

Figure S1. Onset of CD8⁺ T cell exhaustion is antigen-specific and correlates with macrophage abundance in multiple mouse cancer models (related to Figure 1). A) Experimental setup to study kinetics

of CD8⁺ T cell exhaustion in B78ChOVA and B16ChOVA melanoma and spontaneous MMTV-PyMTChOVA breast cancer model. OVA-specific OT-I CD8+ T cells are adoptively transferred into tumor-bearing mice 14 days (Tex d14) and 4 days (Tex d4) prior to sacrifice, upon which tumors are harvested for analysis of T cell phenotype at day 18. B) Representative histograms of expression of PD-1, CD38, TOX and CD5 expression on intratumoral CD44⁺ OT-I CD8⁺ T cells (T_{ex} d4; blue and T_{ex} d14; red), versus naïve endogenous CD44⁻ CD8⁺ T cells in the tumor-draining lymph node (TdLN) (Tnaïve). C-D) Representative contour plots (C) and quantification (D) of IFNγ⁺TNFα⁺ polyfunctional CD44⁺ OT-I CD8⁺ T cells (T_{ex} d4 and T_{ex} d14) compared to CD44⁺ endogenous CD8⁺ T cells in the TdLN. N=3-10 mice/group. E) Experimental setup. Mice inoculated subcutaneously with B78ChOVA melanoma cells on day 0, received adoptively transferred OT-I and p14 LCMV CD8⁺ T cells i.v. on day 4, followed by inoculation with CFA containing SL8 + gp33 peptide s.c. on day 5. Mice were sacrificed on day 18 after tumor inoculation, and TdLN and tumors were harvested for analysis. F) Representative dot plots for the identification of endogenous (endo), and adoptively transferred CD45.1⁺ OT-I and TCRVβ8.1⁺ P14 LCMV CD8⁺ T cells in TdLN (top) and tumors (bottom) by flow cytometry. G-H) Representative histograms (G) and guantification (H) of expression of PD-1, CD38, TOX and CD5 on naïve CD44⁻ CD8⁺ T cells in the TdLN and on tumor-infiltrating CD44⁺ endogenous (endo), P14 and OT-I CD8⁺ T cells. N = 5 mice/group. I-J) Representative contour plots (I) and quantification (J) of IFN γ^+ TNF α^+ polyfunctional CD44⁺ endogenous (endo), P14 and OT-I CD8⁺ T cells in TdLN and tumor. N = 5 mice/group. Representative of two independent experiments. K) Quantification of TAM, CD11b⁺ cDC2 and CD103⁺ cDC1 populations represented as a fraction of MHC-II⁺ cells in B78ChOVA tumors during tumor progression by flow cytometry. N=3 mice/time point. L) Quantification of myeloid populations in anti-CSF1R and isotype treated mice bearing B78ChOVA-melanomas as determined by flow cytometry. N=5 mice/group. M-N) Expression of phenotypic markers (as proportion (M) and gMFI (N)) on total CD11b+F4/80+ TAM in isotype and anti-CSF1R-treated B78ChOVA melanomas. N = 5-7 mice/group. O) Experimental set-up of TAM depletion in B16ChOVA-bearing mice. Weekly anti-CSF1 treatment was initiated one day prior to adoptive transfer of OT-I CD8⁺ T cells. P) Representative dot plots and quantification of CD11b⁺ F4/80⁺ macrophages in isotype and anti-CSF1-treated B16ChOVA melanomas. N=5 mice/group. Q) Surface (PD-1 and CD38) and intracellular (TOX) expression on intratumoral CD44⁺ OT-I CD8⁺ T cells from isotype and anti-CSF1 treated B16ChOVA-bearing mice. N=5 mice/group. R) Experimental set-up of TAM depletion in spontaneous MMTV-PyMTChOVA breast cancer model. Weekly anti-CSF1 treatment was initiated when tumors reached ~25mm² in size and one day prior to adoptive transfer of OT-I CD8⁺ T cells. S) Representative dot plots and quantification of CD11b⁺ F4/80⁺ macrophages in isotype and anti-CSF1 treated mammary tumor-bearing *MMTV-PyMTChOVA* mice. N=5-6 tumors/group. T) Surface (PD-1 and CD38) and intracellular (TOX) expression on intratumoral CD44⁺ OT-I CD8⁺ T cells from isotype and anti-CSF1 treated mammary tumor-bearing *MMTV-PyMTChOVA* mice. N=3-6 tumors/group. U) Normalized tumor size at time of sacrifice in 3 independent experiments in B78ChOVA-bearing mice treated with isotype or anti-CSF1R. N=3-7 mice/group. All data are mean \pm SEM. Statistical significance was determined using two-way ANOVA with Holm-Sidak's correction for multiple comparisons or Mann-Whitney U test. * p < 0.05, ** p < 0.01, *** p < 0.001.

Figure S2. Transcriptional and epigenetic profiling reveals expression of myeloid-associated factors by CD8⁺ T_{ex} (related to Figure 2). A) Volcano plot showing differential gene expression in tumor-infiltrating CD44⁺ OT-I CD8⁺ T_{ex} d14 cells (red) compared to splenic CD44⁻ OT-I CD8⁺ T_{naïve} cells (grey) by RNA-seq. Colored dots (grey and red) represent genes with a log2FC>2 and FDR<0.05. B) Expression of *Csf1*, *Ccl3* and *Ccl5* transcripts in an independent sample set of T_{naïve}, OT-I T_{ex} d4 and OT-I T_{ex} d14 T cells as determined by quantitative RT-PCR and corrected for *Gapdh*. C) Quantification of secreted protein (n.d; not detected) in supernatant of isolated

CD44⁻ naïve, CD44⁺ effector and CD44⁺ exhausted endogenous and OT-I CD8⁺ T cells after 24 hours of *ex vivo* culture as determined by ELISA (CSF1) and Cytometric Bead Array (CCL3, CCL4, CCL5). D) ATAC-seq signal tracks at the *Pdcd1*, *Cd38*, *Havcr2*, *Ctla4*, *Lag3* and *Entpd1* loci highlighting differential chromatin accessibility peaks in T_{ex} d14 CD8⁺ T cells compared to splenic CD44⁻ $T_{naïve}$ CD8⁺ cells. All data are mean ± SEM.

Figure S3. T cell-derived CSF1 shapes monocyte-macrophage dynamics in the TME (related to Figure 3). A) Experimental set-up of mixed bone marrow chimeras, reconstituted with a 50:50 mixture of $Rag1^{-/-:} Csf1^{op/p}$ (n = 5 mice) or $Rag1^{-/-:} Csf1^{op/op}$ (n = 6 mice) inoculated with subcutaneous B78ChOVA melanomas 6-10 weeks after bone marrow reconstitution. 21 days later, mice were sacrificed for analysis of immune composition of tumors. B) Quantification of tumor volume (mm²) by caliper measurements at time of sacrifice. C-E) Flow cytometric analysis of total tumor-infiltrating CD45⁺ leukocytes (C) and (D) the proportion of Ly6C⁺ monocytes (left), F4/80⁺ macrophages (middle) of CD11b⁺MHC-II⁺ cells and monocyte/macrophage ratio (right). E) Proportion of CD103⁺ cDC1 and CD11b⁺ cDC2 of total CD45⁺ cells. F) Quantification of expression of H2Kb, MHC-II, CD11c, CD86 and CD206 gated on CD11b⁺ F4/80⁺ macrophages (gMFI) in B78ChOVA melanomas. Representative of two independent experiments. All data are mean ± SEM. Statistical significance was determined using the Mann-Whitney U test. * p < 0.05.

Figure S4. Synaptic TAM-CD8⁺ T cell interactions induce TCR clustering (related to Movie S1 and Figure 4). A) Representative dot plots of *ex vivo* coupling assay with CD45-enriched single cell suspensions from B16F10 or B16ChOVA melanomas co-cultured with previously activated OT-I CD8⁺ T cells gated of total T cells. B) Quantification of TAM-APC doublets of total T cells after co-culture at different APC:T cell ratios. C) Quantification of % of TAM coupled to a T cell as gated from total TAM population after co-culture at different APC:T cell ratios. Statistical significance was determined using Unpaired Student's t-test. D) Representative dot plots, contour plots and quantification of the proportion of total doublets and the proportion of those coupled to CD11b⁺F4/80⁺ TAM among OT-I, P14 and endogenous CD8⁺ T cells in B78ChOVA melanomas after enzymatic digestion. N=8 tumors in 4 mice. Statistical significance was determined using one-way ANOVA with Holm-Sidak's multiple testing correction. E) TCR clustering on the T cell membrane was quantified by manually outlining the total T cell membrane versus TAM interaction site (synapse). Signal intensity for red (membrane)

and green (TCR) channels were determined using ImageJ, and the ratio of signal intensity (synapse/total membrane) was calculated. All data are mean \pm SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Figure S5. TAM engagement results in dysfunctional CD8⁺ T cells (related to Figure 5). A) Flow cytometric analysis of CD44, IRF4 and dilution of Violet Proliferation Dye (VPD) in previously activated CD8⁺ OT-I T cells co-cultured for 72 hours with *in vitro* generated BMDC or TAM isolated from B16ChOVA pulsed \pm SL8. B) Quantification of secreted IFN γ and TNF α in supernatant after 72 hours of co-culture of previously activated CD8⁺ OT-I T cells with *in vitro* generated BMDC pulsed \pm SL8 or TAM isolated from B16F10 and B16ChOVA melanomas. Pooled samples from 3 independent experiments. All data are mean \pm SEM.

Figure S6. ZipSeq to spatially delineate TAM-T_{ex} interactions in the TME (related to Figure 6). A) Schematic representation of the genetic constructs used to generate a *Cd206-LSL-Venus-DTR* reporter mouse model. Strain was crossed to *Csf1r^{Cre}* background to establish conditional deletion of the LSL cassette resulting in CD206-Venus expression specifically in myeloid cells. B) Feature plots for selected marker genes using kernel density estimates (implemented by package 'Nebulosa' (Alquicira-Hernandez and Powell, 2021)) with *Cd4*

(marking CD4⁺ T cells), *Cd8b1* (CD8⁺ T cells), *Tcf7* (naïve CD8⁺ T cells), *Pdcd1* (exhausted CD8⁺ T cells), *Ly6c2* (monocytes), *Apoe*, *Nos2*, *Ms4a7* and *Top2* (distinct macrophage subsets). C) Dot plot representation of marker gene expression (top 5 differentially expressed genes by LogFC expressed in at least 10% of cells) in annotated clusters. Dot size represents percent expression in cluster and color indicates average expression level. D) UMAP representation of monocyte/macrophage population state identity (lower) overlaid with pseudotime false-color through Monocle (upper), with *Ly6c2^{HI}* inflammatory monocyte state designated as the root state. E) Expression of genes marking distinct monocyte/macrophage populations with increasing pseudotime demonstrating that cells within our defined trajectory lose expression of *Ly6c2* while gaining expression of *Apoe* and *Ms4a7* while maintaining *Csf1r* expression. F) Pseudotime plots from E overlaid with regional localization of monocyte/macrophage subsets in B78ChOVA tumors demonstrating that *Ly6c2^{HI}* inflammatory monocytes are predominantly localized in the outer regions, while *Apoe^{HI}* and *Ms4a7^{HI}* macrophages are highly enriched in the inner regions of the TME (n = 2083 cells).

Table S1. Gene lists used in ZipSeq. (related to Figure 6).

Glycolysis (Arguello et al. 2020)	Antigen presentation (GO0048002)		T cell exhaustion (Wherry et al. 2007)				
ll7r	Abcb9	Slc11a1	6330403K07 Rik	Coch	ld2	Oip5	Sh3bgrl
Hmox1	Azgp1	Tap1	Acot7	Cox17	lfih1	Pawr	Shkbp1
Slc2a1	B2m	Tap2	Adam19	Cpsf2	lfng	Pbx3	Slc29a1
Egln3	Bag6	Tapbp	Ahnak	Cpt2	Irf4	Pdcd1	Slc4a7
Pkm	Calr	Tapbpl	Alcam	Cryl1	Irf8	Penk	Smc2
Ldha	Cd74	Traf6	Anxa2	Cst7	lsg15	Perp	Snrpb2
Eno1	Clec4a2	Trem2	Art3	Ctla2a	Klra9	Pglyrp1	Snx10
Aldoa	Ctse	Unc93b1	Atf1	Ctla2b	lsg20	Plin2	Spock2
Vegfa	Ctsl		AW112010	Ctla4	ltga4	Plk4	Spp1
Hif1a	Ctss		Bag3	Cxcl10	ltgav	Plscr1	Stmn1
Hk2	Erap1		Bhlhe40	Cxcr3	ltgb1	Pon2	Sypl
Pfkl	Fcer1g		Bub1	Cyfip1	ltih5	Pqlc3	Tacc3
Aldh2	Fcgr1		C330007P06 Rik	Dock5	Jak3	Prc1	Tank
Gapdh	Fcgr2b		C330027C09 Rik	Dock7	Klf10	Prdm1	Tbc1d22a
Akr1a1	Fcgr3		Capzb	E2f8	Klk1	Ptger2	Tcea2
Tpi1	H2-Aa		Car2	Ect2	Klrg1	Ptger4	Tcta
Pgam1	H2-Ab1		Casp1	Eea1	Kpna2	Ptpn13	Tctn3
Cdkn1a	H2-D1		Casp3	Ell2	Lag3	Rbm39	Tfdp1
lgf1	H2-DMa		Casp4	Entpd1	Lat2	Rcn1	Tmem109
	H2-DMb1		Ccdc50	Eomes	Lclat1	Rgs16	Tnfrsf1a
	H2-DMb2		Ccl3	Etf1	Lgals1	Rhoq	Tnfrsf1b
	H2-Eb1		Ccl4	F2r	Lgals3	Pigf	Tnfrsf9
	H2-K1		Ccl5	Fasl	Litaf	Rnf11	Top2a
	H2-M2		Ccnb1	Fgl2	Lman2	Romo1	Tor3a
	H2-M3		Ccnb2	Fignl1	Lonrf1	Rpa2	Trim25
	H2-0a		Ccr5	Fyn	Ly6a	Rpl38	Trim47
	H2-Ob		Ccr2	Gapdh	Mad2I1	Rps4x	Ttc39b
	H2-Q4		Ccrl2	Gas2	Mdfic	Rrm2	Tubb2a
	H2-Q6		Cd160	Gcdh	Mki67	Rsad2	Txn1
	H2-Q7		Cd200	Gdf3	Mrpl46	Runx2	Ube2t
	H2-Q10		Cd244	Gdpd5	Mx1	S100a11	Vamp7
	H2-T22		Cd7	Gem	Ndfip1	S100a13	Vamp8
	H2-T23		Cd84	Glrx	Nfatc1	S100a4	Vmp1
	H2-T24		Cd9	Gpd2	Nfil3	S100a6	Vps37a
	Hfe		Cdk1	Gpr65	Cbx6	Scin	Mtmr7
	Ide		Chek1	Gzma	Nptxr	Sec61g	Wnk1
	Mfsd6		Chl1	Gzmb	Nr4a2	Sept4	Zfp91
	Mr1		Cit	Gzmk	Nrp1	Serpinb6a	
	Pikfyve		Cks2	Hist3h2a	Nucb1	Serpinb9	
	Pycard		Clic4	Hmgb2	Nusap1	Sh2d2a	