: adding analysis output from SpaceRanger
#> 2022-03-30 18:13:10 rtracklayer::import: reading the reference GTF file

#> 2022-03-30 18:13:30 adding gene information to the SPE object

#> Warning: Gene IDs did not match. This typically happens when you are not using

#> the same GTF file as the one that was used by SpaceRanger. For example, one file

#> uses GENCODE IDs and the other one ENSEMBL IDs. readlOxVisiumWrapper() will try

#> to convert them to ENSEMBL IDs.

#> Warning: Dropping 29 out of 36601 genes for which we don't have information on

#> the reference GTF file. This typically happens when you are not using the same

#> GTF file as the one that was used by SpaceRanger.

#> 2022-03-30 18:13:30 adding information used by spatiallIBD

Run our shiny app
if (interactive()) {

vars <- colnames(colData(spe_wrapper))

run_app (

15

Using spatialLIBD with 10x Genomics public datasets

spe_wrapper,
sce_layer = NULL,

modeling_results = NULL,

sig_genes = NULL,

title = "spatialLIBD: human lymph node by 10x Genomics (made with wrapper)",
spe_discrete_vars = c(vars[grep("10x_", vars)], "ManualAnnotation"),
spe_continuous_vars = c("sum_umi", "sum_gene", "expr_chrM", "expr_chrM_ratio"),
default_cluster = "10x _graphclust"

6 Publishing your web application

Now we have have our spe_wrapper object and have verified that the web application works,
we can share it with others through shinyapps.io by RStudio if our data is small enough. To
do, you will need to:

= create a directory app_dir which will contain the script for loading the data and running
the web application

= save the spe_wrapper object into that directory such as app_dir/spe_wrapper.rds

= create an app.R script and save it at app_dir/app.R

= optionally copy the contents from system.file("app", "www", package = "spatial
LIBD") into app_dir/www

= authenticate to shinyapps.io and deploy the app, which we usually do with a
app_dir/deploy.R script

Below we illustrate these steps

Directory we created to host the data for the web application

Use a directory of your preference instead of copy-pasting this code
app_dir <- here::here("inst", "spe_wrapper_app")

dir.create(app_dir, showWarnings = FALSE)

Code we used to save the data
saveRDS (spe_wrapper, file = file.path(app_dir, "spe wrapper.rds"))

Copy the contents of system.file("app", "www", package = "spatiallLIBD")
file.copy(system.file("app", "www", package = "spatialLIBD"), app_dir, recursive = TRUE)
Manually edit them to your liking.

Next, create an app_dir/app.R script with these contents.
#> library("spatialLIBD")
#> library("markdown") ## due to a shinyapps.io bug

#> ## spatialLIBD uses golem
#> options("golem.app.prod" = TRUE)

#> ## You need this to enable shinyapps to install Bioconductor packages
#> options(repos = BiocManager::repositories())

16

https://www.shinyapps.io/
https://www.shinyapps.io/

Using spatialLIBD with 10x Genomics public datasets

#> ## Load the data (all paths are relative to this script’s location)
#> spe_wrapper <- readRDS("spe_wrapper.rds")
#> wvars <- colnames(colData(spe_wrapper))

#>

#> ## Deploy the website

#> run_app(

#> spe_wrapper,

#> sce_layer = NULL,

#> modeling_results = NULL,

#> sig_genes = NULL,

#> title = "spatiallLIBD: human lymph node by 10x Genomics",

#> spe_discrete_vars = c(vars[grep("10x_", vars)], "ManualAnnotation"),
#> spe_continuous_vars = c("sum_umi", "sum_gene", "expr_chrM", "expr_chrM_ratio"),
#> default_cluster = "10x_graphclust",

#> docs_path = "www"

#>)

Next create an app_dir/deploy.R script with these contents. You will need to login to your
shinyapps.io account to get the exact authentication details for your access token.

#> library("rsconnect")

#>

#> ## Locate app_dir. Edit as needed

#> app_dir <- here::here("inst", "spe_wrapper_app")
#>

#> ## Or you can go to your shinyapps.io account and copy this
#> ## Here we do this to keep our information hidden.
#> Tload(file.path(app_dir, ".deploy_info.Rdata"), verbose = TRUE)

#> ## Authenticate to shinyapps.io
#> rsconnect: :setAccountInfo(

#> name = deploy_info$name,

#> token = deploy_info$token,
#> secret = deploy_info$secret
#>)

#>

#> ## You need this to enable shinyapps to install Bioconductor packages
#> options(repos = BiocManager::repositories())

#> ## Deploy the app, that is, upload it to shinyapps.io

#> ## Note that appFiles has to be relative to app_dir.

#> ## Drop the www directory if you didn’t customize the documentation files and
#> ## edit app.R accordingly.

#> rsconnect: :deployApp(

#> appDir = app_dir,

#> appFiles = c(

#> "app.R",

#> "spe_wrapper.rds",

#> gsub(file.path(app_dir, "www"), "www", dir(file.path(app_dir, "www"), full.names = TRUE))
#>) 5

#> appName = "spatialLIBD_Human_Lymph_Node_10x",

17

https://www.shinyapps.io/

Using spatialLIBD with 10x Genomics public datasets

#> account = "libd",
#> server = "shinyapps.io"
#>)

Next, you should test that app_dir/app.R works locally before running app_dir/deploy.R.

You'll end up with a website just like this one. In our case, we further configured our website
through the shinyapps.io dashboard. We selected the following options:

= General Instance Size: 3X-Large (8GB)

= Advanced Max Worker Processes: 1. Setting this to one helps reduce the memory
burden.

= Advanced Max Connections: 15. You don't want Max Worker Processes multiplied by
Max Connections and the object memory to exceed the Instance Size. So this this
value to 8 / (lobstr::obj_size(spe_wrapper) / 1024”73) or lower.

= Advanced Startup Timeout: 300. This one is important otherwise your app might
error out before even loading since the default is 5 seconds, which is typically too short.

= Advanced Idle Timeout: 60. This is useful since you might want to give users as much
time for their manual annotations as possible.

Limitations

7.1

spatialLIBD::run_app() has limitations that are inherent to the methods used to implement
it, such as:

1. the memory per user required by a server for hosting the web application,

2. response speeds for the interactive views due to the number of spots,

3. the resolution of the images displayed limiting the usefulness to magnify specific spots,
4. and customization of the web application by the end user.

Memory

Regarding the memory limitation, you can estimate how much memory you need per user by
considering the memory required for the spe and sce_layer objects.

lobstr::obj_size(spe) / 1024°2 ## Convert to MB
#> 283.9709 B

In our pilot data (Maynard, Collado-Torres, Weber, et al., 2021) our object uses about 2.1 GB
of RAM since it contains the data for 12 Visium slides and we considered using about 3 GB of
RAM per user. You could filter the genes more aggressively to drop lowly expressed genes or
if you have many Visium slides, you could consider making multiple websites for different sets
of slides. You could also have multiple mirrors to support several users, though in that case,
we recommend linking users to a stable website instead of one that might not be available if
you have too many users: for us our stable website is http://research.libd.org/spatialLIBD/
which includes the links to all the mirrors.

Given these memory limitations, we chose to deploy our main web application at http://
spatial.libd.org/spatialLIBD/ using an Amazon EC2 instance: an ‘r5.4xlarge’ EC2 instance
with 16 vCPUs, 128 GB DRAM, 10 Gb max network, 1.008 USD/Hour. We also have
deployed mirrors at https://www.shinyapps.io/ using the “3X-Large (8 GB)" instances they
provide.

18

https://libd.shinyapps.io/spatialLIBD_Human_Lymph_Node_10x/
http://research.libd.org/spatialLIBD/
http://spatial.libd.org/spatialLIBD/
http://spatial.libd.org/spatialLIBD/
https://www.shinyapps.io/

Using spatialLIBD with 10x Genomics public datasets

7.2

7.3

7.4

Response speeds

This limitation is mostly due to the number of spots shown under the “clusters (interactive)
section of the interactive website powered by plotly. Each spot is shown four times which
is about 16 thousand spots for one Visium slide (depending on any filter steps you applied).
The response time will depend on your own computer RAM memory, that is, the client side.
This limitation might be more noticeable if you have a computer with 8GB of RAM or lower,
as well as if you have other high-memory software open. Furthermore, if you are running
web application locally through spatialLIBD::run_app() then you also need to consider the
required memory for the R objects. That is, the server side memory use.

Thanks to Jesiis Vélez Santiago, the app is more responsive as of version 1.3.15 by using
plotly::toWebGL().

Image resolution

When you construct the SpatialExperiment spe object with SpatialExperiment, you can read
in higher resolution images. However, the benefit of loading the raw histology images (500
MB to 20 GB per image) is likely non-existent in this web application. The memory required
would likely become prohibitive. Other solutions load these raw histology images in chunks
and display the chunks necessary for a given visualization area. We thus recommend using
other software if you want to zoom in at the spot and/or cell resolution.

Customization

While the documentation, title, icon and HTML footer are all customizable at spatial
LIBD::run_app(), ultimately the panels shown are not unless you fork and adapt the internal
code of this package. Thus, the interactive web applications powered by spatialL/IBD are not
as easy to customize as say iSEE web applications are. We think of our web application as
a good enough prototype that can be useful for initial explorations of 10x Genomics Visium
data. We welcome additions to our code, though we recognize that you might want to build
your own production-level solution.

Reproducibility

The spatialLIBD package (Pardo, Spangler, Weber, et al., 2021) was made possible thanks
to:

= R (R Core Team, 2022)

= BiocFileCache (Shepherd and Morgan, 2022)

= BiocStyle (Oles, 2021)

= knitr (Xie, 2022)

= Jobstr (Wickham, 2019)

= RefManageR (McLean, 2017)

= rmarkdown (Allaire, Xie, McPherson, Luraschi, Ushey, Atkins, Wickham, Cheng,
Chang, and lannone, 2022)

= rtracklayer (Lawrence, Gentleman, and Carey, 2009)

= sessioninfo (Wickham, Chang, Flight, Miiller, and Hester, 2021)

= SpatialExperiment (Righelli, Risso, Crowell, and Weber, 2022)

= testthat (Wickham, 2011)

19

https://CRAN.R-project.org/package=plotly
http://orcid.org/0000-0001-5128-3838
https://bioconductor.org/packages/3.15/SpatialExperiment
https://bioconductor.org/packages/3.15/spatialLIBD
https://bioconductor.org/packages/3.15/iSEE
https://bioconductor.org/packages/3.15/spatialLIBD
https://bioconductor.org/packages/3.15/BiocFileCache
https://bioconductor.org/packages/3.15/BiocStyle
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=lobstr
https://CRAN.R-project.org/package=RefManageR
https://CRAN.R-project.org/package=rmarkdown
https://bioconductor.org/packages/3.15/rtracklayer
https://CRAN.R-project.org/package=sessioninfo
https://bioconductor.org/packages/3.15/SpatialExperiment
https://CRAN.R-project.org/package=testthat

Using spatialLIBD with 10x Genomics public datasets

This package was developed using biocthis.
Code for creating the vignette

Create the vignette
library("rmarkdown")
system.time(render("TenX data_download.Rmd", "BiocStyle::html _document"))

Extract the R code

library("knitr")
knit("TenX_data_download.Rmd", tangle = TRUE)
Date the vignette was generated.

#> [1] "2022-03-30 18:13:32 CST"

Wallclock time spent generating the vignette.

#> Time difference of 1.195 mins

R session information.

#> - SeSSI10N INTO - ---mm oo oo
#> setting value
#> version R Under development (unstable) (2022-02-28 r81833)

#> o0s mac0S Monterey 12.2.1
#> system aarch64, darwin20
#> ui X11

#> Tlanguage (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8

#> tz America/Mexico_City

#> date 2022-03-30

#> pandoc 2.17.1.1 @ /opt/homebrew/bin/ (via rmarkdown)

#>

I - Tol = Lo [e e
#> package * version date (UTC) lib source

#> AnnotationDbi 1.57.1 2021-10-29 [1] Bioconductor

.30.16 2021-06-15 [1] CRAN (R 4.2.0)
.13.0 2021-10-26 [1] Bioconductor
.29.18 2022-03-21 [1] Bioconductor
.11.0 2021-10-26 [1] Bioconductor

#> BiocManager

#> BiocNeighbors
#> BiocParallel
#> BiocSingular

#> AnnotationHub 3.3.9 2022-02-28 [1] Bioconductor
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.2.0)
#> attempt 0.3.1 2020-05-03 [1] CRAN (R 4.2.0)
#> beachmat 2.11.0 2021-10-26 [1] Bioconductor
#> beeswarm 0.4.0 2021-06-01 [1] CRAN (R 4.2.0)
#> benchmarkme 1.0.7 2021-03-21 [1] CRAN (R 4.2.0)
#> benchmarkmeData 1.0.4 2020-04-23 [1] CRAN (R 4.2.0)
#> Biobase * 2.55.0 2021-10-26 [1] Bioconductor
#> BiocFileCache * 2.3.4 2022-01-20 [1] Bioconductor
#> BiocGenerics * 0.41.2 2021-11-15 [1] Bioconductor
#> BiocIO 1.5.0 2021-10-26 [1] Bioconductor

1

1

1

1

20

https://bioconductor.org/packages/3.15/biocthis

Using spatialLIBD with 10x Genomics public datasets

BiocStyle
BiocVersion
Biostrings
bit

bit64

bitops

blob
bookdown
brio

bslib

cachem

cli
codetools
colorout
colorspace
config
cowplot
crayon

curl
data.table
DBI

dbplyr
DelayedArray
DelayedMatrixStats
desc

digest
doParallel
dotCall6ed
dplyr

dqrng
DropletUtils
DT

edgeR
ellipsis
evaluate
ExperimentHub
fansi

farver
fastmap
fields
filelock
foreach

fs

generics
GenomeInfoDb
GenomeInfoDbData
GenomicAlignments
GenomicRanges
ggbeeswarm
ggplot2
ggrepel

2231l
.15.2
.63.3
.0.4
.0.5
.0-7
020l

.25

0lkod
a3l
.0.6
0200
.2-18
.2-2

.0-3
a3l
adlodl
0Dl
0302

.14.2
adlo

adlodl
02002
.17.0
4.1
.6.29
.0.17
.0-1
.0.8
.3.0
013, 2
.22

o371l
NS,

.15

2 3ed
.0.3
adlo®
adlo®
13.3

:®.2

0ol

0ol

adlo?

.31.6
0207
03l o 2
.47.6
.6.0
0 3a3
NORI!

F NP NOOWOFRFOFFHFOFRFMFEFONRKFRR_APEPFPONFFOWROFHFOREERBANWN

O WO KR KREKKREREODR L -

2021-12-17
2022-03-29
2022-03-29
2020-08-04
2020-08-30
2021-04-24
2021-07-23
2022-03-16
2021-11-30
2021-10-06
2021-08-19
2022-02-14
2020-11-04
2022-03-01
2022-02-21
2020-12-17
2020-12-30
2022-03-26
2021-06-23
2021-09-27
2021-12-20
2021-04-06
2021-11-16
2021-10-26
2022-03-06
2021-12-01
2022-02-07
2021-02-11
2022-02-08
2021-05-01
2021-11-08
2022-03-28
2022-03-16
2021-04-29
2022-02-18
2022-01-20
2022-03-24
2021-02-28
2021-01-25
2021-10-30
2018-10-05
2022-02-02
2021-12-08
2022-01-31
2022-03-16
2022-03-02
2021-11-05
2022-01-12
2017-08-07
2021-06-25
2021-01-15

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

Bioconductor
Bioconductor
Bioconductor
CRAN (R 4.2.
CRAN (
CRAN (
CRAN (
CRAN (
CRAN (
CRAN (
CRAN (
CRAN (
CRAN (
b
(
(
(
(
(
(
(

N NN NNNNDNN
[clclolololol ol ool

.0)

B S TG S T T S W~ ~ N S -

Githu
CRAN
CRAN
CRAN
CRAN
CRAN
CRAN
CRAN
CRAN (R 4.2.
Bioconductor
Bioconductor
CRAN (R 4.2
CRAN (
CRAN (
CRAN (
CRAN (
CRAN (R 4.2.
Bioconductor
CRAN (R 4.2.0)
Bioconductor
CRAN (R 4.2.0)
CRAN (R 4.2.0)
Bioconductor
CRAN (R 4.2.
CRAN (
CRAN (
CRAN (
(
(
(

(
2 2:0)
.0

B SN T N S N Y
N N NDNDNDDN

© © © O O o

)
)
)
)
)
)
)

A~ B B b
N N NN
[cl ol oo o)

CRAN
CRAN
CRAN
CRAN (R 4.2.
Bioconductor
Bioconductor
Bioconductor
Bioconductor
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)

B S
N N NDNNDN
[cl ool ool ool o)

jalvesaq/colorout@79931fd)

21

Using spatialLIBD with 10x Genomics public datasets

glue

golem
grideExtra
gtable
HDF5Array
htmltools
htmlwidgets
httpuv

httr
interactiveDisplayBase
IRanges
irlba
iterators
jquerylib
jsonlite
KEGGREST
knitr
labeling
later
lattice
lazyeval
lifecycle
limma
lobstr
locfit
lubridate
magick
magrittr
maps

Matrix
MatrixGenerics
matrixStats
memoise
mime
munsell
pillar
pkgconfig
pkgload
plotly

plyr

png
Polychrome
promises
purrr
R.methodsS3
R.o00
R.utils

R6

rappdirs
RColorBrewer
Rcpp

F P ®ONNRKFRROHRHKERORAMAMRNROONOHKREKEWNNIERRRWROOHOKREREEORNNRRREREROORKREOONO®

w o
N N

0232
oY,
.5.4
.6.5
.4.2
330
2291
0363
.0.14
.1.4
.8.0
.35.0
.38
4.2
ASH0
.20-45
020l
.0.1
1.5
adbodl
.5-9.5
.8.0
ol o3
.0.3
.4.0
.4-1
/A0
.61.0
.0.1
0 dl2
5RO
/A0
.0.3
.2.4
.10.0
n&o 7
.1-7
a3l
0 2.0 1
.3.4
&l
.24.0
0
a3l
3.3
.1-2
.0.8.3

2022-02-24
2022-03-04
2017-09-09
2019-03-25
2021-11-15
2021-08-25
2021-09-08
2022-01-05
2020-07-20
2021-10-26
2021-11-16
2021-12-06
2022-02-05
2021-04-26
2022-02-22
2021-10-26
2022-03-25
2020-10-20
2021-08-18
2021-09-22
2019-03-15
2021-09-24
2022-02-17
2019-07-02
2022-03-03
2021-10-07
2021-08-18
2022-03-30
2021-09-25
2022-03-23
2021-10-26
2021-09-17
2021-11-26
2021-09-28
2018-06-12
2022-02-01
2019-09-22
2021-11-30
2021-10-09
2022-03-24
2013-12-03
2021-07-16
2021-02-11
2020-04-17
2020-08-26
2020-08-26
2021-09-26
2021-08-19
2021-01-31
2014-12-07
2022-03-17

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
Bioconductor
CRAN (R 4.2.0
CRAN (R 4.2.0
CRAN (R 4.2.0
CRAN (R 4.2.0
Bioconductor
Bioconductor
CRAN (R 4.2.0)
CRAN (R 4.2.0)

)

)

)
)
)
)

CRAN (R 4.2.0
CRAN (R 4.2.0
Bioconductor
CRAN (R 4.2.
CRAN (
CRAN (
CRAN (
CRAN (
CRAN (R 4.
Bioconduct
CRAN (R 4.
CRAN (
CRAN (
CRAN (

(

(

A A DD

© ©O © 0O O o

r

CRAN
CRAN
CRAN (R 4.
Bioconduct
CRAN
CRAN
CRAN
CRAN
CRAN
CRAN
CRAN
CRAN
CRAN
CRAN
CRAN
CRAN
CRAN
CRAN
CRAN
CRAN
CRAN
CRAN
CRAN
CRAN

A~ B b D
[cl oo oNoMNoNO]

r

X X
SN

N NN NNNDNNNDNNNDNNDNDNNDNDNDNONNDNDNNINDNNDNNDNONNDNNNN

T X X XWXV XWX X XXX XX XI XWX XHOWXIWIOD
B I T - T - T~ N - S i S e S T T~ -
[clcololNoNoNoNoNoNolNolNolNoNolNolNolN oMol ool ol

22

Using spatialLIBD with 10x Genomics public datasets

RCurl
RefManageR
restfulr
rhdf5
rhdf5filters
Rhdf51ib
rjson

rlang
rmarkdown
roxygen2
rprojroot
Rsamtools
RSQLite
rstudioapi
rsvd
rtracklayer
S4Vectors
sass
ScaledMatrix
scales
scater
scatterplot3d
scuttle
sessioninfo
shiny
shinyWidgets
SingleCellExperiment
spam
sparseMatrixStats
SpatialExperiment
spatialLIBD
stringi
stringr
SummarizedExperiment
testthat
tibble

tidyr
tidyselect
usethis

utf8

vctrs

vipor
viridis
viridisLite
withr

xfun

XML

xml2

xtable
XVector

yaml

NoOFrRF PR WONOOOOH NFFWWRFRFFRFFRFPFRPFRFFEFNFFORFFEFEFREORFEEFOOKFEFONMNMNDINNDIN-SNNROOERERENOGRELR

.98-1.6
BSH0
.0.13
BSON6!
/A0
7/ o3
02020
.0.2
0 L3}
adboZ
.0.2
.11.0
020
.13
.0.5
.55.4
.33.15
4.1
ASH0
adlodl
.23.6
.3-41
031
020
ol ol
.6.4
0dl7/ o 2
.8-0
.7.0
.5.4
.7.14
.7.6

2553

U DO DRBPANRRNR R
OO N UONUVUNOO W

w
(o)

.99-0.9
233
.8-4
.35.0
036D

2022-02-08
2020-11-13
2017-08-06
2022-03-09
2021-10-26
2022-01-31
2022-01-09
2022-03-04
2022-03-10
2021-09-08
2020-11-15
2021-10-27
2022-03-23
2020-11-12
2021-04-16
2022-03-23
2022-03-28
2022-03-23
2021-10-26
2020-05-11
2022-03-15
2018-03-14
2022-03-15
2021-12-06
2021-10-02
2022-02-06
2021-11-18
2022-01-06
2021-10-26
2022-03-11
2022-03-31
2021-11-29
2019-02-10
2021-12-08
2022-03-29
2021-11-07
2022-02-01
2022-02-21
2021-12-09
2021-07-24
2022-03-30
2017-03-22
2021-10-13
2021-04-13
2022-03-03
2022-03-02
2022-02-24
2021-11-30
2019-04-21
2021-10-26
2022-02-21

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
Bioconductor
Bioconductor
Bioconductor
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
Bioconductor
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
Bioconductor
Bioconductor
CRAN (R 4.2.0)
Bioconductor
CRAN (R 4.2.0)
Bioconductor
CRAN (R 4.2.0)
Bioconductor
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
Bioconductor
CRAN (R 4.2.0)
Bioconductor
Bioconductor

Github (LieberInstitute/spatiallLIBD@l54a594)

CRAN (R 4.2.0)
CRAN (R 4.2.0)

Bioconductor

CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
CRAN (R 4.2.0)
Bioconductor

CRAN (R 4.2.0)

23

Using spatialLIBD with 10x Genomics public datasets

#> zlibbioc 1.41.0 2021-10-26 [1] Bioconductor

#>

#> [1] /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library

#>

e T e e e

9 Bibliography

This vignette was generated using BiocStyle (Ole$, 2021) with knitr (Xie, 2022) and rmark-
down (Allaire, Xie, McPherson, et al., 2022) running behind the scenes.

Citations made with RefManageR (McLean, 2017).

[1] J. Allaire, Y. Xie, J. McPherson, et al. rmarkdown: Dynamic Documents for R. R package
version 2.13. 2022. URL: https://github.com/rstudio/rmarkdown.

[2] M. Lawrence, R. Gentleman, and V. Carey. “rtracklayer: an R package for interfacing with
genome browsers”. In: Bioinformatics 25 (2009), pp. 1841-1842. DOI: 10.1093/bioinformat-
ics/btp328. URL: http://bioinformatics.oxfordjournals.org/content/25/14/1841.abstract.

[3] K. R. Maynard, L. Collado-Torres, L. M. Weber, et al. “Transcriptome-scale spatial gene
expression in the human dorsolateral prefrontal cortex”. In: Nature Neuroscience (2021).
DOI: 10.1038/s41593-020-00787-0. URL: https://www.nature.com/articles/s41593-020-
00787-0.

[4] M. W. McLean. “RefManageR: Import and Manage BibTeX and BibLaTeX References in
R". In: The Journal of Open Source Software (2017). DOI: 10.21105/joss.00338.

[5] A. Oles. BiocStyle: Standard styles for vignettes and other Bioconductor documents. R
package version 2.23.1. 2021. URL: https://github.com/Bioconductor/BiocStyle.

[6] B. Pardo, A. Spangler, L. M. Weber, et al. “spatialLIBD: an R/Bioconductor
package to visualize spatially-resolved transcriptomics data”. In: bioRxiv (2021). DOI:
10.1101/2021.04.29.440149. URL: https://www.biorxiv.org/content,/10.1101/2021.04.29.440149v1.

[7] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing. Vienna, Austria, 2022. URL: https://www.R-project.org/.

[8] D. Righelli, D. Risso, H. Crowell, et al. SpatialExperiment: S4 Class for Spa-
tially Resolved Transcriptomics Data. R package version 1.5.4. 2022. URL:
https://github.com/drighelli/SpatialExperiment.

[9] L. Shepherd and M. Morgan. BiocFileCache: Manage Files Across Sessions. R package
version 2.3.4. 2022.

[10] H. Wickham. lobstr: Visualize R Data Structures with Trees. R package version 1.1.1.
2019. URL: https://CRAN.R-project.org/package=lobstr.

[11] H. Wickham. “testthat: Get Started with Testing”. In: The R Journal 3 (2011), pp. 5-
10. URL: https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf.

[12] H. Wickham, W. Chang, R. Flight, et al. sessioninfo: R Session Information. R package
version 1.2.2. 2021. URL: https://CRAN.R-project.org/package=sessioninfo.

[13] Y. Xie. knitr: A General-Purpose Package for Dynamic Report Generation in R. R
package version 1.38. 2022. URL: https://yihui.org/knitr/.

24

https://bioconductor.org/packages/3.15/BiocStyle
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=RefManageR

	1 Basics
	1.1 Install spatialLIBD
	1.2 Required knowledge
	1.3 Citing spatialLIBD

	2 Download data from 10x Genomics
	2.1 Load packages
	2.2 Download spaceranger output files

	3 Modify spe for spatialLIBD
	3.1 Add gene annotation information
	3.2 Filter the spe object
	3.3 Check object

	4 Explore the data
	4.1 Run the interactive website

	5 Wrapper functions
	6 Publishing your web application
	7 Limitations
	7.1 Memory
	7.2 Response speeds
	7.3 Image resolution
	7.4 Customization

	8 Reproducibility
	9 Bibliography

