

**Figure S1. NP309-specific memory CD4**<sup>+</sup> **T lymphocytes have a CD127**<sup>hi</sup> **Sca1**<sup>hi</sup> **Bcl2**<sup>hi</sup> **phenotype. (A)** The representative dot plots show NP309 tetramer binding in CD44<sup>hi</sup> CD62L<sup>lo</sup> CD4<sup>+</sup> T lymphocytes from uninfected versus LCMV-infected mice while the bar graph indicates the number (mean  $\pm$  S.D.) of NP309-tetramer<sup>+</sup> cells in each group (n=5 mice). **(B)** Dot plots showing CD127 and Sca1 expression in the indicated cell populations as well as a bar graph depicting the frequency (mean  $\pm$  S.D.) of each subpopulation among the same populations are displayed (n=5 mice). **(C)** The representative dot plots show CD127, Sca1, and Bcl2 expression in the indicated cell populations from uninfected and LCMV-infected animals while the bar graph indicates the frequency (mean  $\pm$  S.D.) of Bcl2<sup>hi</sup> fraction among CD127<sup>hi</sup> Sca1<sup>hi</sup> cells from the same populations (n=3-4 mice). Data are representative of 2 independent experiments performed. \*\* p<0.01, \*\*\* p<0.001.

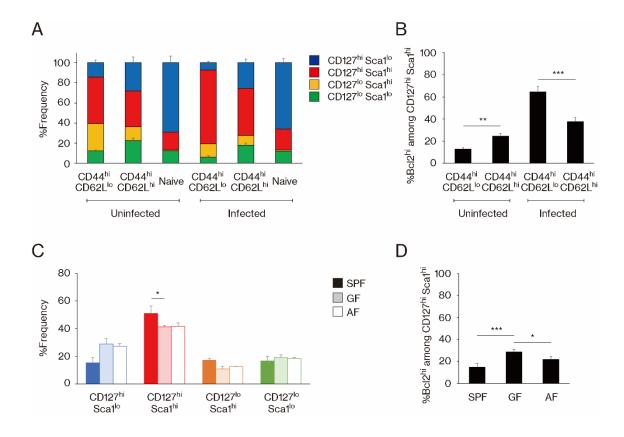



Figure S2. CD44<sup>hi</sup> CD62L<sup>hi</sup> CD4<sup>+</sup> T lymphocytes in uninfected SPF, GF, AF, and LCMV-infected mice. (A) The bar graph shows the frequency (mean  $\pm$  S.D.) of CD127<sup>hi</sup> Sca1<sup>lo</sup>, CD127<sup>hi</sup> Sca1<sup>hi</sup>, CD127<sup>lo</sup> Sca1<sup>hi</sup>, and CD127<sup>lo</sup> Sca1<sup>lo</sup> cells among the indicated CD4<sup>+</sup> T cell populations from uninfected SPF and infected mice (n=5 mice). (B) The bar graph indicates the Bcl2<sup>hi</sup> fraction (mean  $\pm$  S.D.) among CD127<sup>hi</sup> Sca1<sup>hi</sup> cells from CD44<sup>hi</sup> CD62L<sup>lo</sup> and CD44<sup>hi</sup> CD62L<sup>hi</sup> CD4<sup>+</sup> T cells in uninfected and LCMV-infected mice (n=3-4 mice). (C) The frequency (mean  $\pm$  S.D.) of the indicated subsets among total CD44<sup>hi</sup> CD62L<sup>hi</sup> CD4<sup>+</sup> T lymphocytes from SPF, GF, and AF mice (n=3-4 mice). (D) The Bcl2<sup>hi</sup> fraction (mean  $\pm$  S.D.) among CD127<sup>hi</sup> Sca1<sup>hi</sup> CD44<sup>hi</sup> CD62L<sup>hi</sup> CD4<sup>+</sup> T cells from SPF, GF, and AF animals (n=3-4 mice). Data are representative of 2 independent experiments performed. \* p<0.05, \*\*\* p<0.01, \*\*\*\* p<0.001.

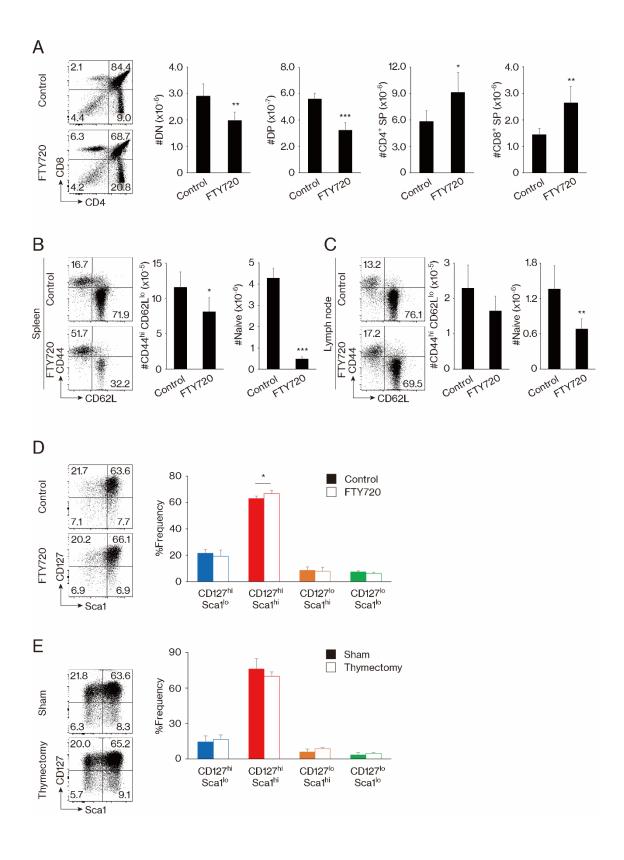



Figure S3. The four MP subpopulations in the periphery are maintained in the absence of thymic input. (A - D) Mice received FTY720 or control PBS and were

analyzed 2 weeks later. (A) Dot plots showing CD4 and CD8 expression in thymocytes from each group together with bar graphs indicating the number (mean  $\pm$  S.D.) of double-negative (DN), double-positive (DP), and CD4<sup>+</sup> and CD8<sup>+</sup> single-positive (SP) thymocytes (n=5 mice). (B, C) Dot plots displaying CD44 and CD62L expression in CD4<sup>+</sup> T lymphocytes in the (B) spleen and (C) lymph nodes as well as bar graphs depicting the number (mean  $\pm$  S.D.) of MP and naïve cells from each group (n=5 mice). (D) Dot plots showing CD127 and Sca1 levels in splenic MP CD4<sup>+</sup> T lymphocytes from each group and a bar graph indicating the frequency (mean  $\pm$  S.D.) of MP subpopulations among the total MP population (n=5 mice). Data are representative of 2 independent experiments. (E) Mice underwent adult-thymectomy or sham-operation and were analyzed for their MP T lymphocytes 2 weeks later. The representative dot plots display CD127 and Sca1 expression in MP cells from each group while the bar graph indicates the frequency (mean  $\pm$  S.D.) of MP subpopulations among total MP cells (n=4 mice). Data are pooled from 3 independent experiments performed. \* p<0.05, \*\* p<0.01, \*\*\* p<0.001.

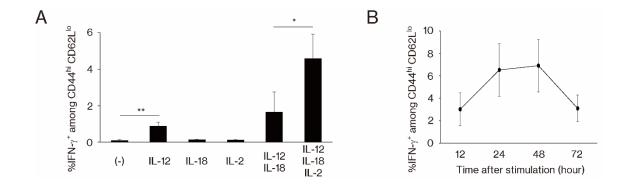
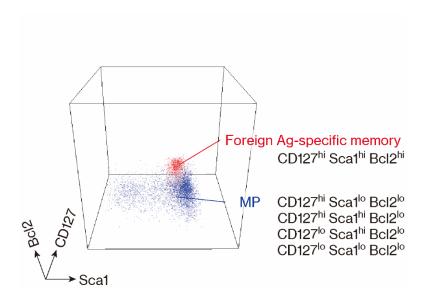




Figure S4. MP cells respond to IL-12, IL-18, and IL-2 and produce IFN- $\gamma$ . Total splenocytes were cultured (A) under the indicated conditions for 24 hours or (B) in the presence of IL-12, IL-18, and IL-2 for the indicated period. The graphs indicate the frequency (mean ± S.D.) of IFN- $\gamma$ <sup>+</sup> cells among MP CD4<sup>+</sup> T lymphocytes (n=4 mice). Data are representative of 2 independent experiments. \* p<0.05, \*\* p<0.01.



**Figure S5. Foreign Ag-specific and MP CD4**<sup>+</sup> **T cells represent phenotypically distinct populations.** Foreign Ag-specific memory cells are CD127<sup>hi</sup> Sca1<sup>hi</sup> Bcl2<sup>hi</sup> (red) while MP cells are CD127<sup>lo-hi</sup> Sca1<sup>lo-hi</sup> Bcl2<sup>lo</sup> (blue). Among the latter, CD127<sup>hi</sup> Sca1<sup>hi</sup> cells represent the most mature MP subset with the Th1-type inflammatory potential.

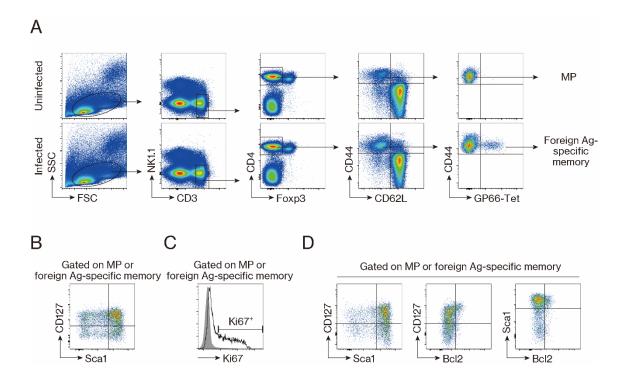



Figure S6. Gating strategy for flow cytometric analyses. (A) To detect MP and foreign Ag-specific memory CD4<sup>+</sup> T cells, total singlet cells were gated for CD3<sup>+</sup> NK1.1<sup>neg</sup> CD4<sup>+</sup> Foxp3<sup>neg</sup> CD44<sup>hi</sup> CD62L<sup>lo</sup> population. MP and foreign Ag-specific memory cells were then defined as tetramer<sup>neg</sup> cells from uninfected mice and tetramer<sup>+</sup> cells from LCMV-infected mice, respectively. (B) To analyze MP subsets, CD127 and Sca1 expression levels were measured in MP or foreign Ag-specific memory cells determined in (A). (C) For examination of proliferation status, Ki67 levels were measured in MP subsets as well as foreign Ag-specific memory cells using naïve cell population as a reference. (D) For detection of Bcl2, CD127, Sca1, and Bcl2 levels were simultaneously analyzed in MP and foreign Ag-specific memory cells. Bcl2<sup>hi</sup> fraction was determined as the frequency of Bcl2<sup>hi</sup> cells among CD127<sup>hi</sup> Sca1<sup>hi</sup> MP or foreign Ag-specific memory T lymphocyte populations.

| Cell cycle            | Cell cycle            | Anti-anontosis |
|-----------------------|-----------------------|----------------|
| (positive regulators) | (negative regulators) | Anti-apoptosis |
| Aurka                 | Cdkn1a                | Bcl2           |
| Aurkb                 | Cdkn1b                | Bcl2a1         |
| Ccna2                 | Cdkn2a                | Bcl2I1         |
| Ccnb1                 | Cdkn2b                | Bcl2l2         |
| Ccnb2                 | Cdkn2c                | Bcl2I10        |
| Ccnd1                 | Cdkn2d                | McI1           |
| Ccnd2                 | Chek1                 | Naip1          |
| Ccnd3                 | Chek2                 | Naip2          |
| Ccne1                 | E2f4                  | Naip3          |
| Cdc25a                | E2f5                  | Naip4          |
| Cdc25b                | E2f6                  | Naip5          |
| Cdc25c                | E2f7                  | Naip6          |
| Cdk1                  | E2f8                  | Naip7          |
| Cdk2                  | Rb1                   |                |
| Cdk4                  | Trp53                 |                |
| Cdk6                  | Wee1                  |                |
| E2f1                  |                       |                |
| E2f2                  |                       |                |
| E2f3                  |                       |                |
| Mdm2                  |                       |                |
| Plk1                  |                       |                |
| Plk3                  |                       |                |
| Plk4                  |                       |                |
| Tfdp1                 |                       |                |
| Tfdp2                 |                       |                |

Table S1. T cell gene signatures.