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Dear Gosia, 

 

Your Article, "Immune disease risk variants regulate gene expression dynamics during CD4+ T cell 

activation" has now been seen by 2 referees. You will see from their comments below that while they 

find your work of interest, some important points are raised. We are interested in the possibility of 

publishing your study in Nature Genetics, but would like to consider your response to these concerns 

in the form of a revised manuscript before we make a final decision on publication. 

 

As you will see, these reviews are in general quite positive. Reviewer #1 is overall supportive but has 

some questions about the analysis and the biological interpretation of the eQTLs and eGenes 

identified. Reviewer #2 is also positive and has no major concerns. The points raised by Reviewer #1 

mainly require further clarifications and responses and we think that these are addressable. 

 

We therefore invite you to revise your manuscript taking into account all reviewer and editor 

comments. Please highlight all changes in the manuscript text file. At this stage we will need you to 

upload a copy of the manuscript in MS Word .docx or similar editable format. 

 

We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 

us if there are specific requests from the reviewers that you believe are technically impossible or 

unlikely to yield a meaningful outcome. 

 

When revising your manuscript: 

 

*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 
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referee comment. If no action was taken to address a point, you must provide a compelling argument. 

This response will be sent back to the referees along with the revised manuscript. 

 

*2) If you have not done so already please begin to revise your manuscript so that it conforms to our 

Article format instructions, available 

<a href="http://www.nature.com/ng/authors/article_types/index.html">here</a>. 

Refer also to any guidelines provided in this letter. 

 

*3) Include a revised version of any required Reporting Summary: 

https://www.nature.com/documents/nr-reporting-summary.pdf 

It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the 

manuscript goes back for peer review. 

A revised checklist is essential for re-review of the paper. 

 

Please be aware of our <a href="https://www.nature.com/nature-research/editorial-policies/image-

integrity">guidelines on digital image standards.</a> 

 

Please use the link below to submit your revised manuscript and related files: 

 

[REDACTED] 

 

<strong>Note:</strong> This URL links to your confidential home page and associated information 

about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 

this email to co-authors, please delete the link to your homepage. 

 

We hope to receive your revised manuscript within four to eight weeks. If you cannot send it within 

this time, please let us know. 

 

Please do not hesitate to contact me if you have any questions or would like to discuss these revisions 

further. 

 

Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 

direction, we are now requesting that all authors identified as ‘corresponding author’ on published 

papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 

the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 

achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID 

from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more 

information please visit please visit <a 

href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 

 

We look forward to seeing the revised manuscript and thank you for the opportunity to review your 

work. 

 

All the best, 

 

Catherine 

 

--- 
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Catherine Potenski, PhD 

Chief Editor 

Nature Genetics 

1 NY Plaza, 47th Fl. 

New York, NY 10004 

catherine.potenski@us.nature.com 

https://orcid.org/0000-0002-4843-7071 

 

 

Referee expertise: 

 

Referee #1: immunology, genetics, single-cell analysis 

 

Referee #2: genetics, immune diseases, eQTL analysis 

 

 

Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

This manuscript provides a highly important resource of eQTL of stimulated CD4+ T cells with single-

cell, high-quality dataset. The experiment is well designed in that gene expression is quantified at 

multiple time points, considering complex response of CD4+ T cells to stimulation. The manuscript is 

statistically well analyzed. The identified colocalization of immune-mediated disease GWAS signals 

with dynamic eQTLs is a very insightful finding in this field. Yet, the number of eQTLs identified has 

been relatively small, and I think there are several points which need to be addressed: 

 

1. Page 7: “We observed that between 210 and 640 eGenes were only detected in 

individual cell states (Figure 2B). For example, kinase NME4 and purinoceptor P2RX4 were only 

detected as eGenes in memory T cells at 16h and 40h of activation, respectively (Figure2C).” 

“Finally, to understand which cell functions might differ in their genetic regulation across cell types, we 

tested for pathway enrichment in eGenes detected in one cell type and not the other, i.e. in memory 

but not naïve T cells and vice versa (Figure 2D).” 

 

The power for identifying eQTLs greatly depends on gene expression level. My consideration is 

whether these cell state-specific eGenes are the consequence of cell state-dependent gene regulation 

or cell state-specific gene expression. For me, pathway analysis of eGenes doesn’t make much sense if 

most of the genes have eQTLs as GTEx reported (The GTEx consortium, Science. 2020). Detectability 

of eGenes are solely relying on statistical power due to sample size, gene expression level, allele 

frequency, etc. I’d like to see the difference in the result of pathway analysis between cell state-

specific eGenes and cell state-specific expressed genes, and to be explained about the biological 

meaning of pathway analysis with cell state-specific eGenes. 

In addition, to see the merit of single cell-based eQTL analysis, I’d like to see the examples of eQTLs 

that were detected only in this dataset at specific cell state, compared to previously reported immune 

cell eQTLs. 

 

2. Page 12: “Finally, we observed that eQTL effect sizes negatively correlated with the centrality 
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values of the corresponding eGenes in the coexpression network, i.e. eGenes with larger eQTL effects 

were more likely to be less connected in the network (Figure 3D). This suggests that genes at the 

edges of the co-expression network are more tolerant to variability in gene expression.” 

 

Although this finding is very interesting, biological interpretation of eQTL beta is not straightforward as 

previously proposed (Mohammadi, et al, Genome Res. 2017). Allelic fold change, introduced by this 

group, might be preferable to using log-transformed effect size in this comparison. 

 

3. Page 13: “We identified 2,265 genes with dynamic eQTL effects, which comprised 34% of eGenes in 

our dataset (Supplementary Table 5). We applied both linear and quadratic models and observed that 

most eQTLs followed linear dynamics across the activation trajectory (74% and 76% in naive and 

memory T cells, respectively) (Figure 4E).” 

 

An important feature of this paper is that it examines the dynamically changing gene expression of T 

cells after stimulation at the single cell level. This data set has the potential to not only identify eQTLs, 

but also to get closer to the regulatory mechanism of eQTLs. Several researchers analyzed the 

interaction of eQTL effect size and genome-wide gene expression that are dependent on intrinsic or 

extrinsic factors (context-dependent eQTL) (Zhernakova et al. Nat Genet. 2017;49:139-145.; Ota, et 

al Cell. 2021;184:3006-3021.e17.). Similar analysis was also successful in scRNAseq data of PBMC 

from 45 donors (van der Wijst et al. Nat Genet. 2018;50:493-497.). Therefore, context-dependent 

eQTL analysis in this dataset may reveal relationships between several eQTLs/eGenes and functional 

gene modules to deepen the understanding of eQTL regulation in stimulated T cells. 

 

4. Page 13: “We identified 2,265 genes with dynamic eQTL effects, which comprised 34% of eGenes in 

our dataset (Supplementary Table 5).” 

 

I’d like to see the analytic stability of dynamic eQTL analysis. How was the distribution of p values? If 

possible, permutation test would be one option to ensure the robustness of the results. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

Soskic and colleagues investigate how gene expression and genetic influences thereon can vary when 

cells are placed in different contexts, and how some of these context-specific effects are relevant to 

disease risk. They use the well-established model of T lymphocyte activation by CD3/CD28, profiling 

naïve and memory CD4+ T cells from 119 healthy donors at baseline and at 16 hours, 40 hours and 5 

days after activation. They generate single-cell RNAseq data on 655,349 individual cells across these 

individuals and conditions. They capture both stable and transient sub-populations of T cells, 

recapitulating what we know about the process of activation. They identify eQTLs across these cell 

populations, and show that 2265/6407 are only detected in the transient populations, indicating that 

gene regulation is dynamic over activation. They then show that these context-specific eQTLs overlap 

immune-mediated disease associations; in fact, they account for 60% of all overlaps. This suggests 

many disease risk variants alter gene regulation during dynamic processes rather than altering 

baseline expression. 

 

Overall, this is a well-written paper with an emphasis on the importance of context-specific studies of 

immune cells. It is a very instructive application of scRNAseq to a more focused problem, showing that 
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cell dynamics can be dissected with great precision (rather that coarser studies looking at all 

lymphocytes, for instance). The work is timely, as a major issue in human genetics is trying to 

understand how disease risk variants influence biology – and why so few associations seem to overlap 

eQTLs, despite the huge enrichment of heritability on gene regulatory elements. Soskic et al provide 

at least a partial answer to this: they are context-specific eQTLs not observed in resting cells. I have 

no major questions or concerns about the work presented, but only a few minor comments: 

 

- Figures 2b/4e: some more explanation in the legend on how to decode the dot diagram would be 

useful 

- I am a little puzzled by the differences in colocalization between single-cell and pseudo-bulk analyses 

(Figure 5c). Are these likely to be false positives (coloc has a somewhat elevated false positive rate), 

or is this is a detection issue? 

- The authors document how their analyses recapitulate known T cell activation biology through the 

paper. To my eyes, it makes it a little challenging for the reader to follow all the diverse aspects. The 

authors may want to pare back some of these examples. 
 

Author Rebuttal to Initial comments   

 

Reviewers' Comments:  

We thank all the Reviewers for their feedback. We have addressed all of the comments and we believe 

this has greatly improved our manuscript.  

 

Reviewer #1: 

Remarks to the Author: 

This manuscript provides a highly important resource of eQTL of stimulated CD4+ T cells with a single-

cell, high-quality dataset. The experiment is well designed in that gene expression is quantified at multiple 

time points, considering the complex response of CD4+ T cells to stimulation. The manuscript is 

statistically well analyzed. The identified colocalization of immune-mediated disease GWAS signals with 

dynamic eQTLs is a very insightful finding in this field. Yet, the number of eQTLs identified has been 

relatively small, and I think there are several points which need to be addressed: 

 

We thank the Reviewer for these positive comments and for highlighting the importance of our work. 

 

1. Page 7: “We observed that between 210 and 640 eGenes were only detected in individual cell states 

(Figure 2B). For example, kinase NME4 and purinoceptor P2RX4 were only detected as eGenes in memory 

T cells at 16h and 40h of activation, respectively (Figure2C) [...] Finally, to understand which cell functions 

might differ in their genetic regulation across cell types, we tested for pathway enrichment in eGenes 

detected in one cell type and not the other, i.e. in memory but not naïve T cells and vice versa (Figure 2D).” 

 

The power for identifying eQTLs greatly depends on gene expression level. My consideration is whether 

these cell state-specific eGenes are the consequence of cell state-dependent gene regulation or cell state-

specific gene expression. For me, pathway analysis of eGenes doesn’t make much sense if most of the genes 
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have eQTLs as GTEx reported (The GTEx consortium, Science. 2020). Detectability of eGenes is solely 

relying on statistical power due to sample size, gene expression level, allele frequency, etc. I’d like to see 

the difference in the result of pathway analysis between cell state-specific eGenes and cell state-specific 

expressed genes, and to be explained about the biological meaning of pathway analysis with cell state-

specific eGenes. 

 

In addition, to see the merit of single cell-based eQTL analysis, I’d like to see the examples of eQTLs that 

were detected only in this dataset at specific cell states, compared to previously reported immune cell 

eQTLs.  

 

We thank the Reviewer for their valuable feedback. Upon a reflection we agree with this comment, indeed, 

in a study with sufficient statistical power every gene would be expected to have at least one eQTL, and 

therefore pathway enrichment would be meaningless. We thus removed this analysis from our paper. We 

believe this does not impact the conclusions of our study. 

 

Regarding detection of cell state specific effects, we have first performed a global comparison of our eQTL 

signals with two large bulk RNA-seq studies that also included CD4+ T cells: BLUEPRINT and DICE 

(Chen et al. 2016; Schmiedel et al. 2018). We compared our eQTLs to gene-variant pairs available in the 

published summary statistics of these studies for any CD4+ T cell populations. Comparisons were made in 

terms of the direction and magnitude of eQTL effects using the MashR method (Urbut et al. 2018). We 

identified the lead variant for each gene and we randomly selected four variants per gene as the random set 

to fit the mashr mode.  

 

We have now added these results to our manuscript, summarising them as follows: “We observed a high 

degree of replicability, with previously published eQTLs (0.67-075); Supplementary Figure 8C). However, 

eQTL sharing was reduced when taking into account both the direction and the magnitude of eQTL effects 

(0.28-0.34); Supplementary Figure 8C), suggesting that effect sizes might differ between different 

transcriptomics profiling strategies, naive and memory cells, and across T cell activation timepoints.” 

 

https://paperpile.com/c/b3roqq/E6tG+pUxM
https://paperpile.com/c/b3roqq/qbou


 
 

 

7 
 

 

 

 

Supplementary Figure 8. eQTL sharing. C) Overlaps of eQTLs with DICE and BLUEPRINT were assessed by 

comparing the effect sizes and directions of eQTLs across cell types (naive and memory cells) and time points using 

mashR. 

 

 

In addition, the Nathan et al., study (Nathan et al 2021 biorXiv) also demonstrated that if the eQTL is 

significant in both their scRNAseq and the public bulk data, it largely has the same direction of an effect. 

We unfortunately do not have access to their raw data to recalculate the replication rate and compare it to 

our calculations. 

 

Furthermore, by comparing our activation eQTLs to previously reported results in any of DICE’s CD4+ T 

cell populations, we identified many examples of eQTLs present in activated T cells, but not detected in 

resting cells. For example, CD6 has a strongly significant effect in our data, an FDR-adjusted p-value of 
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5.7 x 10-6 in stimulated memory T cells, while it is not reported as an eQTL in the DICE dataset. CFLAR is 

the strongest dynamic eQTLs in our study (Figure 4D), but is not identified as an eQTL in DICE.  

 

Next we specifically limited ourselves to demonstrating the value of single cell eQTL mapping by 

comparison to the pseudo-bulk eQTLs within our dataset. To address the Reviewers comment and provide 

examples of genes detected at single cell level, we asked if eGenes that were only observed at the single 

cell level in our study, i.e. significant in cell subpopulations but not in the whole cell type, were also 

significant in published bulk RNAseq data. In the main text we now provide examples of such genes that 

demonstrate eQTL effects in our dataset at a single cell level but are not detected in the DICE data: 

 

Page 5: For example, VAMP8 and AIMP1 eQTLs which are TCM specific in our dataset (padj = 5 x 10-4 and 

padj = 1.04 x 10-4, respectively) and RNF168 specific to IFN expressing cell cluster (padj = 6.2 x 10-3) , were 

not detected in any of the T cell populations in DICE. These data suggest that further increase in power to 

detect cluster eQTLs will likely result in many more eQTLs that were not previously identified in bulk cell 

types and tissues. 

 

 

 

2. Page 12: “Finally, we observed that eQTL effect sizes negatively correlated with the centrality values of 

the corresponding eGenes in the coexpression network, i.e. eGenes with larger eQTL effects were more 

likely to be less connected in the network (Figure 3D). This suggests that genes at the edges of the co-

expression network are more tolerant to variability in gene expression.” 

 

Although this finding is very interesting, the biological interpretation of eQTL betas is not straightforward 

as previously proposed (Mohammadi, et al, Genome Res. 2017). Allelic fold change, introduced by this 

group, might be preferable to using log-transformed effect size in this comparison. 

 

As suggested by the Reviewer, we added an analysis using allelic fold changes (aFC). We observed a similar 

association between aFCs and network centrality values, as shown in Figure 3D and Figure S9. We have 

included these observations in the Results section (Page 6) of our revised manuscript. 

 

 

Page 6: “Finally, we observed that eQTL effect sizes, as well as log-transformed allelic fold-changes 30 

negatively correlated with the centrality values of their corresponding eGenes in the coexpression network, 

i.e. eGenes with larger eQTL effects were less connected in the network (Figure 3D and Supplementary 

Figure 9B-C). This suggests that genes at the edges of the co-expression network are more tolerant to 

variation in gene expression.” 

https://paperpile.com/c/ITPWnN/FZiv
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Figure 3. D) Relationship between a gene’s connectivity and the effect size of its lead eQTL variant (left) or allelic 

fold change (right). All eQTL effect sizes were log2-transformed. Blue dots represent significant eGenes, while gray 

dots represent genes which do not pass the multiple testing correction. 

 



 
 

 

10 
 

 

 

 

Supplementary Figure 9. Identification of gene expression patterns active throughout CD4+ T cell activation. 

B) Relationship between a gene’s connectivity (as inferred from co-expression network analysis) and the effect size 

of its lead eQTL signal. All eQTL effect sizes were log-transformed. Blue dots represent significant eGenes, while 

gray dots represent genes which do not pass the eQTL multiple test correction. C) Relationship between a gene’s 

connectivity and the allelic fold change (aFC) of its lead eQTL signal. All eQTL effect sizes were log-transformed. 
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Blue dots represent significant eGenes, while gray dots represent genes which do not pass the eQTL multiple test 

correction. 

 

 

3. Page 13: “We identified 2,265 genes with dynamic eQTL effects, which comprised 34% of eGenes in our 

dataset (Supplementary Table 5). We applied both linear and quadratic models and observed that most 

eQTLs followed linear dynamics across the activation trajectory (74% and 76% in naive and memory T 

cells, respectively) (Figure 4E).” 

 

An important feature of this paper is that it examines the dynamically changing gene expression of T cells 

after stimulation at the single cell level. This data set has the potential to not only identify eQTLs, but also 

get closer to the regulatory mechanism of eQTLs. Several researchers analyzed the interaction of eQTL 

effect size and genome-wide gene expression that are dependent on intrinsic or extrinsic factors (context-

dependent eQTL) (Zhernakova et al. Nat Genet. 2017;49:139-145.; Ota, et al Cell. 2021;184:3006-

3021.e17.). Similar analysis was also successful in scRNAseq data of PBMC from 45 donors (van der Wijst 

et al. Nat Genet. 2018;50:493-497.). Therefore, context-dependent eQTL analysis in this dataset may reveal 

relationships between several eQTLs/eGenes and functional gene modules to deepen the understanding of 

eQTL regulation in stimulated T cells. 

 

We thank the Reviewer for suggesting this analysis. Following the framework set out in van der Wijst et 

al. Nat Genet 2018, we performed co-expression QTL analysis  to test if a SNP associated with expression 

of an eGene also affects its co-expression with other genes. To increase the likelihood of finding significant 

associations, we analysed each time-point/cell-type combination separately. Furthermore, we restricted the 

analysis to SNP-eGene pairs which: 1) colocalize with immune disease risk loci, and 2) are highly variable 

between clusters, assessing the genes’ co-expression relationship with all other highly variable genes 

identified in that condition. We used Spearman’s rank correlation to calculate the co-expression between 

all pairs of genes and fitted a weighted linear model to assess the strength of this correlation with the 

genotype for the SNP in question, supplying the square root of the number of cells per donor as weights. 

The median number of cells per donor was 746 (range: 53-2142). We identified a total of 10,644 co-

expression QTLs (co-QTLs) for 45 genes, with a median of 56 co-QTLs per gene (range: 1-951). Of all the 

eGenes tested, 3-7 genes per condition had at least one significant QTL and 2-4 genes per condition had 

more than 100 co-expression QTLs. The SNP associated with ERAP2 had the highest number of significant 

co-expression QTLs in all six of the conditions tested (range: 815-951). In order to determine the most 

significant co-expression QTL per SNP-eGene pair, a permutation-based (n=100) FDR-approach was used 

to determine a gene-wise statistical significance threshold, whereby the most significant co-expression QTL 

p-value was compared to the p-values obtained when randomly shuffling the genotypes. An FDR < 0.05 

was considered as statistically significant. After permutations, 41 out of the 45 eGenes remained significant 

for co-expression QTLs (Figure R1).  
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Figure R1. Number of significant co-expression QTLs detected per cell type and time point. 

 

However, we were not confident that these eQTLs represented real signals. For example PTGIR and SOCS1 

were identified as significant (p-value = 5 x 10-5, FDR = 0.026), but visualisation of the relationship between 

their expression levels stratified by genotype does not show an evident separation and is strongly affected 

by random fluctuations and drop outs (Figure R2). We have manually expected all significant genes and 

observed similar confounders with the majority of identified relationships. 
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Figure R2. Co-expression patterns of PTGIR and SOCS1 stratified by genotype at a nearby co-expression 

QTL 

 

Thus, while we agree with the reviewer that this is a very interesting question to address, we think that at 

present this analysis is not feasible due to the high amount of noise and drop outs inherent to single-cell 

RNA-seq. To overcome these confounders we would need a bigger cohort and deeper sequencing to more 

confidently detect significant coexpression QTLs. 

 

 

4. Page 13: “We identified 2,265 genes with dynamic eQTL effects, which comprised 34% of eGenes in our 

dataset (Supplementary Table 5).” 

 

I’d like to see the analytic stability of dynamic eQTL analysis. How was the distribution of p values? If 

possible, permutation test would be one option to ensure the robustness of the results. 

 

We thank the Reviewer for raising this important point, which we have addressed by developing a 

permutation approach, where we permuted the pseudotime windows per donor and tested for an interaction 

between genotype and pseudotime. A similar permutation has previously been used to test for an interaction 

effect between a drug and an eQTL (Davenport et al. 2018). Briefly, as the genotypes remain fixed, this 

strategy maintains eQTL effects while disrupting the interaction between genotype and pseudotime. By 

permuting the pseudotime windows 100 times (this generates a random distribution of pseudotime 

windows), we tested how often a dynamic eQTL would be detected in each permutation. If a test was well 

calibrated one would not expect to observe a large proportion of significant effects in the permuted data. 

Of the 7105 and 6304 significant static gene-SNP pairs from naive and memory T cells, respectively, we 

observed on average 92 and 90 significant dynamic eQTLs per each permutation round (see Supplementary 

Figure 10 B for the full distribution). In contrast, the number of detected dynamic eGenes in our analysis 

was 1,475 in naive and 1,551 in memory T cells, an order of magnitude larger. This suggests that the method 

for dynamic eQTL mapping is robust, and that a genetic effect is observed only when the pseudotime order 

is preserved.  

In addition, as suggested by the reviewer, we visualised the p-values resulting from dynamic eQTL analysis 

using quantile-quantile (QQ) plots. This visualisation confirmed inflation when comparing to the 

expectation under a uniform distribution. 

We have incorporated these results into our revised manuscripts in Figure S10, and in the Methods (Page 

20). We also added the following statement to the Results section: 

To model dynamic eQTLs, we divided the pseudotime trajectory into ten bins and averaged the expression 

of genes per individual in each bin (Methods). Splitting the trajectory enabled us to control for the numbers 

https://paperpile.com/c/b3roqq/R4Xa
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of cells and therefore to reliably estimate mean gene expression. We then used mixed models to test for a 

significant interaction between genotype and average pseudotime value per bin (Figure 4C and Methods). 

This enabled us to identify eQTLs for which the effect size changed as a function of activation time. We 

identified 2,265 genes with dynamic eQTL effects, which comprised 34% of eGenes in our dataset 

(Supplementary Table 5 and Supplementary Figure 10A). We used a permutation based strategy to 

validate that this test was well calibrated (Methods and Supplementary Figure 10B). 
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Supplementary Figure 10. Dynamic eQTL discovery A) Q-Q plots of all SNP-gene pairs that are tested in the 

dynamic model. B) Distribution of the number of significant dynamic eQTLs in the permuted data. 

 

Reviewer #2: 

Remarks to the Author: 

Soskic and colleagues investigate how gene expression and genetic influences thereon can vary when cells 

are placed in different contexts, and how some of these context-specific effects are relevant to disease risk. 

They use the well-established model of T lymphocyte activation by CD3/CD28, profiling naïve and 

memory CD4+ T cells from 119 healthy donors at baseline and at 16 hours, 40 hours and 5 days after 

activation. They generate single-cell RNAseq data on 655,349 individual cells across these individuals and 

conditions. They capture both stable and transient sub-populations of T cells, recapitulating what we know 

about the process of activation. They identify eQTLs across these cell populations, and show that 2265/6407 

are only detected in the transient populations, indicating that gene regulation is dynamic over activation. 

They then show that these context-specific eQTLs overlap immune-mediated disease associations; in fact, 

they account for 60% of all overlaps. This 

suggests many disease risk variants alter gene regulation during dynamic processes rather than altering 

baseline expression. 

 

Overall, this is a well-written paper with an emphasis on the importance of context-specific studies of 

immune cells. It is a very instructive application of scRNAseq to a more focused problem, showing that 

cell dynamics can be dissected with great precision (rather that coarser studies looking at all lymphocytes, 

for instance). The work is timely, as a major issue in human genetics is trying to understand how disease 

risk variants influence biology – and why so few associations seem to overlap eQTLs, despite the huge 

enrichment of heritability on gene regulatory elements. Soskic et al provide at least a partial answer to this: 



 
 

 

16 
 

 

 

they are context-specific eQTLs not observed in resting cells. I have no major questions or concerns about 

the work presented, but only a few minor comments: 

 

We thank the Reviewer for their encouraging feedback. 

 

- Figures 2b/4e: some more explanation in the legend on how to decode the dot diagram would be useful 

 

We thank the reviewer for raising this point. We have added the following description: “Each circle 

represents one cell state. Circles are either gray (not part of the intersection), or black (participating in the 

intersection).”  

 

- I am a little puzzled by the differences in colocalization between single-cell and pseudo-bulk analyses 

(Figure 5c). Are these likely to be false positives (coloc has a somewhat elevated false positive rate), or is 

this is a detection issue? 

 

Thank you for pointing this out. To clarify this further we changed our annotation to: “subpopulation only” 

and “Total timepoint only”. We believe that these differences are due to a detection issue, where 

subpopulations in which we detect less eQTLs (Figure 2E) also result in less detected colocalizations. 

 

- The authors document how their analyses recapitulate known T cell activation biology through the paper. 

To my eyes, it makes it a little challenging for the reader to follow all the diverse aspects. The authors may 

want to pare back some of these examples. 

 

Thank you for this comment. We have removed several examples to make the text easier to follow. 

 

 

Decision Letter, first revision: 

 
 Our ref: NG-A58160R 

 

14th Jan 2022 

 

Dear Gosia, 

 

Thank you for submitting your revised manuscript "Immune disease risk variants regulate gene 

expression dynamics during CD4+ T cell activation" (NG-A58160R). It has now been seen by the 

original referees and their comments are below. The reviewers find that the paper has improved in 

revision, and therefore we'll be happy in principle to publish it in Nature Genetics, pending minor 

revisions to comply with our editorial and formatting guidelines. 

 

We are now performing detailed checks on your paper and will send you a checklist detailing our 
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editorial and formatting requirements soon. Please do not upload the final materials and make any 

revisions until you receive this additional information from us. 

 

Thank you again for your interest in Nature Genetics Please do not hesitate to contact me if you have 

any questions. 

 

Congratulations to you and your team on the paper! 

 

All the best, 

 

Catherine 

 

--- 

 

Catherine Potenski, PhD 

Chief Editor 

Nature Genetics 

1 NY Plaza, 47th Fl. 

New York, NY 10004 

catherine.potenski@us.nature.com 

https://orcid.org/0000-0002-4843-7071 

 

 

Reviewer #1 (Remarks to the Author): 

 

Soskic et al. responded appropriately to the reviewer’s comments. They compared their eQTLs to 

gene-variant pairs available in the summary statistics of BLURPRINT and DICE for any CD4+ T cell 

populations to find that effect sizes might differ between different transcriptomics profiling strategies, 

naive and memory cells, and across T cell activation timepoints. Moreover, they identified many 

examples of eQTLs present in activated T cells, but not detected in resting cells. They provided 

examples of genes that demonstrate eQTL effects in their dataset at a single cell level but are not 

detected in the DICE data. Although these results are limited to a subset of genes, they demonstrate 

the significance of single-cell eQTL analysis. Although it is unfortunate that they failed to get robust 

result from co-expression eQTL analysis, it is understandable that the results were not reliable due to 

the limitation of data accuracy of single-cell RNAseq. This manuscript reports one of the most 

extensive single-cell eQTL analysis at this time, and it is worth reporting. 

 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have responded to all my comments 
 

 

Final Decision Letter: 
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In reply please quote: NG-A58160R1 Trynka 

 

30th Mar 2022 

 

Dear Gosia, 

 

I am delighted to say that your manuscript "Immune disease risk variants regulate gene expression 

dynamics during CD4+ T cell activation" has been accepted for publication in an upcoming issue of 

Nature Genetics. 

 

Over the next few weeks, your paper will be copyedited to ensure that it conforms to Nature Genetics 

style. Once your paper is typeset, you will receive an email with a link to choose the appropriate 

publishing options for your paper and our Author Services team will be in touch regarding any 

additional information that may be required. 

 

After the grant of rights is completed, you will receive a link to your electronic proof via email with a 

request to make any corrections within 48 hours. If, when you receive your proof, you cannot meet 

this deadline, please inform us at rjsproduction@springernature.com immediately. 

 

You will not receive your proofs until the publishing agreement has been received through our system. 

 

Due to the importance of these deadlines, we ask that you please let us know now whether you will be 

difficult to contact over the next month. If this is the case, we ask you provide us with the contact 

information (email, phone and fax) of someone who will be able to check the proofs on your behalf, 

and who will be available to address any last-minute problems. 

 

Your paper will be published online after we receive your corrections and will appear in print in the 

next available issue. You can find out your date of online publication by contacting the Nature Press 

Office (press@nature.com) after sending your e-proof corrections. Now is the time to inform your 

Public Relations or Press Office about your paper, as they might be interested in promoting its 

publication. This will allow them time to prepare an accurate and satisfactory press release. Include 

your manuscript tracking number (NG-A58160R1) and the name of the journal, which they will need 

when they contact our Press Office. 

 

Before your paper is published online, we shall be distributing a press release to news organizations 

worldwide, which may very well include details of your work. We are happy for your institution or 

funding agency to prepare its own press release, but it must mention the embargo date and Nature 

Genetics. Our Press Office may contact you closer to the time of publication, but if you or your Press 

Office have any enquiries in the meantime, please contact press@nature.com. 

 

Acceptance is conditional on the data in the manuscript not being published elsewhere, or announced 

in the print or electronic media, until the embargo/publication date. These restrictions are not 

intended to deter you from presenting your data at academic meetings and conferences, but any 

enquiries from the media about papers not yet scheduled for publication should be referred to us. 

 

Please note that <i>Nature Genetics</i> is a Transformative Journal (TJ). Authors may publish their 

research with us through the traditional subscription access route or make their paper immediately 

open access through payment of an article-processing charge (APC). Authors will not be required to 
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make a final decision about access to their article until it has been accepted. <a 

href="https://www.springernature.com/gp/open-research/transformative-journals"> Find out more 

about Transformative Journals</a> 

 

Authors may need to take specific actions to achieve <a 

href="https://www.springernature.com/gp/open-research/funding/policy-compliance-

faqs"> compliance</a> with funder and institutional open access mandates. If your research 

is supported by a funder that requires immediate open access (e.g. according to <a 

href="https://www.springernature.com/gp/open-research/plan-s-compliance">Plan S principles</a>) 

then you should select the gold OA route, and we will direct you to the compliant route where 

possible. For authors selecting the subscription publication route, the journal’s standard licensing 

terms will need to be accepted, including <a href="https://www.nature.com/nature-portfolio/editorial-

policies/self-archiving-and-license-to-publish. Those licensing terms will supersede any other terms 

that the author or any third party may assert apply to any version of the manuscript. 

 

Please note that Nature Research offers an immediate open access option only for papers that were 

first submitted after 1 January, 2021. 

 

If you have any questions about our publishing options, costs, Open Access requirements, or our legal 

forms, please contact ASJournals@springernature.com 

 

If you have posted a preprint on any preprint server, please ensure that the preprint details are 

updated with a publication reference, including the DOI and a URL to the published version of the 

article on the journal website. 

 

To assist our authors in disseminating their research to the broader community, our SharedIt initiative 

provides you with a unique shareable link that will allow anyone (with or without a subscription) to 

read the published article. Recipients of the link with a subscription will also be able to download and 

print the PDF. 

 

As soon as your article is published, you will receive an automated email with your shareable link. 

 

You can now use a single sign-on for all your accounts, view the status of all your manuscript 

submissions and reviews, access usage statistics for your published articles and download a record of 

your refereeing activity for the Nature journals. 

 

An online order form for reprints of your paper is available at <a 

href="https://www.nature.com/reprints/author-

reprints.html">https://www.nature.com/reprints/author-reprints.html</a>. Please let your coauthors 

and your institutions' public affairs office know that they are also welcome to order reprints by this 

method. 

 

If you have not already done so, we invite you to upload the step-by-step protocols used in this 

manuscript to the Protocols Exchange, part of our on-line web resource, natureprotocols.com. If you 

complete the upload by the time you receive your manuscript proofs, we can insert links in your article 

that lead directly to the protocol details. Your protocol will be made freely available upon publication of 

your paper. By participating in natureprotocols.com, you are enabling researchers to more readily 

reproduce or adapt the methodology you use. Natureprotocols.com is fully searchable, providing your 
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protocols and paper with increased utility and visibility. Please submit your protocol to 

https://protocolexchange.researchsquare.com/. After entering your nature.com username and 

password you will need to enter your manuscript number (NG-A58160R1). Further information can be 

found at https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards#protocols 

 

Congratulations to you and your team on this paper! 

 

All the best, 

 

Catherine 

 

--- 

 

Catherine Potenski, PhD 

Chief Editor 

Nature Genetics 

1 NY Plaza, 47th Fl. 

New York, NY 10004 

catherine.potenski@us.nature.com 

https://orcid.org/0000-0002-4843-7071 


