CXCL4 synergizes with TLR8 for TBK1-IRF5 activation, epigenomic remodeling and inflammatory response in human monocytes

Chao Yang¹, Mahesh Bachu¹, Yong Du¹, Caroline Brauner¹, Ruoxi Yuan¹, Marie Dominique Ah Kioon¹, Giancarlo Chesi¹, Franck J. Barrat^{1,2,3}, Lionel B. Ivashkiv^{1,2,4*}

¹HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY; ²Immunology and Microbial Pathogenesis Program and ³Department of Microbiology and Immunology and ⁴Department of Medicine, Weill Cornell Medicine, New York, NY.

*Correspondence: <u>IvashkivL@hss.edu</u>

Supplementary figures: 15 Supplementary table 1 Supplementary table 2

Supplementary Figure 1. (a) Principal Component Analysis (PCA) of RNAseq data. (b - d) IPA pathway analysis of gene clusters from **Figure 1a.** RNAseq was performed with three independent biological replicates.

Supplementary Figure 2. (a) mRNA of *IL6* was measured by quantitative PCR (qPCR) and normalized relative to *GAPDH* mRNA. n = 3 independent experiments. (b, c) IPA pathway analysis of gene clusters 2 and 3 from **Figure 1a**. (d, e) IPA pathway and TF analysis of genes upregulated by ORN8L from figure 1a. Data is depicted as mean \pm SEM for c. Source data are provided as a Source Data file.

Supplementary Figure 3. ($\mathbf{a} - \mathbf{d}$, \mathbf{g} , \mathbf{h}) Heatmaps showing expression of representative cytokine and chemokine genes (\mathbf{a}) and their receptors (\mathbf{b}) and fibrosis related genes (\mathbf{c}), and ISGs (\mathbf{d}), and antigen presentation related genes (\mathbf{g}) and transcription factors important for anabolic metabolism and osteoclastogenesis (\mathbf{h}) assessed in experimental condition as in **Figure 1a** and presented (key) relative to the maximum. (\mathbf{e} , \mathbf{f}) IPA activated kinases and TF analysis of genes upregulated by CXCL4 + ORN8L from **figure 1a**.

Supplementary Figure 4. (a) Primary transcripts (PT) of *IL6*, *IL12B* and *TNF* were measured by quantitative PCR (qPCR) and normalized relative to *GAPDH* mRNA (n = 4 donors). (b) Log2 CPM of TLR8 from RNAseq data in human monocytes 6 hr after CXCL4 and/or ORN8L stimulation. (c) Immunoblots of TLR8 using whole cell lysates from the indicated conditions 6 hr after stimulation (data are representative of 3 independent experiments). (d) Nanoparticle formation measured using dynamic light scattering. The number mean is from one sample measured in triplicate. ND = not detected. 2 independent experiments are shown to supplement the third experiment shown in Fig. 1f. (e) Flow cytometric analysis of the internalization of ORN8L-AF488 after the indicated times of incubation in the absence or presence of CXCL4 in human monocytes. Left panel, representative FACS plot; right panel, cumulative data (n = 3 donors). Data is depicted as mean \pm SEM; ****p \leq 0.0001; ***p \leq 0.001; **p \leq 0.01; *p \leq 0.05 by two-way ANOVA (a) or one-way ANOVA (e). Source data are provided as a Source Data file.

Supplementary Figure 5. (a) Endotoxin assay of CXCL4 stock solution (n = 5 technical replicates). (b and c) qPCR analysis of mRNA amounts of *IL6*, *TNF* and *IL1* β normalized relative to *GAPDH* mRNA in cells stimulated with 2 pg/ml LPS (n = 3 donors) (b) or 5 ng/ml LPS (n = 3 donors) (c) in the presence/absence of ORN8L, CXCL4 serves as a positive control. Data are depicted as mean \pm SEM. Source data are provided as a Source Data file.

Supplementary Figure 6. (a) mRNA of *IL6* and *TNF* was measured by qPCR and normalized relative to *GAPDH* mRNA in cells stimulated with CXCL4 and/or ORN8L with/without CXCR3 inhibitor AMG487 (5 μ M) for 3 hr (n = 4 donors). (b and c) mRNA of *IL6* and *TNF* was measured by qPCR and normalized relative to *GAPDH* mRNA in cells stimulated with CXCL4 and/or ORN8L (b, n = 2 donors) or adenosine (1mM) (c, n = (upper panels) or 9 (lower panels)) with/without G-coupled receptor inhibitors Pertussis toxin (10 μ M) or SCH202675 (10 μ M) for 6 h. Data depict mean ± SEM; **p \leq 0.01; *p \leq 0.05 by paired t test, Two-tailed (c)). Source data are provided as a Source Data file.

Supplementary Figure 7. (a) The gating strategy used for CD11b⁺ cells and then separate the CD11b⁺ cells into 4 different populations using CD11c and Ly6C markers. (b) FACS to analyze CD206 levels in Ly6C⁺CD11c⁻, Ly6C⁺CD11c⁺ and Ly6C⁻CD11c⁺ BMDCs with/without CXCR3 inhibitor AMG487 (5 μ M) for 24 hr (n = 4 independent experiment). Data depict mean ± SEM; **p \leq 0.01 by two-way ANOVA (d). Source data are provided as a Source Data file.

Supplementary Figure 8. (a and b) mRNA of *IL6*, *TNF* and *IL1β* was measured by qPCR and normalized relative to *GAPDH* mRNA in cells stimulated with CXCL4 and/or ORN8L with/without Bafilomycin A1 (BAFA1) (1 μ M) (n = 5 donors), TLR8 inhibitor CU-CPT9 α (1 μ M) (n = 4 donors) for 3 h, respectively. (c) qPCR analysis of mRNA amounts of *TNF* and *IL1β* normalized relative to *GAPDH* mRNA in cells stimulated with CXCL4 and/or ORN8L after treatment with the MAPK inhibitors SB 202190 (p38), JNK inhibitor II and U0126 (MEK1/2) used at 10 μ M, respectively (n = 4 donors). The data are related to and use some of the same samples as Fig. 2g. Data is depicted as mean ± SEMdonors; ****p ≤ 0.0001; ***p ≤ 0.001; **p ≤ 0.05 by two-way ANOVA. Source data are provided as a Source Data file.

b

а

Supplementary Figure 9. (a and **b**) Immunoblots of phospho-IKK ε , total IKK ε (**a**) and phospho-IRF3 and total IRF3 (**b**) using whole cell lysates from a time course with the indicated conditions. (**c**) mRNA of indicated genes was measured by qPCR and normalized relative to *GAPDH* mRNA after blockade of TBK1/IKK ε activation by 1 µM of TBK1/IKK ε -IN-2 or 50 µM of GSK8612 (n = 4 independent experiments) for 3 h. (**d**) Immunoblot of TBK1 and IKK ε with whole cell lysates from monocytes nucleofected with control or TBK1- and/or IKK ε -specific siRNAs. (data representative of 3 independent experiments) (**e**) mRNA of *CXCL10* was measured by qPCR and normalized relative to *GAPDH* mRNA using monocytes nucleofected with control or TBK1- and/or IKK ε -specific siRNAs. (data representative of 6 donors). (**f**) mRNA level of *IL10* measured by qPCR and normalized relative to *GAPDH* mRNA (n = 3 independent experiments). (**g**) mRNA of indicated genes was measured by qPCR and normalized relative to *GAPDH* mRNA (n = 3 independent experiments). Data in (**a** and **b**) are representative of 3 experiments. Data are depicted as mean ± SEM (**c**, **e** - **g**). **p ≤ 0.01; *p ≤ 0.05 by two-way ANOVA (**c**) or by Friedman test (**e**). Source data are provided as a Source Data file.

Supplementary Figure 10. (a) Chart representation of the relative distribution of ATAC-seq peak coordinates relative to the position of transcription start sites (TSS) for differential open chromatin regions identified by comparison of respective treatments versus the resting condition. (b - e) Visualization of significant footprints for all accessible sites for the following significant motifs IRF1_MA0050.2, IRF5_MA1420.1, BACH2_MA1101.2, BATFJUN_MA0462.1 that were identified by BINDetect using TOBIAS.

Supplementary Figure 11. (a) Heatmap showing representative genes associated with C1 peaks in the cytokine-cytokine receptor pathway. (b) Heatmap showing representative genes associated with C1 peaks in cell adhesion and migration pathways. These data are from the ATACseq experiments shown in Figs. 4 and 5; n = 3 independent experiments.

Supplementary Figure 12. (a) Immunoblot of IRF5 using whole cell lysates 3 days after nucleofection of monocytes with control or IRF5-specific siRNAs. (b) mRNA of indicated genes was measured by qPCR and normalized relative to *GAPDH* mRNA after knockdown of IRF5 by siRNA for 3 days (n = 7 independent experiments). Data are representative of 3 independent experiments (a) or depict mean \pm SEM (b). *p \leq 0.05 by Wilcoxon signed-rank test, Two-tailed (b). Source data are provided as a Source Data file.

Supplementary Figure 13. (a) Immunoblots of phospho-IKB α , total IKB α , and phospho-p65 and total p65 using whole cell lysates from the indicated conditions (data representative of 4 independent experiments). (b) mRNA of *IL6*, *TNF* and *IL1* β was measured by qPCR and normalized relative to *GAPDH* mRNA in cells stimulated with CXCL4 and/or ORN8L and IKK α/β inhibitor BMS-345541 (10 µM), TAK1 inhibitor Takinib (10 µM), and IKB α inhibitor Bay 11-7085 (10 µM), respectively (n = 3 donors). (c) Immunoblot of IRF5 using whole cell lysates with the indicated conditions run on nondenaturing gels. HSP90 α serves as loading control. Four independent experiments are shown. Data are depicted as mean ± SEM for **b**. Source data are provided as a Source Data file.

Supplementary Figure 14. (a) ATP concentration in indicated cell culture medium detected using ATP Determination Kit (n = 4 donors). (b) 130 mM extracellular concentration of K+ suppressed (CXCL4 + ORN8L)-induced IL-1 β secretion (n = 3 donors). (c) ELISA of IL-1 β protein in culture supernatants of monocytes cultured in presence of M-CSF for 1-3 days prior to CXCL4 and TLR8 costimulation for 6h (n = 3 donors). Data is depicted as mean ± SEMdonors; **p ≤ 0.01 by one-way ANOVA. Source data are provided as a Source Data file.

Supplementary Figure 15. A schematic model linking CXCL4 and TLR8 signaling with chromatin remodeling and de novo enhancers associated with inflammatory genes.

Supplementary table 1: Primers and siRNAs.

Primers for qPCR	Source	
Human GAPDH F: ATCAAGAAGGTGGTGAAGCA;	This paper	
R: GTCGCTGTTGAAGTCAGAGGA		
Human IL6 F: TAATGGGCATTCCTTCTTCT; R:	This paper	
TGTCCTAACGCTCATACTTTT		
Human <i>IL12B</i> F: GGGCACAGATGCCCATTCGCT;	This paper	
R: GGGCACAGATGCCCATTCGCT		
Human <i>TNF</i> F: AATAGGCTGTTCCCATGTAGC; R:	This paper	
AGAGGCTCAGCAATGAGTGA		
Human <i>IL6</i> primary transcript (PT) F:	This paper	
R: CTTGGGTTCAGTTCCAAGCTC		
Human IL12B primary transcript (PT) F:	This paper	
Human TNC primary transprint (DT) Fr	This paper	
	rnis paper	
	This naner	
R. TTTTTCCTCTCACTCCCCCCAC		
Human CXCL 10 F	This naner	
TTAATCTTGTCTCTGGGCTTGG [,] R [,]		
GTTGGGGAATGAGGTTAGGG		
Human <i>IRF1</i> F: GCACTAAGCGAAAATTGCA: R:	This paper	
GGGAGTTTCCTTCACATTCA		
Human <i>NLRP3</i> F: GATCTTCGCTGCGATCAACAG:	This paper	
R: CGTGCATTATCTGAACCCCAC	- 1 - 1 -	
Mouse Gapdh F: ATCAAGAAGGTGGTGAAGCA;	This paper	
R: AGACAACCTGGTCCTCAGTGT		
Mouse <i>II6</i> F: TGGCTAAGGACCAAGACCATCCAA;	This paper	
R: AACGCACTAGGTTTGCCGAGTAGA		
Mouse Tnf F: CCCTCACACTCAGATCATCTTCT;	This paper	
R: GCTACGACGTGGGCTACAG		
Mouse <i>II1β</i> F: AGCTTCCTTGTGCAAGTGTCT; R:	This paper	
GACAGCCCAGGTCAAAGGTT		
FAIRE Primers for qPCR		
Human <i>IL6</i> (promoter) F:	This paper	
ACCCTCACCCTCCAACAAAG; R:		
GCAGAATGAGCCTCAGACATC		
Human <i>TNF</i> (promoter) F:	This paper	
GCCCCAGGGACATATAAAGG; R:		
	This was as	
Human IL 12B (promoter) F:	i nis paper	
CUCAGAAGGIIIIGAGAGIIGI, K.		
	Source	CAS#
siGENOME Human TBK1 siRNA	Horizon	M-003788-02-0005
siGENOME Human IKBKE siRNA	Horizon	M-003723-02-0005
	Horizon	M_011706_00_0005
ON-TARGETPIUS HUMAN MYD88 SIRNA	HORIZON	L-004769-00-0005

Horizon

Antibodies	Source	CAS#
lkBa (1:1000)	Cell Signaling Technology	9242s
Phospho-p38 MAPK (Thr180/Tyr182) (3D7) (1:1000)	Cell Signaling Technology	9215S
anit-p38 (1:1000)	Cell Signaling Technology	9212S
Phospho-p44/42 MAP Kinase (ERK1/2) (1:1000)	Cell Signaling Technology	9101S
ERK1/2 (1:1000)	Cell Signaling Technology	9102S
TLR8 Polyclonal Antibody (1:500)	Thermofisher Scientific	PA5-80137
TBK1/NAK (E8I3G) (1:1000)	Cell Signaling Technology	38066S
Phospho-TBK1/NAK (Ser172) (D52C2) (1:1000)	Cell Signaling Technology	5483T
Phospho-IKKε (Ser172) (D1B7) (1:500)	Cell Signaling Technology	8766S
ΙΚΚε (1:500)	Cell Signaling Technology	2690T
NF-кВ p65 (D14E12) (1:1000)	Cell Signaling Technology	8242S
Phospho-NF-кВ p65 (Ser536) (93H1) (WB 1:1000; FC 1:1600)	Cell Signaling Technology	3033S
Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 594 (1:2000)	Thermofisher Scientific	A-11012
Phospho-IκBα (Ser32/36) (5A5) (1:1000)	Cell Signaling Technology	9246S
ΙΚΒα (1:1000)	Cell Signaling Technology	9242S
Phospho-IRF-3 (Ser396) (D6O1M)(1:1000)	Cell Signaling Technology	29047S
IRF-3 (D6I4C) (1:1000)	Cell Signaling Technology	11904T
IRF5 Polyclonal Antibody (1:1000)	Invitrogen	PA5-19504
β-Actin (D6A8) Rabbit mAb (1:5000)	Cell Signaling Technology	8457
NLRP3 (D4D8T) Rabbit mAb (1:250)	Cell Signaling Technology	15101
Human IL-1 beta /IL-1F2 Antibody (2805R) (1 ug/ml)	R&D Systems	MAB601R-100
Caspase-1 (D7F10) Rabbit mAb (1:250)	Cell Signaling Technology	3866
Cleaved Gasdermin D (Asp275) (E7H9G) (1:500)	Cell Signaling Technology	36425
AIM2 (D5X7K) Rabbit mAb (1:500)	Cell Signaling Technology	12948
Human IL-1 beta /IL-1F2 Biotinylated Antibody (0.4 ug/ml)	R&D Systems	BAF201
PE Streptavidin (1:400)	Biolegend	405203
Phospho-IRF-3 (Ser386) (E7J8G) XP® Rabbit mAb (Alexa Fluor® 488 Conjugate) (1:50)	Cell Signaling Technology	73981
CD11c Hamster anti-Mouse, BUV737, Clone: N418 (1:200)	BD Biosciences	BDB749039
Pacific Blue™ anti-mouse Ly-6C Antibody (HK1.4) (1:200)	Biolegend	128014
PerCP/Cyanine5.5 anti-mouse CD206 (MMR) Antibody (C068C2) (1:100)	Biolegend	141716
Human/Primate IL-6 Antibody (6708) (4 ug/ml)	R&D Systems	MAB206-SP
Human/Primate IL-6 Biotinylated Antibody (0.4	R&D Systems	BAF206
Human TNF-alpha Antibody (28401) (4 ug/ml)	R&D Systems	MAB610-SP
Human TNF-alpha Biotinylated Antibody (0.4	R&D Systems	BAF210
Human IL-10 R alpha Antibody (37607) (10 ug/ml)	R&D Systems	MAB274-100

Supplementary table 2: Antibodies and Others.

Human IL-10 Antibody (23738) (10 ug/ml)	R&D Systems	MAB217-100		
TLR ligands, inhibitors and recombinant proteins				
Recombinant Human IL-1 beta/IL-1F2 Protein	R&D Systems	201-LB-005		
LPS	Invivogen	TLRL-3pelps		
PAM3CYS	Invivogen	TLRL-PMS		
Poly I:C	Invivogen	TLRL-PIC		
ORN8L	Chemgenes Corporation	(Lan et al., 2007)		
ORN8L-AF488	Chemgenes Corporation			
Recombination Human CXCL4	PEPROTECH	300-16		
PF-4 (CXCL4) human	Sigma-Aldrich	SRP3142		
Recombinant Human IL-6	Peprotech	200-06		
Recombinant Human TNF-alpha	Peprotech	300-01A		
Pertussis Toxin	R&D Systems	3097/50U		
SCH 202676 hydrobromide	R&D Systems	1400/10		
BMS-345541-IKKα/β inhibitor	Selleckchem	S8044		
Bay 11-7085-IKBα inhibitor	Selleckchem	S7352		
Takinib	Selleckchem	S8663-5mg		
NLRP3 Inhibitor, MCC950	Sigma Aldrich	5381200001		
Ac-YVAD-cmk, CASP1 inhibitor	Sigma Aldrich	SML0429		
SB202190, Hydrochloride, p38 inhibitor	Calbiochem	559393		
Bafilomycin A1	MCE	HY-100558		
MRT67307 HCI (dual IKKc and TBK1 inhibitor)	Selleckchem	S7948		
TBK1/IKKε-IN-2	MCE	HY-12453		
GSK8612-TBK1 inhibitor	Selleckchem	S8872		
AMG 487 CXCR3 antagonist	TOCRIS	4487		
JNK Inhibitor II	Sigma Aldrich	420119		
U0126 MEK1/2 inhibitor	Sigma Aldrich	662005		