Supplementary Material for

Cryo-EM structure of DNA-bound Smc5/6 reveals DNA clamping enabled by multi-subunit conformational changes

You Yu^{1#}, Shibai Li^{2#}, Zheng Ser³, Huihui Kuang^{4,} Thane Than², Danying Guan², Xiaolan Zhao^{2*} and Dinshaw J. Patel^{1*}

¹ Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA

² Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA

³ Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore

⁴ Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10027, USA

co-first authors

* Corresponding authors: <u>zhaox1@mskcc.org</u> (X.Z.) and <u>pateld@mskcc.org</u> (D.J.P.)

Supplementary Figure Legends

Fig. S1. Sample preparation of 6-subunit *S. cerevisiae* Smc5/6-E/Q complex. Sizing column (Superose 6 increase) elution profile and Coomassie stained gel picture showing the Smc5/6 subunits in the peak fraction and the EM samples containing the complex, dsDNA, and ATP.

Fig. S2. Cryo-EM reconstruction of DNA-bound Smc5/6 complex. (*A*) Workflow of cryo-EM image processing for the complex. (*B*) Global Fourier Shell Correlation (FSC) curve of the complex. The curve for the two half datasets is in blue and that for the refined model versus the cryo-EM map is in red. The overall cryo-EM map resolution is 3.8 Å with FSC set at 0.143. (*C*) Angular distribution plot of final 3D EM map for the complex. (*D*) Final 3D reconstructed map of the complex colored according to local resolution.

Fig. S3. Side chain identification in the cryo-EM structure of DNA-bound Smc5/6 and structural details. (*A*) A view of the complex in ribbon representation with density map shown as a transparent surface. Inserts outline examples where amino acid side chains can be fitted in the density map. (*B*, *C*) An electron density representation (B) and a ribbon representation (C) of the DNA-bound Smc5/6 structure. These views are rotated 180° compared with those in Figure 1B and 1C. (*D*) "Engaged" Smc1 and Smc3 head domains in the structure of cohesion in the ATP- and DNA-bound Smc1/3-E/Q complex (PDB: 6zz6)¹. (*E*) "Juxtaposed" Smc2 and Smc4 head domains in the structure of apo-condensin (PDB: 6YVU)².

Fig. S4. Sequence alignment and comparison of Nse3 proteins from *X. laevis and S. cerevisiae.* (*A*) Sequence alignments between the Nse3 domains of *S. cerevisiae* and *X. laevis.* Residues involved in hydrogen bond interactions with DNA are marked by stars for the Nse3-patch 1 region (blue) and the Nse3-mediated patch 2 region (green). The linker between the WHA and WHB of Nse3 in yeast contains insertions including a helix (adH) and a loop (WHL). (*B*) Structural overlay between the Nse1-3 and the interacting Nse4 peptide from *X. laevis* (grey) and *S. cerevisiae* (color).

Fig. S5. DNA binding details of the DNA-bound Smc5/6 complex. (*A*, *B*) Overview of DNA contacts involving Nse3 (patches 1 and 2) and Nse4 (patch 5) (A) and those involving Smc5 (patch 3) and Smc6 (patch 4) (B). Observable Lys and Arg side chains are shown in a ribbon representation, while those whose side chain densities could not be traced are shown in a ball representation.

Fig. S6. CLMS data from DNA-free Smc5/6 mapped to the DNA-bound Smc5/6 structure. Inter-subunit CLs detected among Nse1, Nse3 and Nse4. Red lines indicate CL pairs with C α -C α distance exceeding that allowed by crosslinkers, while black lines indicate satisfied CL pairs.

Fig. S7. SMC-DNA clamping in the E-K compartment. The protein subunits are shown in a ribbon representation and the bound dsDNA in a yellow stick representation. (*A*) 3.8 Å cryo-EM structure of dsDNA-bound *S. cerevisiae* Smc5/6-EQ complex (this study). (*B*) 3.4 Å cryo-EM

structure of dsDNA-bound *S. cerevisiae* cohesion-EQ complex (PDB: 6ZZ6)¹. (*C*) 3.1 Å cryo-EM structure of dsDNA-bound *E. coli* MukBEF-EQ complex (PDB: 7NYW)³.

References

- 1. Collier, J. et al. Transport of DNA within cohesin involves clamping on top of engaged heads by Scc2 and entrapment within the ring by Scc3. *elife* **9**, e59560 (2020).
- 2. Lee, B.-G. et al. Cryo-EM structures of holo condensin reveal a subunit flip-flop mechanism. *Nat Struct Mol Biol* **27**, 743-751 (2020).
- 3. Burmann, F., Funke, L. F. H., Chin, J. W. & Lowe, J. Cryo-EM structure of MukBEF reveals DNA loop entrapment at chromosomal unloading sites. *Mol Cell* **81**, 4891-4906 (2021).

Figure S7

	ATP-dsDNA-SMC5/6							
Sample	EMD-26140							
	PDB: 7TVE							
Data collection								
Microscope	Titan Krios							
Detector	Gatan K3							
Automation software	Leginon							
Nominal magnification	81,000							
Voltage (kV)	300 kV							
Total dose (e^{-}/A^{2})	53.55							
Dose rate (e ⁻ /pixel/s)	30							
Number of frames collected	40							
Defocus range (µm)	-0.8 to -2.5							
Pixel size (Å)	1.069							
Collected Micrographs	9,286							
Selected Micrographs	9,286							
Reconstruction								
Initially autopicked particles	2,456,248							
Particles used for classification	2,456,248							
Particles in the final map	201,249							
Symmetry	C1							
Resolution								
FSC 0.5 (unmasked/masked, Å)	4.1/4.1							
FSC 0.143 (unmasked/masked, Å)	3.8/3.8							
Map sharpening B factor (A^2)	-138.59							
Model composition								
Protein residues	1793							
Nonhydrogen atoms	15466							
Validation								
MolProbity	2.78							
Clash score	17.8							
Map Correlation Coefficient	0.69							
R.m.s. deviations								
Bond lengths (Å)	0.005							
Bond angles (°)	0.827							
Ramachandran plots								
Favored (%)	86.28							
Allowed (%)	13.44							
Outliers (%)	0.28							
Rotamer outliers (%)	3.26							

Table S1. Cryo-EM data collection, processing, and validation statistics

Table S2 CLMS analyses results used in this study	

Protein 1	Residue 1	Protein 2	Residue 2	CA distance	Threshold	Sat-Viol	inter vs intra	figure panel	dataset
SMC5	248	SMC6	916	78.7	30	V	inter	Figure 6A	Yu et al 2021
SMC5	260	SMC6	906	85.6	30	V	inter	Figure 6A	Yu et al 2021
SMC5	248	SMC6	913	81.5	30	V	inter	Figure 6A	Yu et al 2021
SMC5	260	SMC6	913	78.6	30	V	inter	Figure 6A	Yu et al 2021
SMC5	259	SMC6	913	78.8	30	V	inter	Figure 6A	Yu et al 2021
SMC5	259	SMC6	906	86	30	V	inter	Figure 6A	Yu et al 2021
SMC5	259	SMC6	917	75.9	30	V	inter	Figure 6A	Yu et al 2021
SMC5	248	SMC6	917	77.5	30	V	inter	Figure 6A	Yu et al 2021
SMC5	252	SMC6	913	79	30	V	inter	Figure 6A	Yu et al 2021
SMC5	259	SMC6	913	78.8	25	V	inter	Figure 6A	Taschner et al 2021
SMC5	248	SMC6	913	81.5	25	V	inter	Figure 6A	Taschner et al 2021
SMC5	248	SMC6	921	82.9	25	V	inter	Figure 6A	Taschner et al 2021
SMC5	252	SMC6	913	79	25	V	inter	Figure 6A	Taschner et al 2021
SMC5	249	SMC6	913	79	25	V	inter	Figure 6A	Taschner et al 2021
NSE3	246	SMC5	909	73	30	V	inter	Figure 6B	Yu et al 2021
NSE3	236	SMC5	919	57.2	25	V	inter	Figure 6B	Taschner et al 2021
NSE3	236	SMC5	980	46.7	25	V	inter	Figure 6B	Taschner et al 2021
NSE3	236	SMC5	979	47.4	25	v	inter	Figure 6B	Taschner et al 2021
NSE3	246	SMC5	919	70.6	25	v	inter	Figure 6B	Taschner et al 2021
NSE3	23	SMC5	980	48.9	25	v	inter	Figure 6B	Taschner et al 2021
NSE3	66	SMC5	980	35.8	25	V	inter	Figure 6B	Taschner et al 2021
NSE3	23	SMC6	281	65.7	25	V	inter	Figure 6B	Taschner et al 2021
NSE4	197	SMC5	235	72.4	25	V	inter	Figure 6B	Taschner et al 2021
NSE4	197	SMC6	281	13.8	25	S	inter	Figure 6B	Taschner et al 2021
NSE1	247	NSE4	266	71	30	V	inter	Figure 6C	Yu et al 2021
NSE1	247	NSE4	268	75.3	30	V	inter	Figure 6C	Yu et al 2021
NSE1	247	NSE4	363	113.8	30	V	inter	Figure 6C	Yu et al 2021
NSE3	23	NSE4	363	85.3	30	V	inter	Figure 6C	Yu et al 2021
NSE3	206	NSE4	122	19.2	30	S	inter	Figure 6C	Yu et al 2021
NSE3	295	NSE4	122	10.3	30	S	inter	Figure 6C	Yu et al 2021
NSE3	23	NSE4	95	70	25	V	inter	Figure 6C	Taschner et al 2021
NSE3	23	NSE4	266	68.4	25	V	inter	Figure 6C	Taschner et al 2021
NSE3	23	NSE4	336	84.5	25	V	inter	Figure 6C	Taschner et al 2021
NSE3	23	NSE4	352	89	25	V	inter	Figure 6C	Taschner et al 2021
NSE3	50	NSE4	266	47	25	v	inter	Figure 6C	Taschner et al 2021
NSE3	50	NSE4	363	72.3	25	V	inter	Figure 6C	Taschner et al 2021
NSE3	66	NSE4	266	56.1	25	V	inter	Figure 6C	Taschner et al 2021
NSE3	66	NSE4	290	71.1	25	V	inter	Figure 6C	Taschner et al 2021
NSE3	66	NSE4	352	75.6	25	V	inter	Figure 6C	Taschner et al 2021
NSE3	122	NSE4	266	51.7	25	V	inter	Figure 6C	Taschner et al 2021
NSE3	50	NSE4	248	24.1	25	S	inter	Figure 6C	Taschner et al 2021
NSE3	286	NSE4	122	22.7	25	S	inter	Figure 6C	Taschner et al 2021
NSE3	287	NSE4	122	23	25	S	inter	Figure 6C	Taschner et al 2021
NSE3	287	NSE4	197	15.2	25	S	inter	Figure 6C	Taschner et al 2021
NSE4	95	NSE4	122	43.3	25	V	intra	Figure 6D	Taschner et al 2021
NSE4	248	NSE4	266	47.2	25	V	intra	Figure 6D	Taschner et al 2021
NSE4	266	NSE4	285	40.6	25	V	intra	Figure 6D	Taschner et al 2021
NSE4	266	NSE4	290	49.1	25	v	intra	Figure 6D	Taschner et al 2021
NSE4	266	NSE4	352	62.6	25	V	intra	Figure 6D	Taschner et al 2021
NSE4	266	NSE4	363	65.2	25	v	intra	Figure 6D	Taschner et al 2021
NSE4	268	NSE4	333	48.9	25	V	intra	Figure 6D	Taschner et al 2021
NSE4	268	NSE4	363	60.3	25	V	intra	Figure 6D	Taschner et al 2021
SMC5	235	SMC5	915	28.3	30	S	intra	Figure 6E	Yu et al 2021
SMC5	235	SMC5	909	22.9	30	S	intra	Figure 6E	Yu et al 2021
SMC5	248	SMC5	260	18.5	30	S	intra	Figure 6E	Yu et al 2021
SMC5	248	SMC5	259	16.7	30	S	intra	Figure 6E	Yu et al 2021
SMC5	227	SMC5	235	12.7	30	S	intra	Figure 6E	Yu et al 2021
SMC5	252	SMC5	260	12.5	30	S	intra	Figure 6E	Yu et al 2021

SMC5	111	SMC5	136	12.4	30	S	intra	Figure 6E	Yu et al 2021
SMC5	192	SMC5	980	11.7	30	S	intra	Figure 6E	Yu et al 2021
SMC5	252	SMC5	259	10.6	30	S	intra	Figure 6E	Yu et al 2021
SMC5	44	SMC5	136	10.2	30	S	intra	Figure 6E	Yu et al 2021
SMC5	971	SMC5	980	9.1	30	S	intra	Figure 6E	Yu et al 2021
SMC5	971	SMC5	979	6.7	30	S	intra	Figure 6E	Yu et al 2021
SMC5	245	SMC5	249	6.2	30	S	intra	Figure 6E	Yu et al 2021
SMC5	915	SMC5	919	6.1	30	S	intra	Figure 6E	Yu et al 2021
SMC5	245	SMC5	248	4.9	30	S	intra	Figure 6E	Yu et al 2021
SMC5	232	SMC5	235	4.7	30	S	intra	Figure 6E	Yu et al 2021
SMC6	288	SMC6	304	24.9	30	S	intra	Figure 6E	Yu et al 2021
SMC6	987	SMC6	1070	22.6	30	S	intra	Figure 6E	Yu et al 2021
SMC6	943	SMC6	958	22.6	30	S	intra	Figure 6E	Yu et al 2021
SMC6	989	SMC6	1059	18.8	30	S	intra	Figure 6E	Yu et al 2021
SMC6	987	SMC6	1067	18.1	30	S	intra	Figure 6E	Yu et al 2021
SMC6	1067	SMC6	1087	17.3	30	S	intra	Figure 6E	Yu et al 2021
SMC6	1059	SMC6	1070	17.1	30	S	intra	Figure 6E	Yu et al 2021
SMC6	987	SMC6	1059	15.3	30	S	intra	Figure 6E	Yu et al 2021
SMC6	1059	SMC6	1087	13.7	30	S	intra	Figure 6E	Yu et al 2021
SMC6	83	SMC6	160	13.4	30	S	intra	Figure 6E	Yu et al 2021
SMC6	1059	SMC6	1081	12.4	30	S	intra	Figure 6E	Yu et al 2021
SMC6	965	SMC6	996	12	30	S	intra	Figure 6E	Yu et al 2021
SMC6	1070	SMC6	1077	11.5	30	S	intra	Figure 6E	Yu et al 2021
SMC6	901	SMC6	906	11.2	30	S	intra	Figure 6E	Yu et al 2021
SMC6	958	SMC6	965	10.8	30	S	intra	Figure 6E	Yu et al 2021
SMC6	906	SMC6	913	10.7	30	S	intra	Figure 6E	Yu et al 2021
SMC6	1067	SMC6	1070	5.3	30	S	intra	Figure 6E	Yu et al 2021
NSE1	97	NSE1	247	18.2	30	S	intra	Figure 6F	Yu et al 2021
NSE1	99	NSE1	243	19.1	30	S	intra	Figure 6F	Yu et al 2021
NSE3	23	NSE3	66	14.2	25	S	intra	Figure 6F	Taschner et al 2021
NSE3	50	NSE3	66	15.8	25	S	intra	Figure 6F	Taschner et al 2021
NSE3	50	NSE3	122	9.5	25	S	intra	Figure 6F	Taschner et al 2021
NSE3	50	NSE3	236	17.1	25	S	intra	Figure 6F	Taschner et al 2021
NSE3	53	NSE3	66	12.6	25	S	intra	Figure 6F	Taschner et al 2021
NSE3	66	NSE3	122	20.7	25	S	intra	Figure 6F	Taschner et al 2021
NSE3	122	NSE3	236	14.2	25	S	intra	Figure 6F	Taschner et al 2021
NSE3	133	NSE3	283	13.6	25	S	intra	Figure 6F	Taschner et al 2021