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Fig. S1. The t-SNE plots of all viruses (Avian virus, Enterovirus and Human Respiratory viruses), 
before and after baseline correction. Each Raman spectrum is represented by a point in the plots. 
Observed from the comparison between the two plots, applying baseline correction makes the 
spectra of virus types (or subtypes) such as H3N2, H7N2, CVB1, RSV, EV71 more 
distinguishable by pulling tighter each cluster corresponding to spectra of the same virus while 
pushing the clusters of different viruses further apart. 
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Fig. S2. A. The CNN classification performance of Avian viruses on three metrics (Accuracy, 
Sensitivity and Specificity); B. The CNN classification accuracy for each type of Avian virus; C. 
Matching scores between Raman ranges important for identifying Avian viruses using ML and 
Raman peak ranges of biomolecules. 
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Fig. S3. A. The CNN classification performance of Enteroviruses on three metrics (Accuracy, 
Sensitivity and Specificity); B. The CNN classification accuracy of each type (subtype) of 
Enterovirus; C. Matching scores between Raman ranges important for identifying Enteroviruses 
using ML and Raman peak ranges of biomolecules. 
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Fig. S4. A. The CNN classification performance of FLU A virus subtypes on three metrics 
(Accuracy, Sensitivity and Specificity); B. The CNN classification accuracy of each subtype of 
FLU A virus; C. Matching scores between Raman ranges important for identifying Influenza A 
subtypes using ML and Raman peak ranges of biomolecules. 
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Fig. S5. A. The CNN performance on three classification tasks involving Avian and Human flu 
viruses (1. Avian FLUA vs. Human FLUA;  2.  Avian FLUA, Human FLUA, Human FLUB; 3.  
Human FLUA vs. Human FLUB);  B. Matching scores between Raman ranges important for each 
of the three classification tasks using ML and Raman peak ranges of biomolecules.  
 
  



 
 

7 
 

 
 
 

 
Fig. S6. A. The CNN performance on three classification tasks involving enveloped and non-
enveloped viruses (1. Classification within enveloped viruses, including FLUA, FLUB, IBV, RSV; 
2. Classification within non-enveloped viruses, including Reovirus, Enterovirus, Rhino; 3. Binary 
classification to identify a virus as either enveloped or non-enveloped; B. Matching scores 
between Raman ranges important for each of the three classification tasks using ML and Raman 
peak ranges of biomolecules. 
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Fig. S7. A. The CNN classification performance of Human Respiratory viruses on three metrics 
(Accuracy, Sensitivity and Specificity); B. The CNN classification accuracy for each type of 
Human Respiratory virus; C. Matching scores between Raman ranges important for identifying 
different types of Human Respiratory viruses using ML and Raman peak ranges of biomolecules. 
 
 
 
 

 
 
 
Fig. S8. A. The overall CNN performance of classifying / identifying virus type (subtype) among 
all viruses in our dataset in one classification task; B. The classification accuracy for each type of 
virus, including Avian, Enterovirus and Human Respiratory viruses. 
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Fig. S9. Raman peak ranges of lipids (phosphatidylcholine, phosphatidylethanolamine and 
sphingomyelin), nucleic acids, proteins, amino acids and other chemical functional groups such 
as Carboxylic acid and Ketone. These peak ranges are used for matching score calculation to 
help us understand what biomolecules or chemical functional groups are important for virus 
identification tasks using ML.  
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Fig. S10. Learning curves of 5-fold cross validation for the classification task on Flu A subtypes 
(H1N1/H3N2/H5N2/H7N2). Each of the five folds is used as the hold-out validation set once, and 
the learning curves for the validation folds are shown in the figure. In each learning curve, the 
classification accuracy on the validation fold after each training epoch is plotted.  Although with 
some fluctuations, the learning curves for the five folds are similar and they all converge when the 
training process gets close to 1000 epochs, which justifies our choice for the number of training 
epochs, one among many crucial hyper-parameters. 
 
 
 
 
Table S1: Definition for ML classification performance metrics: Sensitivity, Specificity and 
Accuracy.  Sensitivity is the percentage of positive cases correctly identified as positive. 
Specificity is the percentage of negative cases correctly identified as negative. Accuracy is the 
percentage of correctly identified cases. 
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Table S2. Information about a large dataset consisting of Raman spectra of various types of flu 
viruses, which is used to test the viral dose detection limit of our approach.  For each flu virus 
strain, we have collected around 10,000 Raman spectra.   
 

Sample ID  Flu Virus Strain  Flu Type/Subtype  
1 A/North Carolina/04/2016  Flu A / H3N2  
2 A/Nebraska/14/2019 Flu A / H1N1  
3 B/Massachusetts/02/2012  Flu B  
4 A/Michigan/45/2015  Flu A / H1N1  
5 A/Hawaii/47/2014  Flu A / H3N2  
6 A/California/07/2009  Flu A / H1N1  
7 A/Indiana/08/2018 Flu A / H3N2  
8 A/Arizona/45/2018    Flu A / H3N2  
9 A/Delaware/39/2019  Flu A / H3N2  

10 A/Singapore/INFIMH-16_0010/2016 Flu A / H3N2 
11 A/Idaho/07/2018 Flu A / H1N1 

 
 
 
 
 
Table S3: The TCID50 and RNA copies present in 10 µL of sample, the volume used for spectra 
collection.  
 
 
 

Dilution 

Flu A/Nebraska/14/2019 (H1N1) Flu A/Indiana/08/2018 (H3N2) 
TCID50/10µL RNA copies/10µL TCID50/10µL RNA copies/10µL 

Undiluted 2.29 x 105 2.27 x 107 1.45 x 105 1.42 x 107 
10-1 2.29 x 104 2.27 x 106 1.45 x 104 1.42 x 106 
10-2 2.29 x 103 2.27 x 105 1.45 x 103 1.42 x 105 
10-3 2.29 x 102 2.27 x 104 1.45 x 102 1.42 x 104 
10-4 2.29 x 101 2.27 x 103 1.45 x 101 1.42 x 103 
10-5 2 227 1 142 
10-6 <1 23 <1 14 

 
 
 
 
 
 
 
 
 
 



 
 

12 
 

Table S4: Accuracy of flu type and subtype classification for two testing strains, Indiana/08 and 
Nebraska/14, using spectra collected at different concentration levels. The trained ML model uses 
the CNN architecture as shown in Fig 1B in the manuscript. The reported accuracies are spectra-
based accuracies, i.e., the percentage of all spectra for a virus sample that are correctly classified 
as the true label for the virus. The case-based prediction for the virus sample is also reported, 
which is the majority vote of all the spectra predicted labels. 
 

Testing Virus    
      Strain 
(400 Raman 

spectra 
collected for 
each strain 

at each level 
of dilution) 

 
Discardi
ng blank 
spectra 
from the 
testing 

set 

  
 

Undiluted 
 

 
 

10-1 
 

 
 

10-2 

 

 
 

10-3 

 

 
 

10-4 

 

 
 

10-5 

 

 
 

10-6 

 

 
 
 
 

Indiana/08 
(True label: 

Flu A, 
H3N2) 

No Spectra-based 
accuracy 

0.898 0.635 0.510 0.608 0.643 0.515 0.093 

Yes Spectra-based 
accuracy 

(percentage of 
blank spectra)  

0.898 
 

(0%  
blanks) 

 

0.635 
 

(0% 
blanks) 

0.515 
 

(1% 
blanks) 

0.608 
 

(0.5% 
blanks) 

0.643 
 

(0% 
blanks) 

0.515 
 

(0.25% 
blanks) 

0.949 
 

(90.25% 
blanks) 

Yes Case-based 
prediction  

H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 

 
 

 
 

 
 

Nebraska/14 
(True label: 

Flu A,  
H1N1) 

No  Spectra-based 
accuracy 

0.648 0.855 0.875 0.883 0.755 0.953 0.430 

Yes Spectra-based 
accuracy 

(percentage of 
blank spectra)  

0.648 
 

(0%  
blanks) 

0.855 
 

(0% 
blanks) 

 

0.888 
 

(1.5% 
blanks) 

0.970 
 

(9% 
blanks) 

0.786 
 

(4% 
blanks) 

0.953 
 

(0.25% 
blanks) 

0.440 
 

(2.25% 
blanks) 

Yes Case-based 
prediction 

H1N1 H1N1 H1N1 H1N1 H1N1 H1N1 Flu B 
(56% 

spectra 
predicted 
as Flu B, 

44% 
predicted 
as H1N1)   

 
 
 
 


