Supplementary Information for "Observation of Supersymmetry and its Spontaneous Breaking in a Trapped Ion Quantum Simulator"

M.-L. Cai,^{1, 2,} ^{[∗](#page-0-0)} Y.-K. Wu,^{1,} * Q.-X. Mei,¹ W.-D. Zhao,¹ Y. Jiang,¹ L. Yao,^{1, 2} L. He,¹ Z.-C. Zhou,^{1, 3} and L.-M. Duan^{1,[†](#page-0-1)}

¹*Center for Quantum Information, Institute for Interdisciplinary Information Sciences,*

Tsinghua University, Beijing, 100084, PR China

²*HYQ Co., Ltd., Beijing, 100176, PR China*

³*Beijing Academy of Quantum Information Sciences, Beijing 100193, PR China*

SUPPLEMENTARY NOTE 1: SUPERSYMMETRY IN QUANTUM RABI MODEL

A quantum mechanical system is supersymmetric if we can define some Hermitian supercharges Q_1, Q_2, \cdots, Q_N such that ${Q_i, Q_j} = 2H\delta_{ij}$, where *H* is the Hamiltonian of the system [\[1](#page-3-0)]. By definition, all the supercharges commute with $H = Q_i^2$, so that Q_i 's are conserved quantities.

The simplest case is the $N = 2$ SUSY QM with two supercharges. Here we can define a Witten parity operator *K* satisfying $K^2 = I$ and $\{K, Q_i\} = 0$ (*i* = 1, 2). It can be shown that for the $N = 2$ SUSY QM we can choose $Q_2 = \pm iKQ_1$, so that we only need to consider one supercharge [\[1](#page-3-0)]. From the above definitions, we can see that $[H, K] = 0$, hence K is also conserved. We can thus split the whole Hilbert space into $\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$ where \mathcal{H}_\pm is the eigenspace of *K* with eigenvalue *±*1 which corresponds to the bosonic and the fermionic states, respectively.

Now we consider the QRM model [Eq. (1) of the main text], which is supersymmetric at two sets of parameters [[2\]](#page-3-1): $g = 0$ and $\omega_s = \omega$; or $\omega_s = 0$.

A. $q = 0$ **and** $\omega_s = \omega$

In this case, the Hamiltonian $H = \omega \sigma_z/2 + \omega (a^\dagger a + 1/2)$ is just a spin and a bosonic mode without any interaction. It is easy to check that $Q = \sqrt{\omega} (a\sigma_+ + a^{\dagger} \sigma_-)$ and $K = \sigma_z$ satisfy all the above definitions. Here we can see that the spin-up and the spin-down states with different phonon numbers give the whole spectrum of the bosonic and the fermionic states, and the mapping from spin-up/spin-down to bosonic/fermionic states is arbitrary: We can simply define $K \rightarrow -K$ to reverse the Witten parity operator.

Let us choose $|\downarrow\rangle|n\rangle$ as the bosonic states and $|\uparrow\rangle|n\rangle$ as the fermionic states. Here we have a unique ground state $|\downarrow\rangle|0\rangle$ with energy $E_0 = 0$, and the higher levels $|\downarrow\rangle|n+1\rangle$ and $|\uparrow\rangle|n\rangle$ are degenerate with energy $E_{n+1} = (n+1)\hbar\omega$ $(n = 0, 1, \dots)$. The supercharge Q transforms the degenerate bosonic and fermionic states into each other with a nonzero normalization factor, and it annihilates the unique ground state.

B. $\omega_s = 0$

In this case the Hamiltonian is given by

$$
H = \omega \left(a^{\dagger} a + \frac{1}{2} \right) + g \sigma_x (a + a^{\dagger}) + \frac{g^2}{\omega}.
$$
\n⁽¹⁾

To demonstrate the SUSY structure more clearly, we follow Ref. [[2\]](#page-3-1) to perform a unitary transform

$$
U_g = \frac{1}{\sqrt{2}} \begin{pmatrix} V_- & -V_+ \\ V_- & V_+ \end{pmatrix},\tag{2}
$$

where $V_{\pm} = \exp[\pm g/\omega(a^{\dagger} - a)] = D(\pm g/\omega)$ is the displacement operator of $\pm g/\omega$. It is straightforward to verify that

$$
U_g^{\dagger} H U_g = \omega I \otimes \left(a^{\dagger} a + \frac{1}{2} \right). \tag{3}
$$

[∗] These authors contribute equally to this work

[†] lmduan@mail.tsinghua.edu.cn

A supercharge in this transformed frame can be given by

$$
U_g^{\dagger} Q U_g = \sigma_x \otimes \sqrt{\omega(a^{\dagger} a + 1/2)},\tag{4}
$$

with the Witten parity operator $U_g^{\dagger} K U_g = \sigma_z \otimes I$. Moving back to the original frame, we get

$$
Q = U_g \sigma_x \otimes \sqrt{\omega(a^\dagger a + 1/2)} U_g^\dagger
$$

= $-\frac{\sigma_z}{2} \otimes \left[V_+ \sqrt{\omega(a^\dagger a + 1/2)} V_+ + V_- \sqrt{\omega(a^\dagger a + 1/2)} V_- \right]$
 $-i\frac{\sigma_y}{2} \otimes \left[V_+ \sqrt{\omega(a^\dagger a + 1/2)} V_+ - V_- \sqrt{\omega(a^\dagger a + 1/2)} V_- \right],$ (5)

and $K = \sigma_x$. In the main text, we have taken out the factor $\sqrt{\omega}$ from the definition of *Q* to make it dimensionless. Then we have $H = \omega Q^2$.

The ground state in the transformed frame has energy $E_0 = \omega/2$ when the phonon number is zero. If we further require the states to be the eigenstates of *Q*, we see that, in the transformed frame, the two ground states can be *√* chosen as $|\pm\rangle|0\rangle$, with eigenvalues of $\pm 1/\sqrt{2}$ for the supercharge. Now if we move back to the original frame, the two ground states can be expressed as $U_g|\pm\rangle|0\rangle = (|\pm\rangle| - g/\omega\rangle \mp |-\rangle|g/\omega\rangle)/\sqrt{2}$.

SUPPLEMENTARY NOTE 2: COMPLETE EXPERIMENTAL DATA FOR PARTIAL SPIN-PHONON STATE TOMOGRAPHY

In Supplementary Figure [1,](#page-1-0) Supplementary Figure [2](#page-2-0), Supplementary Figure [3](#page-2-1) and Supplementary Figure [4](#page-3-2) we present the complete experimental data for measuring the joint spin-phonon state by projecting $|\psi_{\pm}\rangle$ onto $\sigma_z = \pm 1$ or $\sigma_y = \pm 1$, as well as the theoretical results for the best fitted joint density matrices.

Supplementary Figure 1. Experimental data (dots) and the theoretical prediction based on the best-fitted density matrix (solid curves) when driving the blue or red sidebands for the $|\psi_{-}\rangle$ state projected to $\sigma_z = \pm 1$. We choose $\omega = 2\pi \times 10$ kHz and $g_m = 2\pi \times 5.43 \text{ kHz}$. The displacement operators $D(\beta_j)$ are characterized by $\beta_j = i\beta e^{2\pi i j/N}$ where $\beta = 0.687$, $N = 12$ and $j = 0, 1, \cdots, N - 1.$

In Supplementary Figure [5](#page-3-3) and Supplementary Figure [6](#page-4-0) we present the experimental data used to calibrate a phonon state rotation angle between the measurement of $|\psi_+\rangle$ and $|\psi_-\rangle$ as described in Methods.

Supplementary Figure 2. Experimental data (dots) and the theoretical prediction based on the best-fitted density matrix (solid curves) when driving the blue or red sidebands for the $|\psi_-\rangle$ state projected to $\sigma_y = \pm 1$. We choose $\omega = 2\pi \times 10$ kHz and $g_m = 2\pi \times 5.43 \text{ kHz}$. The displacement operators $D(\beta_j)$ are characterized by $\beta_j = i\beta e^{2\pi i j/N}$ where $\beta = 0.687$, $N = 12$ and $j = 0, 1, \cdots, N - 1.$

Supplementary Figure 3. Experimental data (dots) and the theoretical prediction based on the best-fitted density matrix (solid curves) when driving the blue or red sidebands for the $|\psi_+\rangle$ state projected to $\sigma_z = \pm 1$. We choose $\omega = 2\pi \times 10$ kHz and $g_m = 2\pi \times 5.43 \text{ kHz}$. The displacement operators $D(\beta_j)$ are characterized by $\beta_j = i\beta e^{2\pi i j/N}$ where $\beta = 0.687$, $N = 12$ and $j=0,\,1,\,\cdots,\,N-1.$

Supplementary Figure 4. Experimental data (dots) and the theoretical prediction based on the best-fitted density matrix (solid curves) when driving the blue or red sidebands for the $|\psi_{+}\rangle$ state projected to $\sigma_{y} = \pm 1$. We choose $\omega = 2\pi \times 10 \text{ kHz}$ and $g_m = 2\pi \times 5.43 \text{ kHz}$. The displacement operators $D(\beta_j)$ are characterized by $\beta_j = i\beta e^{2\pi i j/N}$ where $\beta = 0.687$, $N = 12$ and $j = 0, 1, \cdots, N - 1.$

Supplementary Figure 5. Fidelity for the spin-phonon state projected to $\sigma_z = \pm 1$ (blue), $\sigma_y = \pm 1$ (red) and their average (black) for **a** $|\psi_{-}\rangle$ and **b** $|\psi_{+}\rangle$.

- [1] Combescure, M., Gieres, F. & Kibler, M. Are N= 1 and N= 2 supersymmetric quantum mechanics equivalent? *Journal of Physics A: Mathematical and General* **37**, 10385–10396 (2004).
- [2] Hirokawa, M. The Rabi model gives off a flavor of spontaneous SUSY breaking. *Quantum Studies: Mathematics and Foundations* **2**, 379–388 (2015).

Supplementary Figure 6. Expectation values for $\sigma_z \otimes A$ (blue), $\sigma_y \otimes B$ (red) and the total supercharge (black) for **a** $|\psi_-\rangle$ and **b** $|\psi_{+}\rangle$.