SUPPLEMENTAL INFORMATION

Atomic view of the HIV-1 Matrix lattice. Implications on virus assembly and Env incorporation

Alexandra B. Samal, Todd J. Green, and Jamil S. Saad*

Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294

Corresponding Author:	Jamil S. Saad, Ph.D.
	Department of Microbiology
	University of Alabama at Birmingham
	845 19th Street South, Birmingham, AL 35294
	Phone: (205)-996-9282
	Fax: (205)-996-4008

Email: <u>saad@uab.edu</u>

Parameter	
Wavelength (Å)	
Resolution range	24.9 - 2.15 (2.228 - 2.15)
Space group	R 3 2 :H
Unit cell (Å)	96.56 96.56 216.91 90 90 120
Total reflections	130208 (12029)
Unique reflections	21434 (2087)
Multiplicity	6.1 (5.8)
Completeness (%)	99.61 (98.86)
Mean I/sigma(I)	21.66 (2.64)
Wilson B-factor	43.02
R-merge	0.04682 (0.5734)
R-meas	0.05124 (0.6327)
R-pim	0.02045 (0.2634)
CC1/2	0.999 (0.805)
CC*	1 (0.945)
Reflections used in refinement	21429 (2088)
Reflections used for R-free	1996 (192)
R-work	0.183 (0.2700)
R-free	0.236 (0.3500)
CC(work)	0.968 (0.862)
CC(free)	0.953 (0.723)
Number of non-hydrogen atoms	2641
macromolecules	2480
ligands	77
solvent	84
Protein residues	308
RMS(bonds) ^a	0.007
RMS(angles)	0.83
Ramachandran favored (%)	98.01
Ramachandran allowed (%)	1.99
Ramachandran outliers (%)	0.00
Rotamer outliers (%)	4.44
Clashscore	5.45
Average B-factor	66.27
macromolecules	65.80
ligands	87.59
solvent	60.60
Number of TLS groups	24

Table S1. X-Ray Crystallographic Data Collection and Model Refinement

Statistics for the highest-resolution shell are shown in parentheses. ^a RMS, root mean square.

Figure S1. Close-up view of the myr group and the hydrophobic pocket. Portions of two myrMA₁₁₂ monomers (chain **b**) are shown with orange and light orange carbon backbone, respectively. Electron density (2Fo-Fc, contour level: 1.0σ) is shown surrounding the myr group.

Figure S2. Comparison of the X-ray structures of HIV-1 myrMA₁₁₂ **and WT myr(–)MA**. The asymmetric unit of the crystal structure of HIV-1 myrMA₁₁₂ contained three copies (chains **a**, **b**, and **c**). Application of crystallographic symmetry revealed three independent trimeric assemblies (chain **a**, magenta; chain **b**, orange; chain **c**, green). Trimers formed by the three independent chains are overlayed on the trimer structure of the WT myr(–)MA protein (yellow; PDB ID: 1HIW) (1). The myr group in chain **b** is shown as red stick. For chains **a** and **c**, the electron density for the myr group as well as residues 2-5 and 2-9, respectively, were not observed likely due to a highly flexible conformation. The structure of the myrMA₁₁₂ protein and the trimer arrangement are very similar to the WT myr(–)MA protein.

Figure S3. Structure of the myrMA₁₁₂ **trimer with the myr group exposed.** Cartoon representation of myrMA₁₁₂ trimer **b** with the myr group extruded. The dimer partner involved in myr swapping is not shown. The myr group is shown as a red stick.

Figure S5. NMR spectra of myrMA mutants. Overlay of 2D ¹H-¹⁵N HSQC spectra for myrMA L13E (black) and L31E (red) at 120 μ M (308 K) in a buffer containing 50 mM sodium phosphates (pH 5.5), 100 mM NaCl, 1 mM EDTA, and 2 mM TCEP. The spectra are nearly identical, suggesting that the mutations induce very similar structural changes in the myrMA protein.

Figure S6. NMR spectra of WT and mutant myrMA. Overlay of 2D ¹H-¹⁵N HSQC spectra for WT (black), myrMA L13E or L31E mutants (red), and myr(–)MA (green) at 120 μ M in a buffer containing 50 mM sodium phosphates (pH 5.5), 100 mM NaCl, 1 mM EDTA, and 2 mM TCEP. For the myrMA L13E and L31E proteins, a subset of ¹H-¹⁵N resonances shifted toward the corresponding signals of myr(–)MA, indicating a shift in equilibrium towards the myr–exposed state.

Figure S8. NMR data of IP₃ **binding to myrMA.** Overlay of 2D ¹H-¹⁵N HSQC spectra upon titration of HIV-1 myrMA with IP₃ [60 μ M, 35 °C; IP₃:myrMA = 0:1 (black), 1:1 (red), 2:1 (green), 4:1 (magenta) and 8:1 (slate)] in 50 mM phosphates (pH 5.5) and 2 mM TCEP. A subset of ¹H-¹⁵N resonances corresponding to the IP₃ binding site are indicated by blue labels. A second subset of ¹H-¹⁵N resonances shifted toward the corresponding signals of myr(–)MA (orange labels), indicating that IP₃ binding to myrMA caused a shift in equilibrium towards the myr– exposed state.

References

1. C. P. Hill, D. Worthylake, D. P. Bancroft, A. M. Christensen, W. I. Sundquist, Crystal Structures of the Trimeric HIV-1 Matrix Protein: Implications for Membrane Association. *Proc. Natl. Acad. Sci.* **93**, 3099-3104 (1996).