SUPPLEMENTAL MATERIAL

Luseogliflozin preserves the pancreatic beta-cell mass and function in db/db mice by improving mitochondrial function

Yuki Yamauchi ¹, Akinobu Nakamura ^{1,*}, Takashi Yokota ^{2,3}, Kiyohiko Takahashi ¹, Shinichiro Kawata ¹, Kazuhisa Tsuchida ¹, Kazuno Omori ¹, Hiroshi Nomoto ¹, Hiraku Kameda ¹, Kyu Yong Cho ^{1,2}, Toshihisa Anzai ³, Shinya Tanaka ^{4,5}, Yasuo Terauchi ⁶, Hideaki Miyoshi ^{1,7}, Tatsuya Atsumi ¹

¹ Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan

² Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan

³ Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan

⁴ Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan

⁵ Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan

⁶ Department of Endocrinology and Metabolism, Graduate School of Medicine,

Yokohama City University, Yokohama, Japan

⁷ Division of Diabetes and Obesity, Faculty of Medicine and Graduate School of Medicine

Hokkaido University, Sapporo, Japan

*Corresponding author: Akinobu Nakamura

Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and

Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-Ku, Sapporo

060-8638, Japan.

Tel: +81-11-706-5915; Fax: +81-11-706-7710; E-mail: akinbo@tim.hi-ho.ne.jp

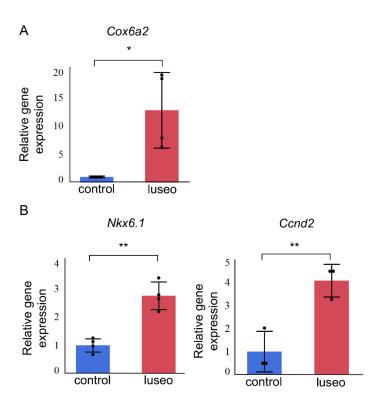
Supplementary Methods.

Western Blot Analysis

To prepare whole-cell protein extracts, frozen pancreatic islets were homogenized in lysis buffer (150 mM HEPES (pH 7.0), 250 mM NaCl, 0.1% Nonidet P-40, 5 mM EDTA, 50 mM sodium fluoride, 0.2 mM sodium orthovanadate) with protease and phosphatase inhibitors (0.1% leupeptin, 0.1% aprotinin, 0.5 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride). Islets extracts were centrifuged at 15,000 rpm at 4 °C for 10 min. The supernatant was collected for use in western blotting. Proteins were separated by SDS-PAGE (12%) and transferred onto polyvinylidene difluoride membranes (Bio-Rad Laboratories, Inc. Hercules, CA). Membranes were blocked with Bullet Blocking One for Western Blotting (Nacalai Tesque, Kyoto, Japan) for 30 min. After blocking, membranes were cut prior to hybridisation with antibodies and were probed overnight at 4 °C with Total OXYPHOS antibody (Abcam 110413, Cambridge, UK, 1:500) and βactin antibody (Santa Cruz Biotechnology sc-1615, Dallas, TX, 1:500). Protein bands were visualized using ECL reagents (Global Life Sciences Solutions Operations, Amersham, UK), and images were obtained using a LAS-4000 UV mini CCD camera system (Fujifilm Co., Tokyo, Japan).

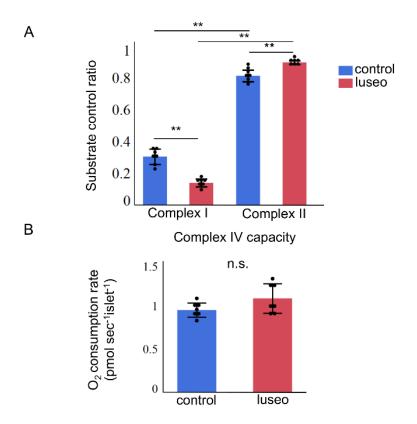
Cell culture

The rat insulinoma cell line INS 832/13 was purchased from Sigma-Aldrich, St. Louis, MO. INS 832/13 cells were cultured in RPMI 1640 medium (11 mM glucose) supplemented with 10mM HEPES, 1 mM sodium pyruvate, 100 IU/mL penicillin and 100 mg/mL streptomycin, 10% heat-inactivated fetal bovine serum (FBS) (Gibco BRL, Paisley, UK) at 37 °C in a humidified 5% CO₂ atmosphere. INS 832/13 cells were used between passages 8 and 11 and seeded at a density of 0.6×10^6 cells/well in 6-well plates. The cells were treated with DMSO vehicle (Luseo-) or vehicle + 100 nM luseogliflozin (Luseo+) in RPMI 1640 medium containing 11 mM or 22 mM glucose for 48 h.

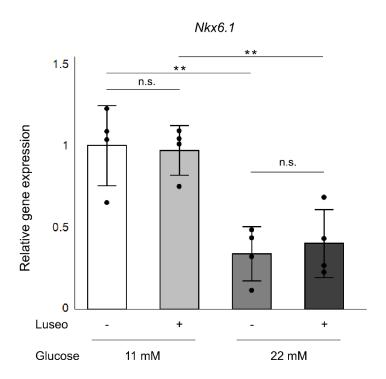

Supplementary Table S1. The primer sequences for real-time quantitative PCR

Primer name	Sequence			
Gapdh				
Forward	GGCCCCTCTGGAAAGCTGTGGTGT			
Reverse	GTTGGGGGCCGAGTTGGGATAGG			
Slc2a2				
Forward	TGTGCTGCTGGATAAATTCG			
Reverse	TTCAGCAACCATGAACCAAG			
Pcx				
Forward	CTGAAGTTCCAAACAGTTCGAGG			
Reverse	CGCACGAAACACTCGGATG			
Cs				
Forward	AACTCAGGACGGGTTGTTCCAG			
Reverse	TAGTAATTCATCTCCGTCATGCC			
Aco2				
Forward	TGGGTGGTGATTGGAGATGA			
Reverse	ATCTGGGTCTCGTTGAAGGT			
Idh2				
Forward	GAAGGTGTGCGTGGAGAC			
Reverse	CCGTGGTGTTCAGGAAGT			
Ogdh				
Forward	TGCAGATGTGCAATGATGAC			
Reverse	GCAGCACATGGAAGAAGTTG			
Sdha				
Forward	GGAACACTCCAAAAACAGACCT			
Reverse	CCACCACTGGGTATTGAGTAGAA			
Mdh2				
Forward	TTCAACACCAACGCTACCATTGTG			
Reverse	GTGTTCGCTCTGACGATGTCAAGG			
Nkx6.1				
Forward	CTGCACAGTATGGCCGAGATG			
Reverse	CCGGGTTATGTGAGCCCAA			
Ccnd2				
Forward	AAGCCTGCCAGGAGCAAA			
Reverse	ATCCGGCGTTATGCTGCTCT			
Drp1				
Forward	TAAGCCCTGAGCCAATCCATC			
Reverse	CATTCCCGGTAAATCCACAAGT			
Mfn l				
Forward	CCTACTGCTCCTTCTAACCCA			
Reverse	AGGGACGCCAATCCTGTGA			

Supplementary Table S2. The antibodies used for immunofluorescence.


Primary antibodies				
Antigen	Source	Dilution	Company, Catalog#	RRID
Insulin	Guinea pig	1:1	Dako, IR002	AB_2800361
Tom20	Rabbit	1:800	Cell Signaling	AB_2687663
			Technology, 42406	
Nkx6.1	Rabbit	1:1500	Cell Signaling	AB_2722625
			Technology, 54551	
Glucagon	Mouse	1:200	Sigma, G2654	AB_259852
Drp1	Rabbit	1:1000	Abcam, ab184247	AB_2895215
Mfn1	Rabbit	1:100	Proteintech,	AB_2266318
			13798-1-AP	
Secondary antibodies				
Guinea pig IgG	Goat	1:200	Life Technologies,	AB_2534117
(Alexa Fluor 488)			A11073	
Rabbit IgG	Goat	1:200	Life Technologies,	AB_2534079
(Alexa Fluor 594)			A11012	
Mouse IgG	Goat	1:200	Life Technologies,	AB_2534033
(Cyanine 5)			A10524	

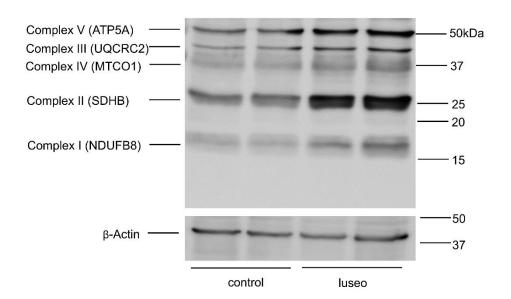
Supplementary Figure S1. Effects of luseogliflozin on gene expressions of *Cox6a2*, *Nkx6.1*, and *Ccnd2* in pancreatic islets of 10-week-old *db/db* mice


A. Gene expressions of Cox6a2 in the control group and the luseo group by real-time PCR (n = 4). **B.** Gene expressions of Nkx6.1 and Ccnd2 in the control group and the luseo group by real-time PCR (control group n = 3, luseo group n = 4). The data has been normalized by GAPDH expression. Values are mean \pm SD. P values were determined using Student's t test. * P < 0.05; ** P < 0.01. Cox6a2, Cytochrome c oxidase subunit 6A2; Nkx6.1, NK6 homeobox 1; Ccnd2, Cyclin D2.

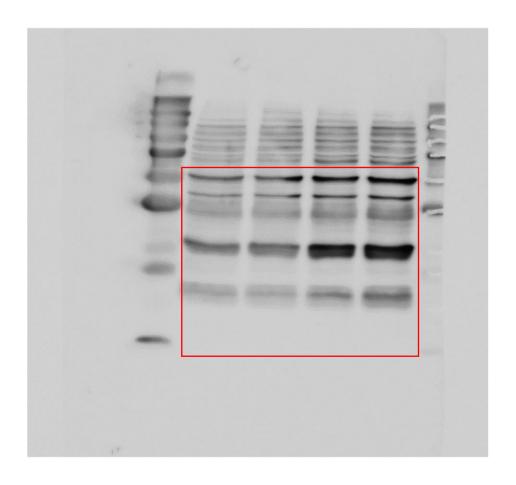
Supplementary Figure S2. Effects of luseogliflozin on mitochondrial respiratory capacity in pancreatic islets of 10-week-old *db/db* mice

A. Substrate control ratio in the control group and the luseo group. Complex I substrate control ratio was the ratio complex I-linked oxidative phosphorylation to complex II-linked oxidative phosphorylation (n = 7). Complex II substrate control ratio was the ratio complex II-linked oxidative phosphorylation to complex I+II-linked oxidative phosphorylation (n = 7). **B.** Complex IV respiratory capacity in the control group and the luseo group (n = 7). Values are mean \pm SD. P values were determined using Student's t test. ** P < 0.01. n.s.; not significant.

Supplementary Figure S3. Effects of luseogliflozin on gene expression of Nkx6.1 in INS-1 832/13 cells.



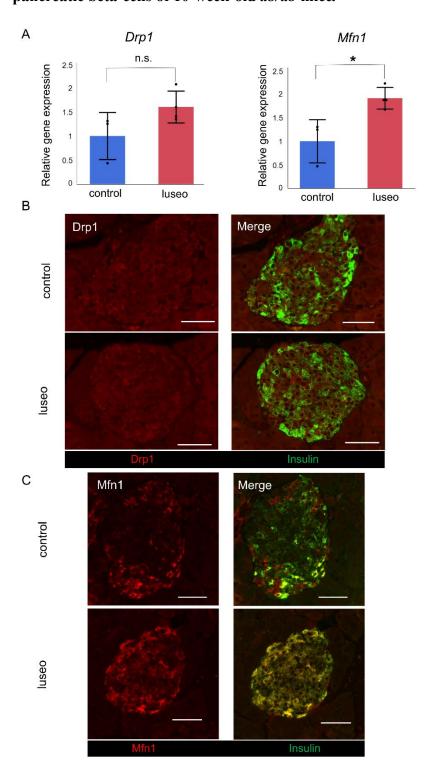
Gene expression of Nkx6.1 in INS 832/13 cells treated with DMSO vehicle (Luseo-) or vehicle + 100 nM luseogliflozin (Luseo+) in RPMI 1640 medium containing 11 mM or 22 mM glucose for 48 h (n = 4). Values are mean \pm SD. P values were determined using Tukey's HSD test. ** P < 0.01. n.s.; not significant.


Supplementary Figure S4. Effects of luseogliflozin on protein expressions of mitochondrial complexes in pancreatic islets of 10-week-old *db/db* mice.

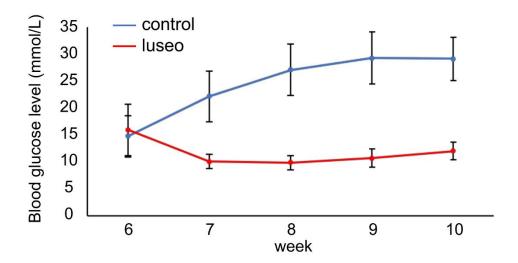
Α

ComplexI-V protein expression

Complex I-V (uncropped image)



β -actin (uncropped image)


A. Protein levels of representative subunits from complex I-V in the control group and luseo group (n = 2, 15 μ g/lane). β -actin was used as the loading control. B. The uncropped image for Complex I-V protein. C. The uncropped image for β -actin. Boxes indicate the cropped regions.

Supplementary Figure S5. Effects of luseogliflozin on Drp1 and Mfn1 expression in pancreatic beta-cells of 10-week-old db/db mice.

A. Gene expression of Drp1 and Mfn1 in the control group and luseo group by real-time PCR (control group n = 3, luseo group n = 4). The data has been normalized by GAPDH expression. Values are mean \pm SD. P values were determined using Student's t test. * P < 0.05. n.s.; not significant. B. Images of pancreatic beta-cells from the control and luseo groups stained for Drp1 (red) and insulin (green). Scale bars: 50 μ m. C. Images of pancreatic beta-cells from the control and luseo groups stained for Mfn1 (red) and insulin (green). Scale bars: 50 μ m.

Supplementary Figure S6. Effects of luseogliflozin on blood glucose levels in db/db mice

Blood glucose levels in the control group and the luseo group for 4 weeks (n=30). Values are mean \pm SD.