
Appendix

Basic statistic tools

In this section, after some preliminaries, we show how to compute probabilities of events related to
random c-colorings and used throughout the paper.

For a positive integer number a and a nonnegative integer number r, the r-th falling factorial of a (also
referred to as r-th falling power of a in Knuth’s terminology [14]) is the number:

ar =
a!

(a− r)!
= a(a− 1) · · · (a− r + 1)︸ ︷︷ ︸

r factors

and it counts the number of injective mapping from a set of r elements into a set of a elements. One has

– ar = 0 if r > a;

– a0 = 1, a1 = a and aa = a!;

– ar+s = ar(a− r)s

The reason for Knuth’s “falling power” terminology in now clear. Let us come back to the definition
of c-coloring which we recall here: let V be a set with n elements and, for a positive integer s, let
c = (c1, . . . , cs) be a weak composition of n, namely an order sensitive non negative integer vector whose
entries add up to n. A c-coloring of V is a surjective map f : V → [s] such that, for each i ∈ [s] each
color class f−1(i) has exactly ci elements; c is the profile of f . The multinomial coefficient with parts
c1, c2 · · · cs (n

c

)
=

(
n

c1c2 · · · cs

)
=

n!

c1!c2! · · · cs!

counts the c-colorings of V . Indeed, the c1 elements that are mapped to 1 can be chosen in
(
n
c1

)
, the

elements that are mapped to 2 can be chosen in
(
n−c1
c2

)
among the remaining n− c1. Continuing in this

way and taking the product of these binomial coefficients we obtain the expression above. Note that,
for s = 2, the multinomial coefficient with parts c1 and c2 (with c2 = n − c1), reduces to the binomial
coefficient: (

n

c1c2

)
=

(
n

c1

)
=

(
n

c2

)
.

Also recall that the binomial coefficient
(
n
r

)
is defined for any pair of positive integers n and r as follows,

(n
r

)
=

{
n!

r!(n−r)! if 0 ≤ r ≤ n
0 otherwise.

Let J ⊆ [s]. The contraction by J of vector c = (c1, . . . , ct) is the vector c′ obtained from c by suppressing
the entries whose indices are in J . We make use of the following multinomial identity which follows
straightforwardly by the definition of the multinomial coefficient:

(n
c

)
=

∏
j∈J

(
n

cj

) · (n−∑j∈J cj
c′

)
, (1)

where n and c are as above and c′ is the contraction of c by J . For instance, if J = {1}, then c′ =
(c2, . . . , cs) and the expression above reads as(n

c

)
=

(
n

c1

)
·
(
n− c1
c2 · · · cs

)
.
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We now define the notion of random c-colorings in some more depth. Let Φ(c;V ) be the set of all
c-colorings of V (in our case V = V (G) for some graph G). When V is understood (as we have assumed
throughout the paper) the notation is abridged into Φ(c). Thus

Φ(c) = {f : V → [s] | f is surjective} .

We now equip Φ(c) with the uniform measure Pn,c

Pn,c(f) = |Φ(c)|−1 =
(n
c

)−1
and define the random c-coloring of V , which we denote by F , as the dentity map on Φ(c), namely the
random c-coloring of V is essentially the probability space (Φ(c),Pn,c) itself and it can be visualized as
the random object F taking the value f ∈ Φ(c) with probability Pr {F = f} = Pn,c(f). A statistic based
on the random c-coloring F of V is simply any measurable function on (Φ(c),Pn,c), for instance, the
indicator Xi

v of the event (F (v) = i), for some i ∈ [s] and v ∈ V , is one of such. Notice that the inverse
image of event (F (v) = i) is the set {f ∈ Φ(c) | f(v) = i}. This is the essence of our statistical model.

For our purposes, for some two disjoint subset A and B of V and some color i ∈ [s], we are interested
in the probability of the event that all the elements of A have color i while all those of B have not. Let
Ωi(A,B) denote this event. Hence

Pr {Ωi(A,B)} = Pr {(F (a) = i, ∀a ∈ A) ∧ (F (b) 6= i, ∀b ∈ B)}

=
∣∣∣ {f ∈ Φc | A ⊆ f−1(i) ⊆ V \B

} ∣∣∣/(n
c

)
.

We are also interested in computing the probability of the intersection of two such events for two distinct
colors. We summarize these calculations in the next lemma and then we show how to use the lemma for
computing the probability of certain simpler events.

Lemma 1 Let A, A′, B, B′ be subsets of V and let a, a′, b, b′ be their respective cardinalities. Suppose
A ∩ B = ∅, A′ ∩ B′ = ∅, A ∩ A′ = ∅ and B ∩ B′ = ∅ and let b′′ = |B′ ∩ A|. Then, for each two distinct
colors i and j, one has

Pr {Ωi(A,B) ∧ Ωj(A
′, B′)} =

{
c
a
i (n− ci)b

na+b

}{
c
a′

j (n− ci − cj)b
′−b′′

(n− ci)a
′+(b′−b′′)

}
(2)

Proof. Since the elements of A have to be mapped to i and those of B have not, the elements that

have color i can be chosen in
(
n−(a+b)
ci−a

)
ways. After this choice, we are left with n − ci elements that

have to be assigned to [s] \ {i} in such a way that all the elements in A′ must be mapped to j and those
in B′ cannot. Among the elements of B′ the are possibly some that have been already assigned to i.

Therefore we can perform the choice in
(
n−ci−(a′+b′−b′′)

cj−a′

)
ways. After this choice has been done, we are

left with n− (ci + cj)) elements that have to be assigned to colors in [s] \ {i, j}, namely with the number
of c′-colorings of a set of n− (ci + cj)) elements where c′ is the contraction of c by {i, j}. If follows that

Pr {Ωi(A,B) ∧ Ωj(A
′, B′)} =

(
n−(a+b)
ci−a

)(
n−ci−(a′+b′−b′′)

cj−a′

) (
n−ci−cj

c′

)(
n
ci

)(
n−ci
cj

) (
n−ci−cj

c′

) ,

where we used Formula (1) at the denominator. One obtains Formula (2) after simplifying, expanding
the binomial coefficients and resorting to the definition of falling factorial. �

The way we use the lemma to compute the probability of certain basic events is to read the events as a
special case of the event Ωi(A,B) ∧Ωj(A

′, B′) and to plug in the formula the corresponding parameters
a, b, . . . b′′. Note that, for any j ∈ [s], by choosing A′ = B′ = ∅ (amd a′ = b′ = b′′ = 0 correspondingly)
makes the event Ωj(A

′, B′) almost sure. Hence

Pr {(F (a) = i, ∀a ∈ A) ∧ (F (b) 6= i, ∀b ∈ B)} = Pr {Ωi(A,B)}
= Pr {Ωi(A,B) ∧ Ωj(∅, ∅)}

=
c
a
i (n− ci)b

na+b
=
c
a
i

na
(n− ci)b

(n− a)b
.

(3)

2



By, taking B = ∅—and hence b = 0–has the effect of suppressing the constraint (F (b) 6= i, ∀b ∈ B).
Therefore, for instance,

Pr {F (a) = i, ∀a ∈ A} = Pr {Ωi(A, ∅)} = Pr {Ωi(A, ∅) ∧ Ωj(∅, ∅)} =
c
a
i

na
(4)

and, in particular, for any pair of elements u, v ∈ V any color i ∈ [s],

Pr {F (u) = i} =
c
1
i

n1
=
ci
n

and Pr {(F (u) = i) ∧ (F (v) = i)} =
c
2
i

n2
=
ci(ci − 1)

n(n− 1)
. (5)

Analogously, since for any pair of elements u, v ∈ V and any two distinct colors i, j ∈ [s], it holds that

(F (u) = i) ∧ (F (v) = j) = Ωi({u}, {v}) ∧ Ωj({v}, {u})

it follows that two compute the probability of such an event one has to put a = b = a′ = b′ = b′′ = 1 in
Formula (2) to obtain

Pr {(F (u) = i) ∧ (F (v) = j)} =
c
1
i c

1
j

n2
=

cicj
n(n− 1)

. (6)

Proof of Theorem 1

Proof. The expected values mi,i and mi,j , i 6= j have already been computed. Let us prove the formula
for the expected value of Li. By definition W i

v is the indicator of the event (F (v) = i)∧ (F (w) 6= i, ∀w ∈
NG(v)), namely the event that v has color i while all of its neighbors have not. Thus, after (4),

E
(
W i
v

)
= Pr

{
W i
v = 1

}
= Pr

{
Xi
v = 1, Di

NG(v) = 0
}

=
ci
n

Pr
{
Di
NG(v) = 0

∣∣∣Xi
v = 1

}
=
ci
n
· (n− ci)

degG(v)

(n− 1)degG(v)
.

Hence, by linearity of expectation

E
(
Li
)

=
ci
n

∑
v∈V (G)

(n− ci)degG(v)

(n− 1)degG(v)
.

Let us compute the variance of the random variables in 1), 2) and 3). Observe that all such variables are
sums of Bernoulli random variables, namely they are of the form S =

∑
ν∈N Bν where N is a finite index

set and Bν is a Bernoulli random variable for each index ν ∈ N . The variance of S is thus given by

var(S) = E
(
S2
)
− (E (S))2 = E

(∑
ν∈N

Bν

)2
− (E (S))2 =

= E

(∑
ν∈N

Bν

)
+ E

 ∑
(ν,ν′)∈N×N

ν 6=ν′

BνBν′

− (E (S))
2

=

= E (S) (1− E (S)) +
∑

(ν,ν′)∈N×N
ν 6=ν′

E (BνBν′) =

= E (S) (1− E (S)) +
∑

(ν,ν′)∈N×N
ν 6=ν′

Pr {Bν = 1 ∧Bν′ = 1}

(7)

where we used the fact that Bν = B2
ν and that E (BνBν′) = Pr {Bν = 1 ∧Bν′ = 1}. Let us first specialize

the formula above to M i,i and M i,j . Notice that in both cases N = E(G) and that the summation set
in the last equality of (7) is E(G) × E(G) \ {(e, e) | e ∈ E(G)}. Denote the latter set by P . Since
two edges e and e′ of G can have at most one node in common, it follows that P = Q ∪ R where
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Q = {(e, e′) ∈ P | e ∼ e′} and R = {(e, e′) ∈ P | e 6∼ e′} and where we have written e ∼ e′ if e and e′

share a node and e 6∼ e′ otherwise. Clearly Q∩R = ∅. Therefore, if S is either M i,i or M i,j , the variance
of S is

var(S) = E (S) (1− E (S)) +
∑
Q

Pr {Be = 1 ∧Be′ = 1}+
∑
R

Pr {Be = 1 ∧Be′ = 1} .

It is clear that Pr {Be = 1 ∧Be′ = 1} assumes only two values over the set P : it assumes the value a on
Q, and the value b on R. Moreover, since |P | = (m2 −m) = 2

(
m
2

)
and since e ∼ e′ if and only if e and

e′ spans a P3, it follows that

|Q| = 2π3(G) = 2
∑

v∈V (G)

(
degG(v)

2

)
and |R| = 2

(m
2

)
− 2π3(G).

Therefore, the variance of S assumes the following form

var(S) = E (S) (1− E (S)) + 2
[
π3(G)(a− b) +

(m
2

)
b
]
. (8)

We obtain expressions for the variance of M i,i and M i,j by plugging the expectation of the corresponding
variable in the formula above and specializing a and b for Be = Y i,je and Be = Y i,je , with e = uv for some
nodes u and v.

Let us start with a, namely, the value of Pr {Be = 1 ∧Be′ = 1} when (e, e′) ∈ Q. Hence e ∼ e′. After
regarding edges as sets of two nodes, one has e ∼ e′ if and only if |e ∪ e′| = 3 (recall that the graph is
loopless and has no parallel edges). Let e ∪ e′ = {u, v, w} where u is the unique node in e ∩ e′. Recall
that for disjoint subsets A and B of V (G) we denote by Ωi(A,B) the event that all the nodes of A have
color i while all those of B have not. Now, if S = M i,i, then Be = Y i,ie for all e ∈ E(G), and thus
a = Pr {Ωi({u, v, w}, ∅)}; else, if S = M i,j , then Be = Y i,je for all e ∈ E(G); in this case observe a is the
sum of the probability of two mutually exclusive events: the event that u has color i while the nodes in
{v, w} have color j, namely the event Ωi({u}, {v, w})∧Ωj({v, w}, {u}), and the the event that u has color
j while the nodes in {v, w} have color i, namely the event Ωj({u}, {v, w}) ∧ Ωi({v, w}, {u}). Therefore,
by Lemma 1, one has

a =


c
3
i

n3 if Be = Y i,je
cic

2
j+c

2
i cj

n3 if Be = Y i,je

.

Let us compute b. In this case e ∩ e′ = ∅. Let e = uv and e′ = u′v′. If S = M i,i, then Be = Y i,ie for all
e ∈ E(G), and thus a is the probability of the event Ωi({u, u′, v, v′}, ∅), namely the probability that all
the four nodes have color i under F ; else, if S = M i,j , then Be = Y i,je for all e ∈ E(G); observe that there
are two bipartitions of {u, u′, v, v′} into sets A and B such that |A| = |B| = 2 and neither A nor B induces
one of the edges e and e′. Hence b is two times the probability that all the nodes in A have one of the
colors i or j and all the nodes in B have the other color. Hence b is four times the probability of the event
that all nodes in A have color i and all nodes in B have color j, that is b = 4Pr {Ωi(A,B) ∧ Ωj(B,A)}.
Therefore, still by Lemma 1, one has

b =


c
4
i

n4 if Be = Y i,ie

4
c
2
i c

2
j

n4 if Be = Y i,je

.

By plugging the values of a and b (as well as the corresponding expected values) in (8) one achieves the
desidered expressions for σ2

i,i and σ2
i,j . It only remains to prove the formula for the variance of Li. By

specializing (7) with S = Li, N = V (G), Bv = W i
v one gets

var(Li) = E
(
Li
) (

1− E
(
Li
))

+
∑

(u,v)∈V (G)
u6=v

Pr
{
W i
u = 1,W i

v = 1
}
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and since Pr
{
W i
u = 1,W i

v = 1
}

= 0 whenever u and v are adjacent nodes of G, it follows that

var(Li) = E
(
Li
) (

1− E
(
Li
))

+
∑

(u,v)∈V (G)
u6=v,uv 6∈E(G)

Pr
{(
Xi
u = 1, Xi

v = 1
)
∧
(
Di
NG(u)∪NG(v) = 0

)}
.

Hence, after setting b(u, v) = |NG(u)∪NG(v)| = degG(u)+degG(v)−|NG(u)∩NG(v)|, by (3) with a = 2
and b = b(u, v) it follows that

Pr
{(
Xi
u = 1, Xi

v = 1
)
∧
(
Di
NG(u)∪NG(v) = 0

)}
=
c
2
i

n2
(n− ci)b(u,v)

(n− 2)b(u,v)

and after plugging this expression in the latter sum we obtain the stated formula. The proof is thus
completed. �

Classes’ size in organism’s networks

For each organism’s network, we report in Table 1 the number of nodes for each functional class, and
the total number of nodes. Nodes in classes A, B, Y, and Z are included in the total size, but were not
considered in the analisys.

Species Bm Ec Hi Hp Mt Sp Tp Vc Pa Sc

C 158 203 89 64 168 43 34 151 113 133
D 26 27 23 18 38 20 12 32 16 53
E 298 262 136 86 185 132 20 216 120 172
F 60 64 51 33 63 60 21 65 47 80
G 143 215 98 29 104 174 41 135 69 147
H 114 109 65 65 119 43 19 121 58 95
I 90 65 41 38 129 32 17 67 18 81
J 153 131 140 118 141 136 113 159 146 336
K 107 135 69 22 123 104 26 133 74 143
L 110 118 100 81 155 101 58 133 51 131
M 138 156 110 82 99 81 59 144 43 42
N 33 72 6 42 9 5 43 90 27 5
O 110 99 76 62 92 48 42 104 43 212
P 105 137 80 42 103 64 22 133 62 76
Q 34 23 13 8 78 7 1 35 10 23
T 60 56 32 15 70 39 20 77 13 79
U 29 33 23 35 18 17 11 35 10 78
V 35 38 16 24 36 54 7 40 21 9
X 871 2076 440 400 2048 651 328 1281 619 4169

total nodes 2675 4020 1609 1264 3779 1811 894 3153 1564 6157

Table 1: For each organisms, the total number of nodes (classes A, B, Y, Z included) and the number of
nodes in each considered functional class.

Speeding-up Li computation

We show how to compute efficiently statistics in point 3) in Theorem 1, in particular the variance
expression

var(Li) = E
(
Li
) (

1− E
(
Li
))

+
c
2
i

n2

∑
(u,v)∈V (G)
u6=v,uv 6∈E(G)

(n− ci)b(u,v)

(n− 2)b(u,v)
(9)
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Trivially computing the summation in (9) requires O(n3) time. We show now that the time complex-

ity can be lowered to O
(∑

u∈V (G) deg3
G(u)

)
, that becomes O

(∑
u∈V (G) deg2

G(u)
)

expected time (with

very high probability) if hash-tables are used to represent sets, and falling factorial values xy are approx-
imated by applying Stirling formula. Since huge networks are usually very sparse, this represents a deep
improvement with respect to the computation based on (9).

We first observe that ∑
(u,v)∈V (G)
u6=v,uv 6∈E(G)

(n− ci)b(u,v)

(n− 2)b(u,v)
=

=
∑

(u,v)∈V (G)

(n− ci)b(u,v)

(n− 2)b(u,v)
− 2

∑
uv∈E(G)

(n− ci)b(u,v)

(n− 2)b(u,v)
−

∑
u∈V (G)

(n− ci)b(u,u)

(n− 2)b(u,u)
(10)

The second and third summations in (10) contain respectively only O(m) and O(n) terms. The first
summation in (10) contains O(n2) terms, and for each pair u, v a different value of exponent b(u, v) could
be needed. This actually only occurs for pairs u, v having some common neighbor, while if all pairs had
distance larger than 2 a substantial speed-up could be possible. We actually compute the first summation
in (10) as if all pairs u, v had no common neighbors, so that b(u, v) = degG(u) + degG(v), and then we
fix the correct value for pairs u, v such that dist(u, v) = 2—adjacent pairs have already been taken into
account in the second summation.

Let us denote degG(u) + degG(v) by b′(u, v):

∑
(u,v)∈V (G)

(n− ci)b(u,v)

(n− 2)b(u,v)
=

=
∑

(u,v)∈V (G)

(n− ci)b
′(u,v)

(n− 2)b
′(u,v)

+
∑

(u,v)∈V (G)
dist(u,v)=2

(
(n− ci)b(u,v)

(n− 2)b(u,v)
− (n− ci)b

′(u,v)

(n− 2)b
′(u,v)

)
(11)

The first summation in (11) is easily computed by means of the degree histogram of G, where deg−1G (d)
is the number of nodes having degree d in G:

∑
(u,v)∈V (G)

(n− ci)b
′(u,v)

(n− 2)b
′(u,v)

=
∑

0≤d1≤n
0≤d2≤n

deg−1(d1) deg−1(d2)
(n− ci)d1+d2

(n− 2)d1+d2

and can be computed in O(m) time, since at most 2
√
m distinct degree values may occur in a graph. The

second summation in (11) can be computed by exploring the neighborhood of each node, since dist(u, v) =

2 if and only if u, v ∈ NG(z) for some node z and uv 6∈ E(G); this can be done in O
(∑

z∈V (G) deg2(z)
)

,

that is much smaller that n2 for sparse graphs. It is immediate to see that O
(∑

z∈V (G) deg2(z)
)

is the

dominating term in computing the value of (9).
Experiments have been performed for social networks with over 106 nodes and 8 ·106 edges, for which

the number of pairs of nodes u, v at distance 2 was order of 108.

6


