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Comparison with previous models

Model Features Dynamics

(Abeles 1991, Diesmann

et al. 1999)

Synfire chains. Reliable sequences; pattern dwell times

have short duration and low variability.

Fine tuned connectivity structure.

(Sompolinsky & Kanter

1986, Kleinfeld 1986, De-

haene et al. 1987, Treves

2005, Murray et al. 2017,

Gillett et al. 2020)

Rate networks with both

symmetric and asymmetric

weights.

Reliable pattern sequences but low trial-

to-trial temporal variability.

(Jun & Jin 2007, Liu &

Buonomano 2009, Fiete

et al. 2010, Pereira &

Brunel 2020)

Rate networks trained with

unsupervised learning rules.

Reliable pattern sequences but low trial-

to-trial temporal variability.

(Litwin-Kumar & Doiron

2012, Deco & Hugues 2012,

Mazzucato et al. 2015)

Clustered E-I spiking net-

work generating attractors.

Random sequences with large temporal

variability.

(Mongillo et al. 2003, Miller

& Katz 2010)

Clustered E-I spiking net-

work generating attractors.

Reliable transitions between attractors

with large temporal variability. Architec-

ture is fine tuned to produce a small num-

ber of carefully designed metastable at-

tractors.

(Mazzucato et al. 2015,

2016, 2019, Darshan et al.

2017)

Clustered E-I spiking net-

work generating attractors.

Reliable sequences of attractors with large

temporal variability. The network is driven

by strong time-dependent stimuli designed

to pace activity along stimulus-specific se-

quences.

Table S1: The main features of M2 ensemble activity explained by our model were the reliable identity and order

of long-lived neural patterns occurring in a sequence, and the large trial-to-trial variability of pattern dwell times. In

our model, both features can be robustly attained when transitions between attractors arise from low-dimensional

correlated variability. Previous network models could achieve either sequence reliability or variability in dwell time

distributions, but not both; with a notable exception of the model in (Miller & Katz 2010) where both sequence

reliability and temporal variability were achieved. Although, the underlying mechanism in this model relies on an

architecture that is tuned to produce the small number of carefully designed states. Models generating reliable

pattern sequences include synfire chains (Abeles 1991, Diesmann et al. 1999). These models rely on a fine tuned

connectivity structure producing pattern dwell times with short duration and low variability. While these dynamics

are well suited to explain neural activity observed in songbird HVC (Hahnloser et al. 2002, Fiete et al. 2010) or

mammalian hippocampus (Nádasdy et al. 1999), their features are not compatible with the observed M2 ensemble

activity. Reliable pattern sequences can otherwise be triggered by specific cues in recurrent networks with asymmetric

connectivity structure (Sompolinsky & Kanter 1986, Kleinfeld 1986, Dehaene et al. 1987, Treves 2005, Murray et al.

2017, Gillett et al. 2020), trained with unsupervised learning rules (Jun & Jin 2007, Liu & Buonomano 2009, Fiete

et al. 2010, Pereira & Brunel 2020) or in reservoir networks (Rajan et al. 2016). However, pattern dwell times in such

models are short, set by single-neuron characteristic time constants, and show little trial-to-trial variability. Pattern

dwell times could be increased via synaptic delays (Sompolinsky & Kanter 1986). However, none of these models is

capable of generating large trial-to-trial variability in dwell time distributions and are thus incompatible with the

observed M2 data. Spiking networks with clustered architecture can give rise to metastable attractors with large

trial-to-trial variability in dwell time distributions (Litwin-Kumar & Doiron 2012, Deco & Hugues 2012). However,

metastable attractors in these models concatenated in random sequences, incompatible with the highly reliable

sequences we observed in M2. Each cluster generates independent fluctuations within activity space, realizing a

high-dimensional stochastic process. These fluctuations drive transitions along random directions in activity space,

thus unreliable across trials (when concatenating more than two states in a sequence (Mongillo et al. 2003)). To

drive a specific transition, independent fluctuations would have to align along a specific direction within the high-

dimensional activity space, and the probability of this event occurring vanishes for large network size. One may drive

clustered networks with strong time-dependent stimuli to pace activity along stimulus-specific sequences (Miller &

Katz 2010, Mazzucato et al. 2015, 2016, 2019, Darshan et al. 2017). However, this would merely shift the problem

of reliable sequence generation from the local circuit to an upstream area producing the specific input.


