
A Framework for the General Design and Computation of Hybrid

Neural Networks

Supplementary Note 1: Experimental Settings and Dataset of the

Hybrid Sensing Network

Benchmark datasets for hybrid streaming perception. To demonstrate the

superiority of HSN in hybrid tracking, we developed a data generation method that can

generate a hybrid dataset simultaneously containing the stationary-based (parvocellular

pathway) and transient-based (magnocellular pathway) signals1,2, shown in

Supplementary Figure. 1a. To this end, we generated DAVIS3 streams using intensity

frames from traditional video-based datasets, NfS4, VOT5, and CLEVRER5. As shown

in Supplementary Figure. 1b, we use the two-phase generation method, including a data

interpolation phase and spikes generation phase.

Supplementary Figure 1 | Overview of the dual retinal pathway dataset. a, The dual

visual pathway and basic model of hybrid visual streaming. b, The generation framework for the DAVIS

simulator. c, Side-by-side comparison of simulated data with frame-based data.

Data interpolation phase. We input adjacent pairs of images (𝐼𝑛−1, 𝐼𝑛+1) to the CNN

and predict the bi-directional optical flow (𝑜𝑝𝑛−1, 𝑜𝑝𝑛+1) to the last and next frames.

Then flow vectors are linearly separated with an arbitrary time. Finally, we warp the

flow information to predict the inter-frame 𝐼𝑛. In the training process, we randomly pick

up the adjacent three frames from video sequences and extract the middle frame as the

ground truth. Therefore, we choose the 𝐿1 -norm-based pixel-to-pixel loss 𝐿1 =

||𝐼𝑛 − 𝐼𝑔𝑡||1 and perception loss with a pre-trained VGG6network as our loss function.

Spike generation phase. The DAVIS data jointly include asynchronous spikes from

DVS and synchronous frames from APS. In the APS part, we directly extract non-

interpolation frames in 𝑡𝑓 with a fixed temporal interval ∆𝑡𝑓 and contained m frames.

In the DVS part, we denote one DVS event by a quaternion {𝑥, 𝑦, 𝑝, 𝑡𝑒}, where 𝑥 and 𝑦

denote the pixel coordinates of the event, 𝑝 ∈ {−1,+1} denotes the polarity of the

event, 𝑡𝑒 denotes the timestamp of the event. The DVS spike will fire when the

brightness changes higher than a pre-set threshold 𝜃 within the minimal temporal

resolution ∆𝑡𝑒. We define brightness changes as ∆𝐼(𝑥, 𝑦) = 𝐼𝑛(𝑥, 𝑦)− 𝐼𝑛−1(𝑥, 𝑦), from

the interpolation stage. After that, we regard the ∆𝐼(𝑥, 𝑦) as the firing rate 𝑓𝑒(𝑥, 𝑦) of

the (𝑥, 𝑦) pixel, as same as the number of events between 𝐼𝑛 and 𝐼𝑛−1. Since DVS has

random temporal jitter between 𝐼𝑛 and 𝐼𝑛−1, we use the Poisson process to generate

spikes with random timestamps.

Performance definition. We adopted the widely accepted "streaming accuracy"7,

which fully considers the real latency in the hardware processing pipeline and the

limitation of computational resources. The traditional benchmark ignores latency

effects due to hardware processing and only compares the performance with an offline

approach, where 𝑒𝑟𝑟𝑜𝑟 = ‖𝑦̂(𝑡)− 𝑦(𝑡)‖2. Here, the sensor inputs, network outputs,

and ground-truth at time-stamp 𝑡 are denoted by 𝑥(𝑡), 𝑦̂(𝑡), 𝑦(𝑡), respectively. It can be

noticed that because the hardware processing consumes time 𝑇𝐶 , for example

𝑇𝐴𝑁𝑁𝑠 𝑜𝑟 𝑇𝑆𝑁𝑁𝑠 , the environment has changed from 𝑦(𝑡) to 𝑦(𝑡 + 𝑇𝐶) when the

processing completes. Therefore, to fairly judge the ability of an autonomous agent

(re)acting in the real environment, we need to incorporate the 𝑒𝑟𝑟𝑜𝑟 equation from

‖𝑦̂(𝑡) − 𝑦(𝑡)‖2 to ‖𝑦̂(𝑡) − 𝑦(𝑡 + 𝑇𝐶)‖2.

Parameter settings. CLEVRER dataset contains 10000 training videos and 5000 test

videos. Each frame is resized from 320*480 to 128*192 and padded to 232*296 by

symmetrically padding zeros before feeding into the network. As shown in

Supplementary Table 1, we adopt two parallel ANNs and SNNs with the same ResNet-

22 backbone to extract features from APS and DVS, respectively. The features extracted

from DVS frames are considered deviations from APS features and hence added to the

template APS frame feature, resulting in feature predictions at a time between two

consecutive APS frames. Then, target features and predicted features from ANNs and

SNNs are merged in HUs to calculate bounding box prediction results. The HUs use 4

conv2d layers to extract classification and regression results of each anchor, 6 anchors

are used for each location. Similar ideas can be found in RPN8 (region proposal

network), but the main difference is that HUs in HSN realize the fusion of different

time-scale and precision information. During training, a batch size of 40 was used for

the ANN part and a batch size of 5 was used for the SNN part. Both ANN, SNN, and

HUs parts use an Adam optimizer with a learning rate of 0.0001 for gradient descent.

Supplementary Table 1 Network structure of HSN

Layer
name

Structure of the ANN-part Structure of the SNN-part

Conv1 7 × 7, 64, 𝑠𝑡𝑟𝑖𝑑𝑒 2 7 × 7, 64, 𝑠𝑡𝑟𝑖𝑑𝑒 2

Conv2 [
1 × 1, 64
3 × 3, 64

1 × 1, 256
] × 3, 𝑠𝑡𝑟𝑖𝑑𝑒 2 [

1 × 1, 64
3 × 3, 64

1 × 1, 256
] × 3, 𝑠𝑡𝑟𝑖𝑑𝑒 2

Conv3 [
1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 4, 𝑠𝑡𝑟𝑖𝑑𝑒 2 [
1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 4, 𝑠𝑡𝑟𝑖𝑑𝑒 2

HUs [

3 × 3, 512
3 × 3, 512

3 × 3, 512 × 6 × 2
3 × 3, 512 × 6 × 4

]

Supplementary Note 2: Experimental Details of the Hybrid

Modulation Network

Parameter settings. N-MNIST dataset contains 60000 training samples and 10000 test

samples. The spatial size is 34 × 34 and the time depth is 10. We adopt an ANN with

the structure of 34 × 34 × 2 − 512 − 512 and an SNN with the structure of 34 ×

34 × 2 − 512 − 512 − 10. 1024 HUs with 512 inputs are installed at the backend of

the ANN. The ANN is trained for 30 epochs by SGD without momentum. The initial

learning rate is 0.02 and attenuates to 0.002 after 25 epochs. 𝜌 is set to 10 and 𝜇 is set

to 0.05. The SNN is trained for 10 epochs for each task by SGD. The initial learning

rate is 0.05 and attenuates to 0.005 after 5 epochs. The threshold of the SNN is fixed as

0.2. The batch size is set to 200 for all experiments.

Scaling analysis. To demonstrate the scaling advantage of HNNs over both SNNs and

ANNs, we have conducted an empirical study about the HMN on continual learning

tasks. Considering the spike-based neuromorphic applications have achieved a wide

range of success, we adopt DVS data as the input data, and build an SNN network with

typical advanced continual learning techniques (Xdg) for comparisons. On this basis,

we conduct a series of experiments of learning various numbers of tasks with different

network capacities measured by the number of hidden neurons. The performance

measured by the mean accuracy of all tasks after sequential learning is reported in the

Supplementary Figure. 2.

Here we would like to summarize three important observations as follows:

1. The proposed HMN’s performance exceeds those of the SNN models in all

controlled experiments with different settings.

2. When the task number is small, such as 32, the smaller the network capacity, the

larger the performance gap.

3. When the task number is large, such as 128, the larger the network capacity, the

larger the performance gap. Even with enough network capacity, the performance

of the single SNN saturates and is lower than that of HNN by a considerable margin.

To investigate the effectiveness of HMN quantitatively, we analyzed the reuse ratio

of parameters of different models in the setting of 128 tasks with 16384 channels. The

reuse ratio is defined by the ratio of parameters shared between different tasks. A large

reuse ratio for uncorrelated tasks indicates the parameter interference, resulting in

catastrophic forgetting, while a small reuse ratio for highly correlated tasks results in

inefficiency of model capacity utility. Results demonstrate that, for both highly

correlated tasks and uncorrelated tasks, the average reuse ratio is about 0.10 in the SNN

model. In contrast, in the HNN model, the average reuse ratio is about 0.50 for highly

correlated tasks, and 0.03 for uncorrelated tasks. These results validate that HMN can

effectively alleviate the interference between the parameters allocated to perform

uncorrelated tasks, and reuse the parameters for correlated tasks, thus leading to

superior performance. The scaling advantage of the HMN on continual learning tasks

is facilitated by the additional model complexity of HNN, which is brought by the

hierarchical multi-network architecture and the diverse parameter modulation between

heterogeneous networks.

Supplementary Figure 2 | Mean accuracy of different models on all learned tasks

vs. the numbers of the hidden neurons. For better visualization, these figures are presented in

different x-coordinate scales (left: logarithmic, right: linear). X32 refers to the SNN model on 32tasks,

and h32 refers to the HNN model on 32tasks.

Comparison with ANN-only and SNN-only implementations. The hybrid

modulation network utilizes the powerful data fitting ability of ANN and the rich

spatiotemporal dynamics of SNNs, enabling multi-network to perform hierarchical

processing tasks of meta-continuous learning. This experimental setup aims at

demonstrating the importance of hybrid modulation in the coordination of hybrid multi-

networks. Although it can still work if the ANN modulator is substituted by a rate-

coding SNN modulator with a similar architecture, the efficiency and performance will

significantly degrade. To verify the above claim and demonstrate the effectiveness of

HNN, we have conducted extensive contrast experiments. The experimental settings,

results, and analysis are presented in Supplementary Table 2.

Supplementary Table 2 comparison of ANN-only and SNN-only implementations

in HMN

Model
Number of
parameters

Input channels
(backbone
network

Input channels
(branch network

Mean accuracy

ANN-only 1.97M+1.45M
Take the mean
along the time

dimension

Take the mean
along the time

dimension
76.86±1.37

SNN-only 1.97M+1.45M
Input

iteratively in
10 time steps

Input iteratively in
10 time steps

60.48±5.34

HNN 1.97M+1.45M
Take the mean
along the time

dimension

Input iteratively in
10 time steps

80.21±2.36

For the ANN-only implementation, we replace the branch network of the HMN

with an ANN network with the same architecture. According to the usual practice, we

take the mean of the inputs along the time dimension before sending the samples to the

branch network. For the SNN-only implementation, we replace the backbone network

of HMN with an SNN network with the same architecture. The inputs are fed into the

network in 10 time steps. As shown in the Supplementary Table 2, the mean accuracy

of HMN on continuous learning 40 tasks exceeds that of ANN-only and SNN-only

implementations by a large margin.

For the ANN-only implementation, it is difficult to discriminate the fine-grained

timing feature of the inputs for the branch network implemented by an ANN due to the

averaged inputs along the time dimension. For the SNN-only implementation, it is

difficult to fit the task-level context information for the backbone network implemented

by an SNN due to the immature optimization algorithm of SNNs. Therefore, these

implementations result in performance degradation. The experimental results verify

that the HNN can utilize the advantages of both ANNs and SNNs to perform appropriate

tasks.

Supplementary Note 3: the Universal Approximation of Hybrid Units

The approximation capability of ANNs has been studied based on the universal

approximation theorem developed in the 1990s9, 10, 11. Hornik et al.9 proved that there

exists a three-layered feedforward network with bounded and non-constant semi-linear

functions, e.g. sigmoidal function, which can approximate any continuous function

arbitrarily well. Blum et al. 10 and Kolmogorov et al. 11 also provide a constructive proof

on the approximation property.

At the same time, it has frequently been conjectured that generic computations by

neural circuits are not digital, and are not carried out on a static input but rather on

functions of time12. Thus, if we accept the assumption that the firing times of neurons

in a biological neural system encode relevant information, there are still many possible

spiking coding schemes that encode information in a way different from that of rated-

based traditional networks, such as first-to-spike coding, temporal interval coding, etc.

Along this line, previous work has studied the approximation capabilities of SNNs with

some specific coding paradigm or some specific computational framework13, 14.

However, it still lacks a theoretical analysis of the universal approximation capability

of such versatile spiking coding.

Furthermore, hybrid information conversion is a map from a set of spiking functions

𝑠(𝑡) to a set of real numbers. In principle, SNNs can implicitly encode the information

in the spike function 𝑠(𝑡) in an arbitrary manner. However, to the best of our knowledge,

it is unknown whether for any spiking coding, it has a general model to approximate

any arbitrary filter with a given precision.

The problem can be divided into two cases: (1). If we know the specific coding

method 𝜑 (i.e., filtering methods), we can adopt designable methods to construct HUs.

(2). If the encoding method 𝜑 for the information I is unknown, can the HNN

framework capture the effective information contained in it?

We would like to point out that it can use learnable HUs for general approximation.

Next, we argue that some modified learnable HUs can approximate arbitrary given

filters to any desired degree of precision. Our proof yields two following assumptions,

(1) Positive minimum spiking interval. It exits a minimum interval between any

two spikes in one spike train 𝑆𝑖({𝑡𝑘
𝑓
}).

 ∆𝑡∗ = 𝑖𝑛𝑓 {|𝑡𝑖 − 𝑡𝑗||∀𝑡𝑖 , 𝑡𝑗 ∈ {𝑡𝑘
𝑓
}} > 0 (1)

(2) A compact temporal domain (i.e., ∃𝑇 ∈ 𝑅, ∀𝑡𝑖 ∈ {𝑡𝑘
𝑓
}, 𝑡𝑖 < 𝑇) . That is to say,

we mainly consider the case that spike firing time happened in a compact temporal

domain.

The main goal is to illustrate that for any filter (i.e., spiking decoding function),

some suitably modified HUs can approximate the filter with any desired degree of

precision. To this end, we first formalize the universal approximation theory of HUs as

below,

Theory 1. Given an error gap 𝜖 ≥ 0, for any function 𝜑: 𝑆𝑚(𝑡) → 𝑅𝑛, there exists a

composite function 𝜑𝜖: 𝑆
𝑚 → 𝑅𝑛 with representation

 𝑓𝜖 = 𝐹 ∗ 𝐻 (2)

where 𝐹 denotes a composable affine map consisting by a three-layer feedforward

network with bounded and non-constant semi-linear functions used for domain

transformation, H denotes a composable affine map used for the information

conversion between time domain and amplitude domain, and * denotes component-

wise composition, such that the approximation bound

 ‖𝑓𝜖 − 𝑓‖ < 𝜖 (3)

holds for any arbitrarily small 𝜖.

To accomplish this proof, we first point out that the information capacity of spike

trains can be approximated by a finite set of spline basis functions and a finite-

dimensional representation matrix. Then we use the existing approximation theory of

ANNs or SNNs to support the theoretical effectiveness of HUs.

At the first step, we prove that for any given filter (i.e., spiking decoding function)

𝜑 yielding a positive minimum spiking interval, there exists a piecewise linear function

𝜑𝜖1with a finite value that can approximate the 𝜑 under the approximation precision 𝜖1

as below.

Lemma 1 (The universal approximation capability of HUs to any decoding

filtering). Given an error gap 𝜖1=
𝜖

2
> 0, for any filtering function 𝜑(𝑠(𝑡)) where spike

trains 𝑠𝑚(𝑡)|: 𝑅 → 𝑅 defined in a compact temporal space, there exits some suitable

modified function 𝜑𝜖1: = 𝐻 ∗ 𝑄|𝑆
𝑚 → 𝑅𝑛

 ‖𝜑𝜖1 − 𝜑‖ <
𝜖

2
 (4)

Proof.

We begin by setting the spiking function as the unit step function (i.e., piecewise

constants described by the Type A spiking neuron defined in Wolfgang et al. 14）

 𝑘(𝑡 − 𝑡𝑖) ≔
1

𝛼
𝟏[𝑐𝑖,𝑐𝑖+𝛼)(𝑡) (5)

where 𝟏[𝒂,𝒃](t) denotes the indicator function yielding

 𝟏[𝒂,𝒃](t) = {
1, 𝑡 ∈ [𝑎, 𝑏]
0, 𝑡 ∉ [𝑎, 𝑏]

 (6)

In particular, when 𝛼 → 0, the A-type spiking functions can approach commonly-used

delta functions 𝛿(𝑡).

We denote the minimum firing interval by 𝑑𝑡 and set the first spike firing time as

the reference time (i.e., 𝑚𝑖𝑛{𝑡𝑖
𝑓
|𝑖 = 1,2, … , 𝑓 = 1,2, . . } = 𝑡0). Let the interval [0, T] be

covered by N ordered subintervals with pairwise disjoint interiors

[𝑐𝑖 , 𝑐𝑖+1] ≔ [𝑖 ∗ 𝑇/𝑁, (𝑖 + 1) ∗ 𝑇/𝑁)

𝑡0 = 𝑐0 < 𝑐1 < ⋯ < 𝑐𝑁 = 𝑇
 (7)

On each of these 𝑖 pieces of [𝑐𝑖, 𝑐𝑖+1], we want to define the pairwise basis function

 𝜔𝑖 =
1

𝛼
𝟏[𝑐𝑖,𝑐𝑖+1) (8)

Then for any spike train 𝑠i = ∑ 𝜅(𝑡 − 𝑡𝑖
𝑓

)𝑖 with spiking firing function 𝜅 , it can be

approximated by 𝑠̃i

 𝑠̃i: = [
1 … 1
0 1 0
0 … 0

]

𝑚×𝑁

[𝜔1, 𝜔2, 𝜔3, … . , 𝜔𝑁]: = 𝐵 ∗ 𝐶𝑇 (9)

Analytically, the approximate error is caused by the difference between the arbitrary

spike firing time 𝑡𝑖
𝑓
 and the most relevant basis function time

ci+ci+1

2
. Note that when

the spike meets the assumption of the minimum firing interval, each neuron fires at

most 𝑛0 = ⌈𝑇/∆𝑡∗⌉ times in a given time domain. On this basis, it can be seen from the

construction of basis function that as 𝑁 =
∈

𝛼𝑚𝑛0
+ 1 is large enough, the approximation

error satisfies

 ∫ |𝑠 − 𝑠̃i|𝑑𝑡
𝑡0+𝑇

𝑡0
= ∑ ∫ |𝑠𝑖 − 𝑠̃i|𝑑𝑡

𝑡𝑖+∆𝑡
∗

𝑡𝑖
𝑡𝑖

< 𝑛0
∈

2𝑚
 (10)

For 𝑠𝑚, it can be approximated by a binary matrix 𝐵 ∈ 𝑅𝑚×𝑘, ∀𝑏𝑖𝑗 ∈ {0,1} multiplied

with a set of basic functions 𝐶𝑇 = [𝜔1, 𝜔2, 𝜔3, … . , 𝜔𝑁] which yields

 𝑅𝑎𝑛𝑘(𝐵) ≤ min {𝑚, 𝑛0} (11)

The above results indicate that for given the spike trains with any given precision, it

can be approximated by a finite Euclid space. It exits a finite set of basis function

representation methods to approximate any given spiking representation by 𝜑𝜖1 with

arbitrary precision. Such approximation for any spiking decoding function can be

implemented and identified as H in the HUs. Then we can follow the Weierstrass

approximation theorem to find an approximation 𝜑𝜖1 to approximate the decoding

function 𝜑𝜖.

Given the above results, for any spiking function, in principle, it can be represented

by a finite real space 𝑅𝑘 to approximate the signal representation with a given precision.

By using existing theories of universal approximation for NNs, it can be further proved

that there exists a composable affine map F to project the information distribution from

𝑅𝑘 into 𝑅𝑚 under the approximation error 𝜖/2

Finally, with the help of triangle inequalities, we can easily get

 ‖𝑓𝜖(𝑠) − 𝑓(𝑠)‖ = ‖𝜑𝜖1 − 𝑓𝜖(𝑠)‖
𝐻

+ ‖𝜑𝜖1 − 𝑓‖
𝐹

≤
𝜖

2
+
𝜖

2
= 𝜖 (12)

The first term ‖𝜑𝜖1 − 𝑓𝜖(𝑠)‖ can be evaluated by above Lemma 1. We can use the

existing conclusion of approximate capability in ANNs or SNNs 9-12 to illustrate that

 ‖𝜑𝜖1 − 𝑓‖ ≤ 𝜖/2 (13)

Supplementary Note 4: Details of Bio-plausibility of Hybrid Neural

Network Models

Bio-plausibility of the HSN. The P pathway and M pathway are two well-known

pathways for visual information processing15, which have features similar to those of

ANNs and SNNs, respectively. Specifically, the P-pathway has a slow conduction

velocity and responds strongly to changes in colour, but only responds weakly to

changes in contrast16. Considering the constraint in the visual system, the transmission

of such high-precision information needed for object recognition suffers from low

speed. This feature resembles the functional role of ANNs in the HSN. In contrast, the

M-pathway has a fast conduction velocity17 and responds to low-contrast stimuli, but is

less sensitive to changes in colour 18. In this case, the high-speed conduction necessary

for sensitive detection sacrifices high precision in terms of colour. This feature matches

the role of SNNs in the HSN. To summarize, because of the constraint of accessible

computing resources, high precision is needed in detailed object recognition, but

recognition may be slower, whereas high speed is essential to detect flying events, but

spatial resolution and colour information must be sacrificed. Dividing raw visual

information into two pathways with a distinctive response property and conquering

them separately seems to be an efficient strategy to balance the intricate, and even

contradictory, requirements of real-world scenarios.

Bio-plausibility of the HMN. The adaptivity of the brain function when it encounters

diverse environmental scenarios fundamentally requires neuromodulation, graded and

relatively slow changes to fast synaptic transmission and ion channel properties through

diffusible signalling molecules 19, 20, 21. Two parts of neuromodulation, that is slow

diffusive modulation and fast synaptic transmission, are comparable to the ANNs and

SNNs in the HMN respectively. We explain this point as follows: Consider

neuropeptides as an example, a recently discovered fine-grained neuromodulator with

higher diversity, selectivity, and specificity22, 23 . Secreted neuropeptides are thought to

persist as long as minutes and diffuse to as broad as hundreds of micrometres20. With

the recent advent of single-cell and neurotaxonomic methods, a specific prediction has

been made that dense intra-cortical neuropeptide modulatory networks may play

prominent roles in cortical homeostasis and plasticity22, 23. Interestingly, the ANN part

in the HMN emerges as a similar fine-grained modulatory dense network with longer

persistent activities (operation is slower), broader influence (each ANN unit influences

a group of spiking neurons), and higher neuron specificity (modulatory activity is task

specific), whose larger spatiotemporal scale activity can adjust the fast transmission

property of SNN parts.

Bio-plausibility of the HRN. The reasoning and deducting capability of neural

networks implicitly requires symbol-like processing 24. In increasing numbers of

studies, it is suggested that neural systems exploit sparse timing correlated neuronal

groups as basic representative units of symbols which can be dynamically associated

with form pointers through the Hebbian learning rule25. Such a symbol-like

representation of variables, roles, or syntax, cannot work alone. It needs to be grounded

by values, fillers, or words to fulfil the cognitive, mnemonic and linguistic capabilities

of humans24. Despite the simplification, the SRN demonstration in this study illustrates

how symbol-like processing and its grounding can be realized by SNNs and ANNs,

respectively. ANNs play their roles in extracting low-dimensional invariant features

with a distributed representation, and SNNs dynamically associate its sparse groups of

neurons accordingly. The specific structure of the SRN that is essential for its reasoning

capability provides a new hypothesis for the working memory mechanism. For example,

it suggests the requirement of a proper transforming mechanism between different

sensory cortical areas and prefrontal working memory areas in the brain. Additionally,

this demonstration provides a reminder of arguments on the preconfigured versus the

blank slate model of the brain, where backbone connectivity and its emergent dynamics

are genetically defined as an existing knowledge base26.

Supplementary Note 5: Benchmarking Hybrid Units on Classification

Tasks

Supplementary Figure 3 | Illustration of the pipeline of the HUs for spike train

encoding and decoding. HUs transmit information from ANNs to SNNs. The spike trains are

synthesized by classically designed coding schemes such as rate coding.

HUs transmit information from SNNs to ANNs. To demonstrate the adaptivity of

learnable HUs, we conducted experiments comparing learnable HUs with classical

manual decoding schemes on various unknown spike trains. The pipelines of the

experiment are shown in Supplementary Figure 3. The accuracies of networks on

classification tasks with different HUs are reported in Supplementary Table 3. The

results show that the HNN with learnable HUs can achieve high accuracy under

different encoding schemes, indicating that learnable HUs can adaptively decode

unknown spike trains. In contrast, the HNN with designed HUs can only achieve the

desired performance when the decoding scheme corresponds to the encoder and

decoder, but not in other cases.

Supplementary Table 3 Classification accuracies under different settings. We

repeat three trials for each model and report the average results (i.e., mean±std).

decoder

encoder
learnable HUs

designable HUs

rate decoder temporal decoder ISI decoder

learnable
encoder

85.8%±0.2% 15.1%±0.1% 12.0%±0.1% 16.0%±0.1%

rate encoder 84.5%±0.1% 85.4%±0.2% 54.9%±0.5% 71.3%±0.2%

temporal
encoder

85.4%±0.1% 10.0%±0.0% 85.2%±0.2% 10.0%±0.0%

ISI encoder 80.2%±0.2% 69.3%±0.8% 10.0%±0.0% 85.2%±0.2%

Experimental data pipeline: Firstly, we synthesized four spike encoders with two

different types to generate spike trains based on the CIFAR-10 dataset. The first type is

a classical encoder with rate coding, temporal first-to-spike coding, and inter-spike-

interval (ISI) coding, respectively. The second type is a learnable encoder, which

directly learns the coding scheme from the data. Then, we use learnable HUs and the

above three designed HUs to decode the generated spike trains. Finally, the decoded

results are fed into an ANN-based CNN for classification.

Spike encoder: Suppose the output spiking is denoted by 𝑆(𝑡). For the rate encoder, it

can be formalized by ∫ 𝑆(𝑡)
𝑊

0
𝑑𝑡/𝑊 = 𝑥, where 𝑥 is the value of each pixel, and 𝑊

denotes the time window function. In our demonstration, all encoders encode

information with 𝑊 = 100. For the temporal encoder, the timestep of the first spike is

equal to the value of each pixel. For the ISI encoder, the interval of the first two spikes

is equal to the value of each pixel. For the learnable encoder, it is a one-layer HUs that

can be formalized by 𝐹 ∙ 𝐻 ∙ 𝑊(𝑥), where 𝑊 is a rectangle window, 𝐻 is a trainable

tensor with the same dimension of 𝑊 in the time domain, and the 𝐹 is a step activation

function.

Learnable and designable HUs: The learnable HUs can be formalized by 𝐹 ∙ 𝐻 ∙

𝑊(𝑋) . In our demonstration, 𝑋 denotes the encoding spike with 100 timesteps.

Therefore, we choose HUs with the dimension of 𝑊 = 100, the dimension of 𝐻 = 10,

and the 𝐹 is a ReLU function. The weights of 𝑊 and 𝐻 are trained independently by

mutual information with an unsupervised training paradigm. For the image

classification task of CIFAR-10, a set of encoding and decoding methods are chosen

for each trial of the experiment to transmit the value of each pixel of the image

separately. After transmission, a conventional training process of image classification

is carried out on the CIFAR-10 dataset. The classification method we used here is an

AlexNet-style network, with a 12-layer feature extractor and a 3-layer MLP classifier.

During training, trials were repeated three times. The average results and standard

deviations are reported in Supplementary Table 3.

Supplementary Note 6: Computational Cost of Artificial Neural

Networks, Spiking Neural Networks, and Hybrid Neural Networks on

Graphics Processing Units

In this section, we firstly analyze the computational cost of ANNs and SNNs with the

same network structure; Then, ANNs, SNNs, and HNNs are deployed on the same

hardware to evaluate the execution time. The following discussion focuses on the MLP

structure with n-digit integer weights and activations for simplicity. The comparison

can be easily extended to other structures, such as convolution or floating-point cases.

For the 𝑙𝑡ℎ layer of ANNs, the dimension of weight is 𝑁𝑙−1 ∙ 𝑁𝑙, where 𝑁𝑙 indicates

the neuron number of 𝑙𝑡ℎ layer. On this basis, we can obtain the computational cost

(time cost) boundary 𝑂(𝑁𝑙−1 ∙ 𝑁𝑙) of an MLP structure. The memory cost (space cost)

boundary is 𝑂(𝑁𝑙−1 ∙ 𝑁𝑙 + 𝑁𝑙). If the weights and activations are n-digit numbers, the

computation cost of “addition” is 𝑂(𝑛), “logic and” is 𝑂(1), and “multiplication” is

𝑂(𝑛2)27. Therefore, the computational cost 𝐶𝑙
𝐴𝑁𝑁 and memory access cost 𝑀𝑙

𝐴𝑁𝑁 can

be described by

𝐶𝑙
𝐴𝑁𝑁~ 𝑂(𝑛2𝑁𝑙−1𝑁𝑙 + 𝑛𝑁𝑙−1𝑁𝑙)

𝑀𝑙
𝐴𝑁𝑁 ~ 𝑂(𝑛𝑁𝑙−1𝑁𝑙 + 𝑛𝑁𝑙)

. (14)

Due to the binary spike activation, SNNs can bypass most of “multiplication”

operations and only have “addition” and “logic and” operations. In addition, the binary

spikes are transmitted through an event-driven approach. Benefitting from these

features, SNNs can significantly alleviate the bandwidth requirement and reduce the

computational cost. Supposing that the firing rate of the 𝑙𝑡ℎ layer is 𝑅𝑙 ∈ [0,1] in SNNs,

the computational cost of “addition” and “logic and” operations follows 𝑂(𝑅𝑙−1 ∙ 𝑁𝑙−1 ∙

𝑁𝑙) for dendritic inputs, and the computational cost of “multiplication” operations

follows 𝑂(𝑁𝑙) for membrane potential updates. The memory cost (spatial cost)

boundary follows 𝑂(𝑅𝑙−1 ∙ 𝑁𝑙−1 ∙ 𝑁𝑙 + 𝑅𝑙 ∙ 𝑁𝑙) . If the weights of SNNs are n-digit

numbers, the computational cost 𝐶𝑙
𝑆𝑁𝑁 and memory access cost 𝑀𝑙

𝑆𝑁𝑁 can be described

by

𝐶𝑙
𝑆𝑁𝑁~ 𝑂(𝑅𝑙−1𝑁𝑙−1𝑁𝑙 + 𝑛𝑅𝑙−1𝑁𝑙−1𝑁𝑙 + 𝑛

2𝑁𝑙)

𝑀𝑙
𝑆𝑁𝑁~ 𝑂(𝑛𝑅𝑙−1𝑁𝑙−1𝑁𝑙 + 𝑅𝑙𝑁𝑙)

. (15)

Here, we assume that both ANNs and SNNs work on the general computing core28

with a peak computation capacity of 𝛼𝑚𝑎𝑥(operations/s) and a memory bandwidth of

𝛽(bit/s). The runtime computing capacity 𝛼 follows

 𝛼 = 𝑚𝑖𝑛(𝛼𝑚𝑎𝑥, 𝛽 ∙ 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦). (16)

where the 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 means operations per byte of data traffic.

Therefore, we can get the time cost of the 𝑙𝑡ℎ layer ANNs and SNNs follows

𝑇𝑙
𝐴𝑁𝑁 =

𝐶𝑙
𝐴𝑁𝑁

𝛼
+
𝑀𝑙
𝐴𝑁𝑁

𝛽

𝑇𝑙
𝑆𝑁𝑁 =

𝐶𝑙
𝑆𝑁𝑁

𝛼
+
𝑀𝑙
𝑆𝑁𝑁

𝛽

 . (17)

Usually, inputs of ANNs from sensors are uniform with the same time interval 𝑇0

(generally in the APS sensor 𝑇0 = 30𝑚𝑠). Due to the synchronous feature of ANNs, it

is hard to input data through an event-driven approach (e.g., part of the pixels are input

first, and then the remaining pixels are input after several time steps) and the

computation of the next layer heavily relies on the results from the previous layer.

Therefore, the total time consumption is equal to the maximum time consumption of

sensing and computation

 𝑇𝐴𝑁𝑁𝑠 = 𝑚𝑎𝑥 (𝑇0, ∑ 𝑇𝑙
𝐴𝑁𝑁𝐿

𝑙=1) = 𝑚𝑎𝑥 (𝑇0, ∑ (
𝐶𝑙
𝐴𝑁𝑁

𝛼
+
𝑀𝑙
𝐴𝑁𝑁

𝛽
))𝐿

𝑙=1 . (18)

Supplementary Figure 4 | Curves of the time consumption versus the number of

weights. a: ANNs, b: SNNs, c: HNNs. The linear-linear plot on the left is to demonstrate the absolute

values, while the log-linear plot on the right shows the ∑ 𝑅𝑙
𝐿
𝑙=1 /𝐿 = 0. a. Each curve of ANNs contains

three different regions: the saturation region (green region), the undersaturation region (blue region), and

the aliasing region (yellow region under the curve). The circle refers to the turning point of each curve.

b. The dashed line indicates the SNN without any sparsity (∑ 𝑅𝑙
𝐿
𝑙=1 /𝐿 = 1) and the bottom line indicates

none of neurons fired (∑ 𝑅𝑙
𝐿
𝑙=1 /𝐿 = 0). Depending on different inputs, the time consumption of SNNs

is between the top and bottom lines. c. The solid line represents ANNs, the dashed line represents SNNs,

and the dotted line represents HNNs. Notably, GPUs’ computation capacity is usually defined by FLOPS

(floating-point operations per second), while IPS (instructions per second) are used for CPUs. Typically,

the n-digit floating-point OPS is equal to 1/n binary OPS29 in most GPUs. Also, GPUs usually use Fused

multiply-add (one operation in GPUs) instead of calculating “multiplication” first and then “addition”

(two different instructions in CPUs). Therefore, all curves above follow GPUs condition, which is

slightly different from the general case.

For ANNs, according to (18), we calculate the time consumption and the number

of weights diagram as plotted in Supplementary Figure.4a. The saturation region means

that the consumption of the total computation time of ANNs is lower than the sensor,

indicating that the hardware doesn’t have enough computation resources to process the

data as fast as the sensor sampling. The undersaturation region is the opposite case.

According to the Nyquist rate, twice the region under the curve is the aliasing region.

In tracking and detection tasks, it means even every single recognized position is right,

but the trajectory is totally wrong. For most of ANNs, once the model size, computation

chip, and sensor are determined, the speed (time consumption) is fixed (a point in

Supplementary Figure. 4a). Therefore, theoretically, the best working point of ANNs is

at the turning point 𝑇0 = ∑ 𝑇𝑙
𝐴𝑁𝑁𝐿

𝑙=1 (the red point in Supplementary Figure. 4a). The

reason is that if ANNs work in the saturation region, such as the yellow point in

Supplementary Figure. 4a, lower-power or cheaper chips can be used to achieve the

same performance. Otherwise, in the undersaturation region, such as the grey point,

some sampled data are wasted. In this case, sensors with high performance are not

required.

For SNNs, owing to the event-driven information processing ability and local

memory, SNNs can execute computations without the need to get the entire information

ready. If SNNs input with an event or analogue sensor, the total time consumption yields

 𝑇𝑆𝑁𝑁𝑠 = ∑ 𝑇𝑙
𝑆𝑁𝑁𝐿

𝑙=1 = ∑ (
𝐶𝑙
𝑆𝑁𝑁

𝛼
+
𝑀𝑙
𝑆𝑁𝑁

𝛽
)𝐿

𝑙=1 𝑖𝑓 𝑇𝑆𝑁𝑁𝑠 > 𝜏. (19)

where the 𝜏 indicates the refractory period of the input sensor or SNNs neurons

(generally in DVS 𝜏 = 15𝜇𝑠). Unlike ANNs, the 𝑇𝑙
𝑆𝑁𝑁 is related to the input, because

different stimuli patterns will have a different output firing rate 𝑅𝑙. Therefore, as shown

in Supplementary Figure. 4a, the time consumption of SNNs is adaptive between

∑ 𝑅𝑙
𝐿
𝑙=1 /𝐿 = 1 and ∑ 𝑅𝑙

𝐿
𝑙=1 /𝐿 = 0 . Due to the limited information capacity in one

time-step, most SNNs have a time window 𝑁 to accumulate the final output. Typically,

according to30, SNNs require 20-512 or longer time steps to handle object tracking tasks.

As shown in Supplementary Figure. 4b, the time consumption will be 𝑊 ∗ 𝑇𝑆𝑁𝑁𝑠.

For HNNs, we propose a divide-and-conquer strategy, which processes the

stationary (low-frequency) information by ANNs and transient (high-frequency)

information by SNNs. The different network models work in a parallel mode, meaning

that the SNN part of HNNs can produce an output at an arbitrary time without the

accumulation of simulation time window. Assuming that the ANNs-part and SNNs-part

equally allocate computing resources (𝛼𝑚𝑎𝑥/2 and 𝛽/2 for each model) in the

computation core, the time consumption of HNNs follows

 𝑇𝐻𝑁𝑁𝑠 = 𝑚𝑖𝑛 [𝑚𝑎𝑥 (𝑇0, ∑ (
𝐶𝑙
𝐴𝑁𝑁

𝛼
+
𝑀𝑙
𝐴𝑁𝑁

𝛽
)𝐿

𝑙=1), ∑ (
𝐶𝑙
𝑆𝑁𝑁

𝛼
+
𝑀𝑙
𝑆𝑁𝑁

𝛽
)𝐿

𝑙=1]. (20)

If the structures of the ANN part and SNN part in HNNs are the same, in most cases,

the 𝑇𝐻𝑁𝑁𝑠 will be ∑ (
𝐶𝑙
𝑆𝑁𝑁

𝛼
+
𝑀𝑙
𝑆𝑁𝑁

𝛽
)𝐿

𝑙=1 . Additionally, equally dividing computing

resources is the worst but most straightforward strategy, which is common in GPUs.

However, in FPGA or neuromorphic chips, we can design a dynamic resource allocation

strategy to make 𝑇𝐻𝑁𝑁𝑠 ≈ 𝑇𝑆𝑁𝑁𝑠 . As shown in Supplementary Figure. 4c, the 𝑇𝐻𝑁𝑁𝑠

follows 𝑇𝑆𝑁𝑁𝑠 < 𝑇𝐻𝑁𝑁𝑠 < 2𝑇𝑆𝑁𝑁𝑠.

In brief, HNNs inherit the event-driven and sparsity features of SNNs and can

achieve a faster speed than ANNs and multiple time-step SNNs in the same task and

hardware. Since the involvement of ANNs improves the single time-step representation

capability, SNNs can work without a particular time window.

Supplementary References
1. Gallego G, et al. Event-based vision: A survey. arXiv preprint arXiv:190408405, (2019).

2. Liu S-C, Delbruck T. Neuromorphic sensory systems. Current opinion in neurobiology 20, 288-

295 (2010).

3. Brandli C, Berner R, Yang M, Liu S-C, Delbruck T. A 240× 180 130 db 3 µs latency global

shutter spatiotemporal vision sensor. IEEE Journal of Solid-State Circuits 49, 2333-2341 (2014).

4. Kiani Galoogahi H, Fagg A, Huang C, Ramanan D, Lucey S. Need for speed: A benchmark for

higher frame rate object tracking. In: Proceedings of the IEEE International Conference on

Computer Vision) (2017).

5. Kristan M, et al. The visual object tracking vot2017 challenge results. In: Proceedings of the

IEEE international conference on computer vision workshops) (2017).

6. Niklaus S, Mai L, Liu F. Video frame interpolation via adaptive separable convolution. In:

Proceedings of the IEEE International Conference on Computer Vision) (2017).

7. Li M, Wang Y-X, Ramanan D. Towards Streaming Perception. In: European Conference on

Computer Vision). Springer (2020).

8. Huang Z, Zhan J, Zhao H, Lin K, Zheng P, Lv J. Real-Time Visual Tracking Base on SiamRPN

with Generalized Intersection over Union. In: International Conference on Brain Inspired

Cognitive Systems). Springer (2019).

9. Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks 4,

251-257 (1991).

10. Blum EK, Li LK. Approximation theory and feedforward networks. Neural Networks 4, 511-

515 (1991).

11. Kůrková V. Kolmogorov's theorem and multilayer neural networks. Neural Networks 5, 501-

506 (1992).

12. Maass W, Natschläger T, Markram H. Real-time computing without stable states: A new

framework for neural computation based on perturbations. Neural computation 14, 2531-2560

(2002).

13. Maass W, Markram H. On the computational power of circuits of spiking neurons. Journal of

computer and system sciences 69, 593-616 (2004).

14. Maass W. Networks of spiking neurons: The third generation of neural network models. Neural

Networks 10, 1659-1671 (1997).

15. Hendry SH, Reid RC. The koniocellular pathway in primate vision. Annual review of

neuroscience 23, 127-153 (2000).

16. Silveira LCL, et al. Morphology and physiology of primate M-and P-cells. Progress in brain

research 144, 21-46 (2004).

17. Stein J. Dyslexia: the role of vision and visual attention. Current developmental disorders

reports 1, 267-280 (2014).

18. Callaway EM. Structure and function of parallel pathways in the primate early visual system.

The Journal of physiology 566, 13-19 (2005).

19. Abbott L, Regehr WG. Synaptic computation. Nature 431, 796-803 (2004).

20. Bargmann CI. Beyond the connectome: how neuromodulators shape neural circuits. Bioessays

34, 458-465 (2012).

21. Bucher D, Marder E. SnapShot: neuromodulation. Cell 155, 482-482. e481 (2013).

22. Smith SJ, et al. Single-cell transcriptomic evidence for dense intracortical neuropeptide

networks. Elife 8, e47889 (2019).

23. Smith SJ, Hawrylycz M, Rossier J, Sümbül U. New light on cortical neuropeptides and synaptic

network plasticity. Current Opinion in Neurobiology 63, 176-188 (2020).

24. Greff K, van Steenkiste S, Schmidhuber J. On the Binding Problem in Artificial Neural

Networks. arXiv preprint arXiv:201205208, (2020).

25. Papadimitriou CH, Vempala SS, Mitropolsky D, Collins M, Maass W. Brain computation by

assemblies of neurons. Proceedings of the National Academy of Sciences 117, 14464-14472

(2020).

26. György Buzsáki M. The brain from inside out. Oxford University Press (2019).

27. Donald EK. The art of computer programming. Sorting and searching 3, 426-458 (1999).

28. Williams S, Waterman A, Patterson D. Roofline: an insightful visual performance model for

multicore architectures. Communications of the ACM 52, 65-76 (2009).

29. Choquette J, Gandhi W, Giroux O, Stam N, Krashinsky R. Nvidia a100 tensor core gpu:

Performance and innovation. IEEE Micro 41, 29-35 (2021).

30. Luo Y, et al. SiamSNN: Spike-based Siamese Network for Energy-Efficient and Real-time

Object Tracking. arXiv preprint arXiv:200307584, (2020).

	A Framework for the General Design and Computation of Hybrid Neural Networks
	Supplementary Note 1: Experimental Settings and Dataset of the Hybrid Sensing Network
	Supplementary Note 2: Experimental Details of the Hybrid Modulation Network
	Supplementary Note 3: the Universal Approximation of Hybrid Units
	Supplementary Note 4: Details of Bio-plausibility of Hybrid Neural Network Models
	Supplementary Note 5: Benchmarking Hybrid Units on Classification Tasks
	Supplementary Note 6: Computational Cost of Artificial Neural Networks, Spiking Neural Networks, and Hybrid Neural Networks on Graphics Processing Units
	Supplementary References

