SUPPORTING INFORMATION

Incorporation of a Collagen-Binding Chondroitin Sulfate Molecule to a Collagen Type I and II Blend Hydrogel for Cartilage Tissue Engineering

AUTHORS

Claire E. Kilmer¹, Tanaya Walimbe², Alyssa Panitch^{2,3}, Julie C. Liu^{1,3,*}

AFFILIATIONS

¹Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA

²School of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA

³Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA

* Corresponding author.

E-mail address: julieliu@purdue.edu

Number of Supporting Information Pages: 7 Number of Supporting Information Figures: 5 Number of Supporting Information Tables: 1

Gene of Interest	Accession number		$5' \rightarrow 3'$ sequence	Product length (bp)	Primer efficiency	Reference
Collagen Type I	NM 001195668.1	Forward	ATGGATGAGGAAA CTGGCAACT	114	101.9%	Liao, 20101
		Reverse	GCCATCGACAAGA ACAGTGTAAGT			
Collagen Type II	NM 001195671.1	Forward	GCCACCGTGCCCA AGAAGAACT	160	103.1%	Yuan, 2016^2
		Reverse	ACAGCAGGCGCAG GAAGGTCAT			
Collagen Type X	XM 002714724.3	Forward	GCCAGGACCTCCA GGACTATCA	103	100.0%	Zheng, 2009^3
		Reverse	CCCAATGTCTCCTT TCGGTCCA			
Aggrecan	XM 008251723.2	Forward	CCTACCAGGACAA GGTCTCG	163	98.1%	Chen, 2016 ⁴
		Reverse	ACACCTTTCACCA CCACCTC			
SOX9	XM 008271763.2	Forward	GGAAGCTCTGGAG ACTGCTG	135	96.8%	Zhang, 2012^{5}
		Reverse	CGTTCTTCACCGA CTTCCTC			
GAPDH	NM 001082253.1	Forward	CGCCTGGAGAAAG CTGCTA	104	96.0%	Morigele, 2013 ⁶
		Reverse	ACGACCTGGTCCT CGGTGTA			

Table S1. Primer sequences utilized for quantitative reverse transcription-polymerase chain reaction.

Figure S1. Percentage of encapsulated CS retained in the hydrogel over time after a 12-hour polymerization. CS Encapsulation after a wash or 7-day period are shown. Single factor analysis of variance (ANOVA) and Tukey post hoc tests were performed (n=4). Data that share the same letter do not have statistically significant differences ($p > 0.05$) whereas data that do not share the same letter have statistically significantly differences ($p < 0.05$). Data is represented as the mean \pm the standard deviation.

Figure S2. Storage and loss moduli of hydrogels with the addition of CS or CS-SILY molecules. Frequency sweeps from 0.01 to 10 Hz were performed. Data $(n=3)$ is represented as the mean \pm the standard deviation.

Figure S3. The storage modulus (G') of hydrogels with the addition of CS or CS-SILY molecules. Frequency sweeps from 0.01 to 10 Hz were performed. Single factor analysis of variance (ANOVA) and Tukey post hoc tests were performed (n=3) at 0.01 and 10 Hz. Data that share the same letter do not have statistically significant differences ($p > 0.05$) whereas data that do not share the same letter have statistically significantly differences ($p < 0.05$). Data is represented as the mean \pm the standard deviation.

Figure S4. The mass of (A) DNA or (B) dry weight (DW) of the cell-hydrogel constructs with or with added CS or CS-SILY molecules after a 21-day or 28-day culture period. Values are expressed as mean \pm the standard deviation $(n = 4)$. An ANOVA and Tukey's post hoc test were performed. Data that share the same letter do not have statistically significant differences ($p > 0.05$) whereas data that do not share the same letter have statistically significantly differences ($p < 0.05$).

Figure S5. The addition of CS-SILY molecules increases normalized sulfated GAG production after 28 days in culture and has no change on normalized collagen content in scaffolds. GAG/DNA ratio of the cellhydrogel constructs ($n = 4$) with or with added CS or CS-SILY molecules after a (A) 21-day or (B) 28-day culture period. Total collagen/DNA ratio of the cell-hydrogel constructs ($n = 3$) with or with added CS or CS-SILY molecules after a (C) 21-day or (D) 28-day culture period. Values are expressed as mean \pm standard deviation. ANOVA and Tukey's post hoc tests were performed. Data that share the same letter do not have statistically significant differences ($p > 0.05$) whereas data that do not share the same letter have statistically significantly differences ($p < 0.05$).

REFERENCES

- (1) Liao, J.; Guo, X.; Grande-Allen, K. J.; Kasper, F. K.; Mikos, A. G. Bioactive Polymer/Extracellular Matrix Scaffolds Fabricated with a Flow Perfusion Bioreactor for Cartilage Tissue Engineering. *Biomaterials* **2010**, *31* (34), 8911-8920. DOI: 10.1016/j.biomaterials.2010.07.110.
- (2) Yuan, L.; Li, B.; Yang, J.; Ni, Y.; Teng, Y.; Guo, L.; Fan, H.; Fan, Y.; Zhang, X. Effects of Composition and Mechanical Property of Injectable Collagen I/II Composite Hydrogels on Chondrocyte Behaviors. *Tissue Eng. Part A* **2016**, *22* (11-12), 899-906. DOI: 10.1089/ten.tea.2015.0513.
- (3) Zheng, L.; Sun, J.; Chen, X.; Wang, G.; Jiang, B.; Fan, H.; Zhang, X. In Vivo Cartilage Engineering with Collagen Hydrogel and Allogenous Chondrocytes after Diffusion Chamber Implantation in Immunocompetent Host. *Tissue Eng. Part A* **2009**, *15* (8), 2145-2153. DOI: 10.1089/ten.tea.2008.0268.
- (4) Chen, C.-H.; Kuo, C.-Y.; Wang, Y.-J.; Chen, J.-P. Dual Function of Glucosamine in Gelatin/Hyaluronic Acid Cryogel to Modulate Scaffold Mechanical Properties and to Maintain Chondrogenic Phenotype for Cartilage Tissue Engineering. *Int. J. Mol. Sci.* **2016**, *17* (11), 1957. DOI: 10.3390/ijms17111957.
- (5) Zhang, L.; Yuan, T.; Guo, L.; Zhang, X. An In Vitro Study of Collagen Hydrogel to Induce the Chondrogenic Differentiation of Mesenchymal Stem Cells. *J. Biomed. Mater. Res. A* **2012**, *100A* (10), 2717-2725. DOI: 10.1002/jbm.a.34194.
- (6) Morigele, M.; Shao, Z.; Zhang, Z.; Kaige, M.; Zhang, Y.; Qiang, W.; Yang, S. TGF-1 Induces a Nucleus Pulposus-Like Phenotype in Notch 1 Knockdown Rabbit Bone Marrow Mesenchymal Stem Cells. *Cell Biol. Int.* **2013**, *37* (8), 820-825. DOI: 10.1002/cbin.10109.