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SUPPLEMENTARY NOTE 1: SUPERSYMMETRY IN QUANTUM RABI MODEL

A quantum mechanical system is supersymmetric if we can define some Hermitian supercharges Q1, Q2, -+, Qn
such that {Q;, Q;} = 2HJ;;, where H is the Hamiltonian of the system [1]. By definition, all the supercharges
commute with H = Q?, so that @;’s are conserved quantities.

The simplest case is the N = 2 SUSY QM with two supercharges. Here we can define a Witten parity operator
K satisfying K? = I and {K, Q;} = 0 (i = 1, 2). It can be shown that for the N = 2 SUSY QM we can choose
Q2 = +iKQ1, so that we only need to consider one supercharge [1]. From the above definitions, we can see that
[H, K] =0, hence K is also conserved. We can thus split the whole Hilbert space into H = H @& H_ where Hy is
the eigenspace of K with eigenvalue +1 which corresponds to the bosonic and the fermionic states, respectively.

Now we consider the QRM model [Eq. (1) of the main text], which is supersymmetric at two sets of parameters [2]:
g =0 and ws = w; or ws = 0.

A. g=0and ws =w

In this case, the Hamiltonian H = wo, /2 +w(a’a+1/2) is just a spin and a bosonic mode without any interaction.
It is easy to check that Q = \/w(ao, + a’o_) and K = o, satisfy all the above definitions. Here we can see that
the spin-up and the spin-down states with different phonon numbers give the whole spectrum of the bosonic and the
fermionic states, and the mapping from spin-up/spin-down to bosonic/fermionic states is arbitrary: We can simply
define K — —K to reverse the Witten parity operator.

Let us choose | |)|n) as the bosonic states and | 1)|n) as the fermionic states. Here we have a unique ground state
| 1)]0) with energy Fy = 0, and the higher levels | [)|n + 1) and | 1)|n) are degenerate with energy F,, 11 = (n+ 1)hw
(n =0, 1, ---). The supercharge @ transforms the degenerate bosonic and fermionic states into each other with a
nonzero normalization factor, and it annihilates the unique ground state.

B. ws=0
In this case the Hamiltonian is given by
t, 1 o 9
H=w aa+§ Jrgcrm(aJra)JrU. (1)
To demonstrate the SUSY structure more clearly, we follow Ref. [2] to perform a unitary transform
(v W
Ug—\/i<v V+)7 (2)
where V3 = exp[+g/w(a’ —a)] = D(+g/w) is the displacement operator of g/w. It is straightforward to verify that
UIHU, = wI fat L 3
JHU; =wl® (a'a+ 7)) (3)
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A supercharge in this transformed frame can be given by

UJQUg:UI@M/w(aTa—i—l/Q), (4)

with the Witten parity operator U, g KU, =0, ®I. Moving back to the original frame, we get

Q =Uyo, ® \/cmlfgT
=— % ® {Vﬂ/w(afa +1/2)Vy + V_y/w(ata + 1/2)V_}

- z%y ® [VH Jw(ata+1/2)Vy — V_\/w(ata + 1/2)v_] , (5)

and K = 0,. In the main text, we have taken out the factor \/w from the definition of @ to make it dimensionless.
Then we have H = wQ?.

The ground state in the transformed frame has energy Ey = w/2 when the phonon number is zero. If we further
require the states to be the eigenstates of @), we see that, in the transformed frame, the two ground states can be
chosen as |£)|0), with eigenvalues of +1/+/2 for the supercharge. Now if we move back to the original frame, the two
ground states can be expressed as Uy|£)[0) = (|+)| — g/w) F |-)|g/w))/V2.

SUPPLEMENTARY NOTE 2: COMPLETE EXPERIMENTAL DATA FOR PARTIAL SPIN-PHONON
STATE TOMOGRAPHY

In Supplementary Figure 1, Supplementary Figure 2, Supplementary Figure 3 and Supplementary Figure 4 we
present the complete experimental data for measuring the joint spin-phonon state by projecting |¢1) onto o, = +1
or oy, = %1, as well as the theoretical results for the best fitted joint density matrices.
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Supplementary Figure 1. Experimental data (dots) and the theoretical prediction based on the best-fitted density matrix (solid
curves) when driving the blue or red sidebands for the |¢)_) state projected to o, = £1. We choose w = 27 x 10kHz and
gm = 27 x 5.43kHz. The displacement operators D(8;) are characterized by 8; = i8e?™/N where = 0.687, N = 12 and
j=0,1,---, N—-1.

In Supplementary Figure 5 and Supplementary Figure 6 we present the experimental data used to calibrate a
phonon state rotation angle between the measurement of ¢4 ) and |¢)_) as described in Methods.
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Supplementary Figure 2. Experimental data (dots) and the theoretical prediction based on the best-fitted density matrix (solid
curves) when driving the blue or red sidebands for the [¢)_) state projected to o, = +1. We choose w = 27 x 10kHz and
gm = 27 X 5.43kHz. The displacement operators D(f8;) are characterized by 3; = i8> /N where 8 = 0.687, N = 12 and
j=0,1,---, N—1.
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Supplementary Figure 3. Experimental data (dots) and the theoretical prediction based on the best-fitted density matrix (solid
curves) when driving the blue or red sidebands for the |i)4) state projected to o, = £1. We choose w = 27 x 10kHz and
gm = 27 X 5.43kHz. The displacement operators D(f8;) are characterized by 8; = iBe®>™/N where 8 = 0.687, N = 12 and
j=0,1,---, N—1.
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Supplementary Figure 4. Experimental data (dots) and the theoretical prediction based on the best-fitted density matrix (solid
curves) when driving the blue or red sidebands for the [¢4) state projected to o, = +1. We choose w = 27 x 10kHz and
gm = 27 X 5.43kHz. The displacement operators D(f8;) are characterized by 8; = i8e?™ /N where 8 = 0.687, N = 12 and
j=0,1,---, N1
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Supplementary Figure 5. Fidelity for the spin-phonon state projected to o, = +1 (blue), oy, = £1 (red) and their average
(black) for a [¢p—) and b |¢4).
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Supplementary Figure 6. Expectation values for o, ® A (blue), o, ® B (red) and the total supercharge (black) for a |¢_) and
b [thy).
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