SUPPLEMENTARY INFORMATION

A conserved biosynthetic gene cluster is regulated by quorum sensing in a shipworm symbiont

Jose Miguel D. Robes^{1,2,3}, Marvin A. Altamia^{3#}, Ethan G. Murdock^{1,2}, Gisela P. Concepcion³, Margo G. Haygood⁴, and Aaron W. Puri^{1,2}*

¹Department of Chemistry, University of Utah, Salt Lake City, Utah, USA ²Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, USA ³The Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines ⁴Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA

#Present address:

Marvin A. Altamia, Ocean Genome Legacy Center, Department of Marine and Environmental Science, Northeastern University, Nahant, Massachusetts, USA

*Corresponding author: Aaron W. Puri 315 S 1400 E Rm 2020 Salt Lake City, UT 84112 USA (801) 213-1408 a.puri@utah.edu

Figure S1. GCF_3 is conserved in cellulolytic shipworm symbionts. Representative shipworm symbionts and their biosynthetic gene clusters belonging to GCF_3. Amino acid identity of core biosynthetic genes is at least 65% in all cases. Genes are colored according to predicted function in antiSMASH 6.0 (1).

Figure S2. Biosynthetic gene clusters co-located with quorum sensing genes in other shipworm symbiont genomes. Genes are colored according to predicted function in antiSMASH 6.0 (1).

Figure S3. Response of P_{tbal} -gfp E. coli reporter strain EAWP128 to crude supernatant extracts of the 2052S and $\Delta tbaI$ mutant strains. Vehicle: ethyl acetate.

Figure S4. Response of P_{tbal}-gfp E. coli reporter strain EAWP128 to a commercial standard of C₁₀-HSL.

Figure S5. The $\Delta tbal$ strain retains its cellulolytic ability. Small halo around the spotted colony on the shipworm basal medium (SBM) cellulose plate indicates cellulolysis.

Figure S6. The predicted PKS gene K256DRAFT_2890 is co-transcribed with *tbaI*. (A) Locations of primers designed to span open reading frames of *tbaI* and K256DRAFT_2890. (B) Amplification of the region in A. The PCR template was either genomic DNA (gDNA) or cDNA from 2052S. Expected product size: 427 bp.

 Table S1. Shipworm isolate strain information.

Isolate name	Metabolic	Host shipworm	Collection site	Sequencing	Estimated	% GC	IMG	Reference
	type			center	genome		Genome ID	
77. 11		D) (G. 105011			size (bp)	54.60	2541046051	
Teredinibacter sp.	Cellulolytic	PMS-1959H	Butuan, Agusan	JGI-DOE	5,635,926	54.68	2541046951	(2)
PMS-		Bactronophorus	del Norte,					
2052S.S.stab0a.01		cf. thoracites	Philippines					
Teredinibacter	Cellulolytic	Bankia gouldi	Beaufort, North	J. Craig	5,193,164	50.89	2541046951	
turnerae T7901			Carolina, USA	Venter				
				Institute				
Teredinibacter	Cellulolytic	Lyrodus	Long Beach,	JGI-DOE	5,387,817	50.81	2513237099	
turnerae T7902		pedicellatus	California, USA					
Teredinibacter sp.	Cellulolytic	PMS-2749X	Infanta, Quezon,	JGI-DOE	6,056,039	47.96	2579779156	
PMS-		Bactronophorus	Philippines					
2753L.S.0a.02		thoracites						
Teredinibacter	Cellulolytic	Bankia setacea	Puget Sound,	JGI-DOE	4,814,259	47.18	2767802764	
haidensis Bs08	-		Washington,					
			USA					
<i>Teredinibacter</i> sp.	Cellulolytic	PMS-1114L	Panglao, Bohol,	JGI-DOE	5,699,307	50.39	2558309032	
1120W.S.0a.04	2	Teredo fulleri	Philippines		<i>, ,</i>			
Teredinibacter	Cellulolytic	Bankia setacea	Puget Sound,	JGI-DOE	4,921,245	45.72	2878457929	
purpureus BS12	2		Washington,					
1 1			USA					
Teredinibacter	Cellulolytic	Bankia setacea	Puget Sound,	JGI-DOE	3,886,134	47.76	2781125611	
waterburyi BS02	-		Washington,					
			USA					

Table S2. HR-MS/N	AS peak list for C ₁₀ -HSI	L ([M+H] ⁺) produced	by 2052s compared	to commercial stand	lard. The 10 most in	itense signals are
shown for each sam	ple.					

205	528	Standard		
m/z	Intensity	m/z	Intensity	
102.0563	6.50E+03	102.0565	2.90E+04	
256.1914	6.30E+03	256.1915	2.90E+04	
155.1430	6.10E+03	155.1431	2.10E+04	
238.1810	1.20E+03	238.1813	9.20E+03	
95.0874	9.40E+02	95.0871	8.80E+03	
81.0723	8.70E+02	81.0718	8.60E+03	
74.0631	8.60E+02	74.0629	8.30E+03	
228.1940	8.10E+02	156.1468	8.10E+03	
156.1456	7.60E+02	137.1328	8.00E+03	
137.1326	7.32E+02	228.1968	7.90E+03	

REFERENCES

- 1. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res https://doi.org/10.1093/nar/gkab335
- Altamia MA, Lin Z, Trindade-Silva AE, Uy ID, Shipway JR, Wilke DV, Concepcion GP, Distel DL, Schmidt EW, Haygood MG. 2020. Secondary Metabolism in the Gill Microbiota of Shipworms (Teredinidae) as Revealed by Comparison of Metagenomes and Nearly Complete Symbiont Genomes. mSystems https://doi.org/10.1128/mSystems.00261-20