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SUPPLEMENTARY NOTE 1: SUPERSYMMETRY IN QUANTUM RABI MODEL

A quantum mechanical system is supersymmetric if we can define some Hermitian supercharges Q1, Q2, · · · , QN

such that {Qi, Qj} = 2Hδij , where H is the Hamiltonian of the system [1]. By definition, all the supercharges
commute with H = Q2

i , so that Qi’s are conserved quantities.
The simplest case is the N = 2 SUSY QM with two supercharges. Here we can define a Witten parity operator

K satisfying K2 = I and {K, Qi} = 0 (i = 1, 2). It can be shown that for the N = 2 SUSY QM we can choose
Q2 = ±iKQ1, so that we only need to consider one supercharge [1]. From the above definitions, we can see that
[H, K] = 0, hence K is also conserved. We can thus split the whole Hilbert space into H = H+ ⊕H− where H± is
the eigenspace of K with eigenvalue ±1 which corresponds to the bosonic and the fermionic states, respectively.

Now we consider the QRM model [Eq. (1) of the main text], which is supersymmetric at two sets of parameters [2]:
g = 0 and ωs = ω; or ωs = 0.

A. g = 0 and ωs = ω

In this case, the Hamiltonian H = ωσz/2+ω(a
†a+1/2) is just a spin and a bosonic mode without any interaction.

It is easy to check that Q =
√
ω(aσ+ + a†σ−) and K = σz satisfy all the above definitions. Here we can see that

the spin-up and the spin-down states with different phonon numbers give the whole spectrum of the bosonic and the
fermionic states, and the mapping from spin-up/spin-down to bosonic/fermionic states is arbitrary: We can simply
define K → −K to reverse the Witten parity operator.

Let us choose | ↓⟩|n⟩ as the bosonic states and | ↑⟩|n⟩ as the fermionic states. Here we have a unique ground state
| ↓⟩|0⟩ with energy E0 = 0, and the higher levels | ↓⟩|n+ 1⟩ and | ↑⟩|n⟩ are degenerate with energy En+1 = (n+ 1)ℏω
(n = 0, 1, · · · ). The supercharge Q transforms the degenerate bosonic and fermionic states into each other with a
nonzero normalization factor, and it annihilates the unique ground state.

B. ωs = 0

In this case the Hamiltonian is given by

H = ω

(
a†a+

1

2

)
+ gσx(a+ a†) +

g2

ω
. (1)

To demonstrate the SUSY structure more clearly, we follow Ref. [2] to perform a unitary transform

Ug =
1√
2

(
V− −V+
V− V+

)
, (2)

where V± = exp[±g/ω(a† − a)] = D(±g/ω) is the displacement operator of ±g/ω. It is straightforward to verify that

U†
gHUg = ωI ⊗

(
a†a+

1

2

)
. (3)
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A supercharge in this transformed frame can be given by

U†
gQUg = σx ⊗

√
ω(a†a+ 1/2), (4)

with the Witten parity operator U†
gKUg = σz ⊗ I. Moving back to the original frame, we get

Q =Ugσx ⊗
√
ω(a†a+ 1/2)U†

g

=− σz
2

⊗
[
V+

√
ω(a†a+ 1/2)V+ + V−

√
ω(a†a+ 1/2)V−

]
− i

σy
2

⊗
[
V+

√
ω(a†a+ 1/2)V+ − V−

√
ω(a†a+ 1/2)V−

]
, (5)

and K = σx. In the main text, we have taken out the factor
√
ω from the definition of Q to make it dimensionless.

Then we have H = ωQ2.
The ground state in the transformed frame has energy E0 = ω/2 when the phonon number is zero. If we further

require the states to be the eigenstates of Q, we see that, in the transformed frame, the two ground states can be
chosen as |±⟩|0⟩, with eigenvalues of ±1/

√
2 for the supercharge. Now if we move back to the original frame, the two

ground states can be expressed as Ug|±⟩|0⟩ = (|+⟩| − g/ω⟩ ∓ |−⟩|g/ω⟩)/
√
2.

SUPPLEMENTARY NOTE 2: COMPLETE EXPERIMENTAL DATA FOR PARTIAL SPIN-PHONON
STATE TOMOGRAPHY

In Supplementary Figure 1, Supplementary Figure 2, Supplementary Figure 3 and Supplementary Figure 4 we
present the complete experimental data for measuring the joint spin-phonon state by projecting |ψ±⟩ onto σz = ±1
or σy = ±1, as well as the theoretical results for the best fitted joint density matrices.
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Supplementary Figure 1. Experimental data (dots) and the theoretical prediction based on the best-fitted density matrix (solid
curves) when driving the blue or red sidebands for the |ψ−⟩ state projected to σz = ±1. We choose ω = 2π × 10 kHz and
gm = 2π × 5.43 kHz. The displacement operators D(βj) are characterized by βj = iβe2πij/N where β = 0.687, N = 12 and
j = 0, 1, · · · , N − 1.

In Supplementary Figure 5 and Supplementary Figure 6 we present the experimental data used to calibrate a
phonon state rotation angle between the measurement of |ψ+⟩ and |ψ−⟩ as described in Methods.
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Supplementary Figure 2. Experimental data (dots) and the theoretical prediction based on the best-fitted density matrix (solid
curves) when driving the blue or red sidebands for the |ψ−⟩ state projected to σy = ±1. We choose ω = 2π × 10 kHz and
gm = 2π × 5.43 kHz. The displacement operators D(βj) are characterized by βj = iβe2πij/N where β = 0.687, N = 12 and
j = 0, 1, · · · , N − 1.
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Supplementary Figure 3. Experimental data (dots) and the theoretical prediction based on the best-fitted density matrix (solid
curves) when driving the blue or red sidebands for the |ψ+⟩ state projected to σz = ±1. We choose ω = 2π × 10 kHz and
gm = 2π × 5.43 kHz. The displacement operators D(βj) are characterized by βj = iβe2πij/N where β = 0.687, N = 12 and
j = 0, 1, · · · , N − 1.
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Supplementary Figure 4. Experimental data (dots) and the theoretical prediction based on the best-fitted density matrix (solid
curves) when driving the blue or red sidebands for the |ψ+⟩ state projected to σy = ±1. We choose ω = 2π × 10 kHz and
gm = 2π × 5.43 kHz. The displacement operators D(βj) are characterized by βj = iβe2πij/N where β = 0.687, N = 12 and
j = 0, 1, · · · , N − 1.
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Supplementary Figure 5. Fidelity for the spin-phonon state projected to σz = ±1 (blue), σy = ±1 (red) and their average
(black) for a |ψ−⟩ and b |ψ+⟩.
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Supplementary Figure 6. Expectation values for σz ⊗A (blue), σy ⊗B (red) and the total supercharge (black) for a |ψ−⟩ and
b |ψ+⟩.
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