Supplementary information

Ursodeoxycholic acid reduces antitumor immunosuppression by inducing CHIP-mediated TGF-β degradation

Shen et al.

Supplementary figures 1 to 11

Supplementary tables 1 to 4

Supplementary Figure 1 UDCA inhibits Treg cell differentiation in tumor mice. **a** CCK-8 analysis of the viability of MC38, B16-F10, and LLC cells treated with 50 μ M UDCA for the indicated time. **b** FC analysis of the indicated cell subsets in CD45⁺ TILs from LLC tumor-bearing mice that received i.p. injection of 30 mg kg⁻¹ UDCA every 2 days on day 18. **c** Tumor sizes and mouse survival of LLC tumor-bearing NSG and nude mice that received i.p. injection with 30 mg kg⁻¹ UDCA every 2 days. **d** Tumor sizes and mouse survival of LLC tumor-bearing mice that received i.p. injection of 30 mg kg⁻¹ UDCA every 3 days. **e** every 2 days and 120 μ g anti-CD4-neutralizing antibody (anti-CD4) or 40 μ g anti-CD8 every 3 days. **e** FC analysis of Ki-67⁺ Treg cells in TILs of LLC tumor-bearing mice that received i.p. injection of 30 mg kg⁻¹ UDCA every 2 days on day 18. **f**, **g** Tumor sizes and mouse survival (**f**) and FC analysis of CD4⁺CD25⁺Foxp3⁺ Treg cells and CD8⁺CD45⁺ T cells in TILs on day 18 (**g**) of LLC tumor-bearing *Smad3^{-/-}* mice that received i.p. injection with 30 mg kg⁻¹ UDCA every 2 days. Representative results from

two (a) or three (b-g) independent experiments are shown (n = 3 in a, b, e, g; n = 5 in c, d, f). ns, not significant (unpaired two-tailed Student's *t*-test except log-rank test was used for survival rate analysis; mean and s.d.).

Supplementary Figure 2 UDCA inhibits Treg cell activation in tumor mice. **a-e** FC analysis of TGF- β (**a**), CTLA4, ICOS and GITR (**b**) on Treg cells in TILs, Treg cells in the spleen (**c**) and ELISA analysis of TGF- β 1 protein in the supernatants of splenic CD4⁺CD25⁺ Treg cells stimulated with anti-CD3 and anti-CD28 for 48 h (**d**) and FC analysis of CTLA4, ICOS and GITR on Treg cells in the spleen (**e**) of LLC tumor-bearing mice received i.p. injection of 30 mg kg⁻¹ UDCA every 2 days on day 18. **f** FC analysis of the proliferation of CFSE-labeled CD4⁺ or CD8⁺ T cells cocultured with CD4⁺CD25⁺ Treg cells isolated from the spleen of LLC tumor-bearing *Tg/br2^{f/}Er-cre* mice that received i.p. injection of 30 mg kg⁻¹ UDCA every 2 days on day 18 at a 4:1 ratio in anti-CD3 and anti-CD28-coated plates for 5 days. Representative results from three independent experiments are shown (*n* = 3 in **a-c**, **e**, **f**; *n* = 4 in **d**). **P* < 0.05; ***P* < 0.01 and ns, not significant (unpaired two-tailed Student's *t*-test; mean and s.d.). See Source Data file for the exact *P*-values.

Supplementary Figure 3 Reduced TGF- β contributes to UDCA-mediated inhibition of Treg cell differentiation and function. **a**, **b** FC analysis of Foxp3⁺CD4⁺ T (**a**) or GFP⁺CD4⁺ T (**b**) cells in naïve CD4⁺ T cells from wild-type (WT) (**a**) or *Foxp3^{GFP}* (**b**) mice stimulated with anti-CD3, anti-CD28, and 50 μ M UDCA, as well as the indicated concentration of TGF- β 1 (**a**) or 0.2 ng/ml TGF- β 1 in serum-free medium (**b**) for 3 days. **c**, **d** FC analysis of proliferation (**c**) and apoptosis (**d**) of naïve CD4⁺ T cells stimulated with anti-CD3, anti-CD28, and 50 μ M UDCA for 4 days. **e** FC analysis of Foxp3⁺CD4⁺ T cells in naïve CD4⁺ T cells stimulated with anti-CD3 and anti-CD28 in the presence of 50 μ M taurolithocholic acid (TLCA), chenodeoxycholic acid (CDCA), UDCA, lithocholic acid (LCA), deoxycholic acid (DCA), glycocholic acid (GCA) or cholic acid (CA) for 4 days. **f** Real-time PCR analysis of the *Tg/b1* mRNA in naïve CD4⁺ T cells stimulated with anti-CD3, anti-CD28, and 50 μ M UDCA for the indicated times. **g-i** IB analysis of

the indicated proteins (g) or real-time PCR analysis of the indicated mRNAs (h, i) in naïve CD4⁺ T cells stimulated with anti-CD3 and anti-CD28 in the presence of 50 µM UDCA for 24 h (g) or for the indicated time (h, i). j, k FC analysis of Foxp3⁺CD4⁺ T cells in naïve CD4⁺ T cells stimulated with anti-CD3, anti-CD28 and 50 µM UDCA, as well as 2 ng latent TGF-β1 (j) or 0.5 µM ALK5 inhibitor (SB431542) (k) for 4 days. I FC analysis of Foxp3⁺CD4⁺ T cells in naïve CD4⁺ T cells from *Tgfbr2^{ff}Er-cre* mice stimulated with anti-CD3, anti-CD28, and 50 μM UDCA for 4 days. m, ELISA analysis of TGF-β1, TGF-β2 and TGF-β3 proteins in LLC-OVA cells treated with 50 μM UDCA for 24 h. n FC analysis of Foxp3⁺CD4⁺T cells in naïve CD4⁺ T cells from OT-II mice cocultured with LLC-OVA cells with 50 µM UDCA in serumfree medium for 4 days. **o** FC analysis of TGF-β, CTLA-4, ICOS, and GITR on Treg cells induced by supernatant from UDCA-treated LLC-OVA. p FC analysis of the proliferation of effector CD4⁺ T and CD8⁺ T cells cocultured with GFP⁺ Treg cells induced by anti-CD3, anti-CD28, and supernatants from LLC-OVA treated with or without 50 µM UDCA at a ratio of 4:1 for 3 days. Representative results from two (\mathbf{c} , \mathbf{d} , \mathbf{f} , \mathbf{h} , \mathbf{i}) or three (\mathbf{a} , \mathbf{b} , \mathbf{e} , \mathbf{g} , \mathbf{j} - \mathbf{p}) independent experiments are shown (n = 3 in all statistical groups). *P < 0.05; **P < 0.01; ***P < 0.001 and ns, not significant (unpaired two-tailed Student's *t*-test; mean and s.d.). See Source Data file for the exact *P*-values.

Supplementary Figure 4 UDCA induces autophagy-dependent degradation of TGF-β via the TGR5cAMP-PKA axis. **a**, **b** IB analysis of TGF- β 1 (**a**) and FC analysis of Foxp3⁺CD4⁺ T cells (**b**) in 50 μ M UDCA-, TGR5 agonist INT777- or FXR agonist INT747-treated naïve CD4⁺ T cells stimulated with anti-CD3, anti-CD28 for 24 h (a) or 4 days (b). c, d cAMP levels (c) and IB analysis of p-PKA (d) in naïve $CD4^+$ T cells stimulated with anti-CD3, anti-CD28 and 50 μ M UDCA for 24 h (c) or the indicated time (d). e IB analysis of TGF- β 1 in naïve CD4⁺ T cells stimulated with anti-CD3, anti-CD28 and 50 μ M UDCA along with 5 μM CHX for 8 h. f-j IB analysis of Atg3, Atg5 (f) or TGF-β1 (g, i) and statistical analysis of TGF- β 1 stability (**h**, **j**) in Atg3- (**f**, **g**, **h**)- or Atg5 (**f**, **i**, **j**)-deficient naïve CD4⁺ T cells without (f) or with (g-i) anti-CD3 and anti-CD28 stimulation for the indicated times. k, I IB analysis of TGF- β 1 (k) and FC analysis of Foxp3⁺CD4⁺ T cells (l) in naïve CD4⁺ T cells stimulated with anti-CD3, anti-CD28 and 50 µM UDCA with or without 1 nM Baf-A1 for 24 h (k) or for 4 days (l). m IB analysis of TGF-B1 in HEK293T cells (overexpressing exogenous TGF-β1) treated with 50 µM UDCA with or without 10 nM Baf-A1 for 24 h. **n** IB analysis of TGF- β 2 and TGF- β 3 in naïve CD4⁺ T cells stimulated with anti-CD3, anti-CD28 and 50 µM UDCA with or without 1 nM Baf-A1 for 24 h. All representative results from two (f) or three (a-e, g-n) independent experiments are shown (n = 3 in all statistical groups). **P < 0.01; ***P

< 0.001 and ns, not significant (unpaired two-tailed Student's *t*-test; mean and s.d.). See Source Data file for the exact *P*-values.

Supplementary Figure 5 UDCA induces p62-dependent sorting of TGF-β into autophagosomes. **a**, **b** IB analysis of LC3B and p62 (**a**) or immunofluorescence analysis of LC3B (**b**) in naïve CD4⁺ T cells stimulated with anti-CD3, anti-CD28, and 50 μ M UDCA for the indicated time (**a**) or for 24 h (**b**). **c-g** Immunofluorescence analysis of LC3B and TGF-β1 HEK293T cells stimulated with 50 μ M UDCA (**c**) or in naïve CD4⁺ T cells stimulated with anti-CD3, anti-CD28 and 50 μ M UDCA, as well as 5 μ M MDL12330A (an inhibitor of adenylate cyclase) (**d**) or 2 μ M H89 (an inhibitor of PKA) (**e**), or in naïve CD4⁺ T cells stimulated with anti-CD3, anti-CD28 and 100 μ M IBMX treatment (**f**) and in NIH-3T3 cells with PRKACA overexpression (**g**) for 24 h. **h** IB analysis of TGF-β1 in UDCA-treated NIH-3T3 cells silenced with the indicated mRNA. **i** Confocal microscopy analysis of PLA⁺ spots showing the interaction between TGF-β1 and LC3B in HEK293 cells transfected with NC or *p62* siRNA followed by DMSO or 50 μ M UDCA treatment for 24 h. **j**, **k** IB analysis of TGF-β1 (**j**) and FC analysis of Foxp3⁺CD4⁺ cells (**k**)

in p62-knockdown naïve CD4⁺ T cells stimulated with anti-CD3, anti-CD28 and 50 μ M UDCA for 24 h (j) and 4 days (k). I-o Immunofluorescence analysis of p62 and TGF- β 1 in naïve CD4⁺ T cells stimulated with anti-CD3, anti-CD28 and 50 μ M UDCA, as well as 5 μ M MDL12330A (I) or 2 μ M H89 (m), in naïve CD4⁺ T cells stimulated with anti-CD3, anti-CD28 and 100 μ M IBMX treatment (n) and in NIH-3T3 cells with PRKACA overexpression (o) for 24 h. NC, negative control. Scale bar, 2 μ m. All representative results from three independent experiments are shown (*n* = 11 (DMSO) or 10 (UDCA) in b; *n* = 9 in c; *n* = 12 in d; *n* = 10 (DMSO) or 11 (UDCA) in e; *n* = 11 (DMSO) or 10 (IBMX) in f; *n* = 10 (Ctrl) or 8 (PRKACA) in g; *n* = 12 in i; *n* = 3 in k; *n* = 9 (DMSO) or 10 (UDCA) in l; *n* = 9 (DMSO) or 11 (UDCA) in m; *n* = 11 in n; *n* = 10 (Ctrl) or 13 (PRKACA) in o). **P* < 0.05; ***P* < 0.01 and ns, not significant (unpaired two-tailed Student's *t*-test; mean and s.d.). See Source Data file for the exact *P*-values.

Supplementary Figure 6

Supplementary Figure 6 CHIP mediates K63-linked ubiquitination of TGF-β1 at K315. **a** IB analysis of p62 and TGF-β1 in lysates of HEK293T cells transfected with vectors expressing Flag-TGF-β1 and Myc-p62_UBAΔ for 24 h assessed after IP with anti-Flag. **b**, **c** IB analysis of total (**b**) or K63-linked (**c**) ubiquitination of TGF-β1 in lysates of HEK293T cells transfected with vectors expressing Flag-TGF-β1 and HA-Ub, with or without vectors expressing Myc-PRKACA for 24 h assessed after IP with anti-Flag. **d** E3 ligases interacting with TGF-β1 (blue) or PKA (pink) and TGF-β1 and PKA (purple). **e** IB analysis of TGF-β1 in NIH-3T3 cells transfected with the indicated siRNA for 24 h and then treated with 50 µM UDCA for another 24 h. **f** IB analysis of TGF-β1 in CHIP-knockdown NIH-3T3 cells transfected with or without vectors expressing Myc-PRKACA for 24 h. **g**, **h** IB (**g**) or real-time PCR (**h**) analysis of TGF-β1 in HEK293T cells transfected with or without vectors expressing Myc-CHIP for 24 h. **i** IB analysis of TGF-β2 and TGF-β3 in CHIP-knockdown naïve CD4⁺ T cells stimulated with anti-CD3, anti-CD28 and 50 µM UDCA for 24 h. **j** IB analysis of TGF-β1 ubiquitination in HEK293T

cells transfected with vectors expressing the indicated TGF- β 1 mutants with Flag tag and vectors expressing Myc-PRKACA and HA-Ub for 24 h assessed after IP with anti-Flag. All representative results from three (**a-c**, **e-j**) independent experiments are shown (n = 3 in **h**). NC, negative control. ns, not significant (unpaired two-tailed Student's *t*-test; mean and s.d.).

Supplementary Figure 7 TGF- β 1 phosphorylated by PKA has an enhanced ability to bind CHIP. **a**, **b** IB analysis of p-Ser/Thr of CHIP (**a**) or TGF- β 1 (**b**) in lysates of HEK293T cells transfected with vectors expressing Flag-CHIP (**a**) or Flag-TGF- β 1 (**b**) as well as vectors expressing Myc-PRKACA for 24 h assessed after IP with anti-Flag. **c** IB analysis of PRKACA in lysates of HEK293T cells transfected with vectors expressing Flag-TGF- β 1 and Myc-PRKACA for 24 h assessed after IP with anti-Flag. **d**, **e** IB analysis of CHIP in HEK293T cells treated with 50 µM UDCA (**d**) or transfected with vectors expressing Flag-TGF- β 1 and His-CHIP, as well as vectors expressing Myc-PRKACA for 24 h assessed after IP with anti-Flag. **g** Alignment of TGF- β 1 orthologs. Asterisk, Thr 282. **h** IB analysis of ubiquitinated TGF- β 1 in HEK293T cells transfected with vectors expressing His-CHIP and Flag-TGF- β 1 methanti-Flag. **i** IB analysis of TGF- β 1 in HEK293T cells transfected with vectors expressing His-CHIP and Flag-TGF- β 1 methanti-Flag. **g** Alignment of TGF- β 1 orthologs. Asterisk, Thr 282. **h** IB analysis of ubiquitinated TGF- β 1 in HEK293T cells transfected with vectors expressing His-CHIP and Flag-TGF- β 1 WT or Flag-TGF- β 1T282A assessed after IP with anti-Flag. **i** IB analysis of TGF- β 1 in HEK293T cells transfected with vectors expressing His-CHIP and Flag-TGF- β 1WT or Flag-TGF- β 1T282A. All representative results from three (**a-f**, **h**, **i**) independent experiments are shown.

Supplementary Figure 8 CHIP is negatively associated with tumor progression by reducing TGF-β. **a** FC analysis of TGF-\beta1, CTLA4, ICOS, and GITR of human Treg cells induced by anti-CD3 and anti-CD28 stimulation for 4 days cultured in supernatants of A549 cells prestimulated with 50 µM UDCA for 24 h. b FC analysis of proliferation of CFSE-labeled CD4⁺ or CD8⁺ T cells cocultured with CD4⁺CD25⁺ Treg cells obtained in a at 4:1 ratio in anti-CD3 and anti-CD28-coated plates for 5 days. c Correlation between p-PKA and CHIP protein levels. d IB detection of CHIP in MC38 and MC38-Chip^{-/-} cells. e CCK-8 analysis of the viability of MC38 and MC38-Chip^{-/-} cells. f Tumor sizes and mouse survival of MC38 and MC38-*Chip*^{-/-} tumor-bearing nude mice. g Electron microscope detection of morphology of EVs from MC38 and MC38-Chip^{-/-} cells. Scale bar, 100 nm. h IB detection of the indicated proteins in MC38 and MC38-Chip^{-/-} cells, and in EVs from these cells. i BCA measurement of protein amount of EVs from $1 \times$ 10⁷ MC38 and MC38-*Chip*^{-/-} cells. j IB detection of TGF-β1 in EVs from MC38 and MC38-*Chip*^{-/-} cells. Representative results from two (e, g, h) or three (a, b, d, f, i, j) independent experiments are shown (n =3 in **a**, **b**, **e**, **i**; n = 5 in **f**). *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant (unpaired two-tailed Student's t-test except log-rank test was used for survival rate analysis; mean and s.d.). See Source Data file for the exact *P*-values. Shen et al.

Supplementary Figure 9 UDCA enhances the antitumor effects of anti-PD-1. **a** Putative benefits in release of tumor immunosuppression by UDCA and anti-PD-1 or anti-PD-L1 combinatorial therapy. TME, tumor microenvironment. **b** Tumor sizes of LLC tumor-bearing mice received oral administration of 30 mg kg⁻¹ UDCA every other day along with intravenous injection with 50 μ g anti-PD-1 every 4 days and i.p. injection with 60 mg kg⁻¹ HCQ every other day. **c** Tumor sizes of LLC tumor-bearing *Tgfbr2^{ff}Er-cre* mice that received oral administration of 30 mg kg⁻¹ UDCA every other day along with intravenous injection with 50 μ g anti-PD-1 every 4 days. **d** Tumor sizes of LLC tumor-bearing mice received oral administration of 30 mg kg⁻¹ UDCA every other day along with intravenous injection with 50 μ g anti-PD-1 every 4 days. **d** Tumor sizes of LLC tumor-bearing mice received oral administration of 30 mg kg⁻¹ UDCA every other day along with intravenous injection with 50 μ g anti-PD-1 every 4 days. **d** Tumor sizes of LLC tumor-bearing mice received oral administration of 30 mg kg⁻¹ UDCA every other day along with intravenous injection with 50 μ g anti-PD-1 every 4 days and i.p. injection with 100 μ g anti-CD25 every 3 days. **e** Construction strategy of humanized PD-1 mice. **f** FC analysis on day 33 of memory T cells in draining lymph nodes and spleen of MC38-huPD-L1 tumor-bearing mice received oral administration of 30 mg kg⁻¹ UDCA every other day along with intravenous injection with 50 μ g SHR1210 every 4 days. **g** Computed tomography examination on

days -13 and 43 of a pancreatic cancer patient who received anti-PD-1 and UDCA treatment. The day on which the patient received anti-PD-1 treatment was defined as day 0. Representative results from two independent experiments are shown (n = 5 in **b-d**; n = 3 in **f**). *P < 0.05; **P < 0.01; ***P < 0.001 and ns, not significant (unpaired two-tailed Student's *t*-test; mean and s.d.). See Source Data file for the exact *P*-values.

Supplementary Figure 10 The working model of UDCA-mediated TGF- β degradation. UDCA-mediated ligation of TGR5 enhanced intracellular cAMP levels, resulting in activation of PKA. Subsequently, PKA phosphorylated TGF- β at the T282 site, leading to the recruitment of CHIP. Then, CHIP ubiquitinated TGF- β , initiating autophagy sorting and subsequent degradation of TGF- β .

Supplementary Figure 11

Supplementary Figure 11 Gating strategies of FC analyses. (a-f) Gating strategies of Fig. 1b, 1h and Supplementary Fig. 1g (a), Fig. 1b, 1e, 6p, 7c and Supplementary Fig. 2c (b), Fig. 1b, 1d, 1h, 7c and Supplementary Fig. 1b, 1g (c), Fig. 1i and Supplementary Fig. 2f, 3c, 3d, 3p, 8b (d), Supplementary Fig. 2a, 2b, 2e, 3o, 8a (e), Fig. 2a, 2c, 2e, 2i, 3b, 3e, 3f, 3i, 3j, 3r, 3s, 4d, 5i, 6a, 6c, and Supplementary Fig. 3a, 3b, 3e, 3j, 3k, 3l, 3n, 4b, 4l, 5k (f), Fig. 7d, and Supplementary Fig. 9f (g).

Characteristics	NSCLC patients
Number	48
Age (years)	
≤30	0
30-50	7
≥ 50	41
Gender	
Male	29
Female	19
Pathological types	
Adenocarcinoma	27
Squamous cell carcinoma	21
clinical Stage	
I	10
II	13
III	22
IV	3

Supplementary Table 1: Basic information of NSCLC patients.

No.	A	G	РТ	S	D-ICI	N-ICI	T-ICI	D-US	D-UE
Lung cancer									
1	52	F	AC	IV	2016/1	Nivolumab	PD-1	2016/3	2016/5
2	54	F	SCC	IV	2018/6	Nivolumab	PD-1	2018/10	2018/11
3	54	М	SCC	IV	2019/11	Sintilimab	PD-1	2019/10	2019/10
4	60	F	AC	IV	2019/10	Atezolizumab	PD-L1	2019/10	2019/10
5	63	Μ	AC	IV	2019/6	Tislelizumab	PD-1	2019/10	2019/10
6	56	М	SCC	IV	2019/8	Camrelizumab	PD-1	2019/7	2019/8
7	69	М	SCC	IV	2017/10	Nivolumab	PD-1	2017/10	2018/2
8	66	F	NSCLC	IV	2019/4	Camrelizumab	PD-1		
9	72	Μ	AC	IV	2019/5	Tislelizumab	PD-1		
10	60	F	SCC	IV	2019/5	Nivolumab	PD-1		
11	63	F	AC	IIIB	2019/7	Atezolizumab	PD-L1		
12	58	М	AC	IV	2017/12	Durvalumab	PD-L1		
13	69	М	NSCLC	IV	2018/11	Camrelizumab	PD-1		
14	63	М	AC	IV	2018/11	Camrelizumab	PD-1		
15	66	М	AC	IV	2019/4	Sintilimab	PD-1		
16	62	М	SCC	IV	2019/4	Toripalimab	PD-1		
17	55	F	NSCLC	IV	2019/2	Nivolumab	PD-1		
18	61	М	SCC	IV	2018/10	Nivolumab	PD-1		
19	67	М	SCC	IV	2019/5	Sintilimab	PD-1		
20	56	F	NSCLC	IV	2019/1	Nivolumab	PD-1		
21	62	М	AC	IV	2018/12	Nivolumab	PD-1		
22	53	Μ	AC	IV	2018/4	Permbrolizumab	PD-1		
23	33	М	AC	IV	2019/3	Permbrolizumab	PD-1		
24	72	М	AC	IV	2018/11	Nivolumab	PD-1		
25	70	F	AC	IV	2018/8	Permbrolizumab	PD-1		
26	56	F	AC	IV	2019/4	Tislelizumab	PD-1		
27	66	М	AC	IV	2019/3	Tislelizumab	PD-1		
28	74	F	AC	IV	2019/3	Sintilimab	PD-1		
29	58	М	SCC	IV	2019/3	Tislelizumab	PD-1		
30	61	Μ	SCC	IV	2019/2	Toripalimab	PD-1		
31	72	F	AC	IV	2019/4	Permbrolizumab	PD-1		
32	53	М	AC	IV	2018/11	Nivolumab	PD-1		
33	63	М	SCC	IV	2018/2	Permbrolizumab	PD-1		
34	54	М	AC	IV	2018/9	Nivolumab	PD-1		
35	75	М	SCC	IV	2018/11	Nivolumab	PD-1		
36	61	М	SCC	IV	2019/3	Tislelizumab	PD-1		
37	62	М	AC	IV	2019/3	Durvalumab	PD-L1		

Supplementary Table 2: Information of patients with ICI treatment.

38	68	М	SCC	IV	2018/4	Durvalumab	PD-L1	
39	60	М	AC	IV	2019/3	Tislelizumab	PD-1	
40	51	М	AC	IV	2019/3	Permbrolizumab	PD-1	
41	58	М	AC	IV	2018/10	Tislelizumab	PD-1	
42	65	М	SCC	IV	2019/2	Sintilimab	PD-1	
43	64	F	AC	IV	2019/1	Permbrolizumab	PD-1	
44	72	М	SCC	IV	2019/1	Sintilimab	PD-1	
45	59	М	SCC	IIIB	2019/3	Toripalimab	PD-1	
46	64	F	AC	IV	2018/11	Durvalumab	PD-1	
47	55	F	AC	IV	2018/12	Tislelizumab	PD-1	
48	72	М	SCC	IV	2018/11	Nivolumab	PD-1	
49	54	М	SCC	IIIB	2018/11	Tislelizumab	PD-1	
50	55	F	AC	IV	2018/11	Tislelizumab	PD-1	
51	56	М	NSCLC	IV	2017/11	Permbrolizumab	PD-1	
52	79	М	SCC	IV	2017/5	Permbrolizumab	PD-1	
53	55	М	NSCLC	IV	2017/1	Permbrolizumab	PD-1	
54	62	М	AC	IV	2018/12	Tislelizumab	PD-1	
55	60	М	SCC	IV	2019/1	Sintilimab	PD-1	
56	47	М	AC	IV	2018/10	Durvalumab	PD-1	
57	65	М	NSCLC	IV	2018/10	Nivolumab	PD-1	
58	69	М	AC	IV	2018/11	Permbrolizumab	PD-1	
59	51	М	AC	IV	2018/11	Tislelizumab	PD-1	
60	69	М	NSCLC	IV	2018/11	Tislelizumab	PD-1	
61	69	М	SCC	IIIB	2019/1	Tislelizumab	PD-1	
62	56	F	AC	IV	2019/2	Nivolumab	PD-1	
63	69	М	SCC	IV	2019/6	Sintilimab	PD-1	
64	67	М	SCC	IV	2019/5	Permbrolizumab	PD-1	
65	50	F	AC	IIIB	2019/6	Toripalimab	PD-1	
66	60	М	AC	IV	2019/3	Toripalimab	PD-1	
67	51	F	AC	IV	2019/4	Toripalimab	PD-1	
68	73	М	AC	IV	2019/5	Sintilimab	PD-1	
69	69	М	SCC	IIIB	2019/3	Toripalimab	PD-1	
70	65	F	AC	IV	2019/5	Tislelizumab	PD-1	
71	68	М	SCC	IV	2019/5	Nivolumab	PD-1	
72	64	Μ	NSCLC	IV	2019/2	Atezolizumab	PD-L1	
73	44	F	AC	IV	2018/7	Permbrolizumab	PD-1	
74	74	Μ	AC	IV	2018/12	Camrelizumab	PD-1	
75	71	F	AC	IV	2019/4	Sintilimab	PD-1	
76	64	Μ	SCC	IIIB	2019/5	Permbrolizumab	PD-1	
77	61	М	SCC	IV	2017/11	Permbrolizumab	PD-1	
78	37	F	AC	IIIB	2018/12	Atezolizumab	PD-L1	

79	56	М	SCC	IV	2019/5	Nivolumab	PD-1	
80	66	Μ	SCC	IV	2019/7	Atezolizumab	PD-L1	
81	70	М	SCC	IV	2019/7	Nivolumab	PD-1	
82	62	М	AC	IV	2018/12	Tislelizumab	PD-1	
83	64	М	NSCLC	IV	2019/4	Tislelizumab	PD-1	
84	57	М	SCC	IV	2019/3	Sintilimab	PD-1	
85	55	М	SCC	IV	2019/4	Nivolumab	PD-1	
86	66	М	SCC	IV	2019/6	Toripalimab	PD-1	
87	82	Μ	AC	IV	2019/5	Sintilimab	PD-1	
88	53	М	AC	IV	2019/4	Tislelizumab	PD-1	
89	57	М	AC	IIIB	2019/6	Atezolizumab	PD-L1	
90	55	М	AC	IIIB	2019/6	Permbrolizumab	PD-1	
91	59	М	AC	IV	2019/3	Tislelizumab	PD-1	
92	67	М	SCC	IIIB	2019/4	Tislelizumab	PD-1	
93	68	М	NSCLC	IV	2019/3	Toripalimab	PD-1	
94	56	Μ	AC	IV	2019/7	Sintilimab	PD-1	
95	49	М	AC	IV	2019/2	Toripalimab	PD-1	
96	64	F	AC	IV	2019/3	Sintilimab	PD-1	
97	67	М	SCC	IV	2019/4	Toripalimab	PD-1	
98	45	М	AC	IV	2019/1	Tislelizumab	PD-1	
99	64	М	SCC	IV	2019/6	Sintilimab	PD-1	
100	71	М	SCC	IV	2019/6	Sintilimab	PD-1	
101	56	М	SCC	IV	2018/4	Permbrolizumab	PD-1	
102	50	М	SCC	IV	2016/4	Nivolumab	PD-1	
103	61	М	SCC	IV	2017/9	Camrelizumab	PD-1	
104	68	F	AC	IV	2017/1	Atezolizumab	PD-L1	
105	59	М	AC	IV	2018/2	Tislelizumab	PD-1	
106	45	F	AC	IV	2016/12	Atezolizumab	PD-L1	
107	61	М	NSCLC	IV	2018/12	Permbrolizumab	PD-1	
108	64	М	NSCLC	IV	2018/11	Permbrolizumab	PD-1	
109	44	М	AC	IV	2016/11	Atezolizumab	PD-L1	
110	67	М	AC	IV	2018/5	Tislelizumab	PD-1	
111	51	F	AC	IV	2018/7	Tislelizumab	PD-1	
112	65	М	SCC	IV	2018/10	Nivolumab	PD-1	
113	55	М	AC	IV	2018/8	Nivolumab	PD-1	
114	56	М	AC	IV	2018/6	Nivolumab	PD-1	
115	60	М	SCC	IV	2018/9	Nivolumab	PD-1	
116	60	М	AC	IV	2018/10	Permbrolizumab	PD-1	
117	64	F	AC	IIIB	2018/10	Tislelizumab	PD-1	
118	64	М	AC	IV	2018/7	Nivolumab	PD-1	
119	60	М	NSCLC	IV	2018/8	Nivolumab	PD-1	

120	74	М	SCC	IV	2016/5	Nivolumab	PD-1	
121	63	F	AC	IV	2016/3	Nivolumab	PD-1	
122	60	М	SCC	IV	2018/11	Permbrolizumab	PD-1	
123	59	М	AC	IV	2017/3	Atezolizumab	PD-L1	
124	70	М	AC	IV	2016/9	Nivolumab	PD-1	
125	64	М	AC	IV	2016/5	Nivolumab	PD-1	
126	67	М	SCC	IV	2018/6	Permbrolizumab	PD-1	
127	63	М	SCC	IV	2018/9	Nivolumab	PD-1	
128	55	М	SCC	IV	2017/1	Atezolizumab	PD-L1	
129	58	М	AC	IV	2016/12	Atezolizumab	PD-L1	
130	47	М	AC	IV	2018/9	Sintilimab	PD-1	
131	59	М	SCC	IIIB	2018/9	Nivolumab	PD-1	
132	60	М	NSCLC	IV	2018/10	Nivolumab	PD-1	
133	50	М	AC	IV	2018/4	Tislelizumab	PD-1	
134	49	F	AC	IV	2018/7	Nivolumab	PD-1	
135	64	F	AC	IV	2018/9	Nivolumab	PD-1	
136	58	М	SCC	IV	2016/4	Nivolumab	PD-1	
137	63	М	SCC	IV	2017/4	Atezolizumab	PD-L1	
138	74	М	SCC	IV	2016/9	Nivolumab	PD-1	
139	73	М	AC	IV	2018/10	Permbrolizumab	PD-1	
140	62	М	SCC	IV	2017/10	Camrelizumab	PD-1	
141	56	М	SCC	IV	2018/3	Nivolumab	PD-1	
142	68	М	AC	IV	2018/9	Nivolumab	PD-1	
143	63	М	SCC	IV	2018/9	Nivolumab	PD-1	
144	58	F	AC	IV	2017/7	Camrelizumab	PD-1	
145	63	М	SCC	IV	2016/6	Nivolumab	PD-1	
146	61	М	SCC	IV	2017/10	Camrelizumab	PD-1	
147	56	М	AC	IIIB	2018/8	Nivolumab	PD-1	
148	51	F	AC	IV	2018/3	Camrelizumab	PD-1	
149	58	М	SCC	IV	2017/11	Camrelizumab	PD-1	
150	60	F	AC	IV	2018/7	Nivolumab	PD-1	
151	66	М	SCC	IV	2018/3	Tislelizumab	PD-1	
152	67	М	AC	IIIB	2018/2	Tislelizumab	PD-1	
153	59	F	AC	IV	2018/5	Tislelizumab	PD-1	
154	56	М	SCC	IV	2018/8	Tislelizumab	PD-1	
155	58	F	AC	IV	2018/6	Tislelizumab	PD-1	
156	56	F	AC	IV	2018/5	Tislelizumab	PD-1	
157	63	М	SCC	IV	2017/1	Atezolizumab	PD-L1	
158	65	F	AC	IV	2018/7	Tislelizumab	PD-1	
159	65	F	AC	IV	2018/7	Tislelizumab	PD-1	
160	68	М	AC	IV	2018/7	Tislelizumab	PD-1	

161	61	М	SCC	IV	2018/11	Permbrolizumab	PD-1	
162	36	F	AC	IV	2017/10	Camrelizumab	PD-1	
163	51	F	AC	IIIB	2018/3	Tislelizumab	PD-1	
164	71	F	SCC	IV	2018/6	Nivolumab	PD-1	
165	43	М	SCC	IIIB	2017/10	Camrelizumab	PD-1	
166	61	F	AC	IV	2018/3	Permbrolizumab	PD-1	
167	58	М	NSCLC	IV	2018/9	Nivolumab	PD-1	
168	55	М	AC	IV	2018/11	Nivolumab	PD-1	
169	59	М	SCC	IV	2018/9	Nivolumab	PD-1	
170	61	М	AC	IV	2017/1	Permbrolizumab	PD-1	
171	51	F	AC	IIIB	2016/5	Nivolumab	PD-1	
172	52	М	AC	IV	2016/11	Atezolizumab	PD-L1	
173	73	М	SCC	IV	2018/5	Tislelizumab	PD-1	
174	50	М	NSCLC	IV	2018/8	Nivolumab	PD-1	
175	63	М	AC	IV	2018/7	Camrelizumab	PD-1	
176	49	М	AC	IV	2018/6	Tislelizumab	PD-1	
177	70	F	AC	IV	2016/11	Atezolizumab	PD-L1	
178	47	М	SCC	IV	2017/11	Sintilimab	PD-1	
179	63	М	AC	IV	2016/8	Nivolumab	PD-1	
180	62	М	AC	IV	2016/11	Atezolizumab	PD-L1	
181	65	М	AC	IV	2016/11	Atezolizumab	PD-L1	
182	66	М	SCC	IIIB	2018/6	Camrelizumab	PD-1	
183	81	М	NSCLC	IV	2018/10	pembrolizumab	PD-1	
184	57	М	SCC	IIIB	2018/5	Tislelizumab	PD-1	
185	61	М	AC	IV	2018/3	Tislelizumab	PD-1	
186	64	М	AC	IV	2018/1	Camrelizumab	PD-1	
187	69	М	SCC	IIIB	2016/12	Atezolizumab	PD-L1	
188	63	М	AC	IV	2018/7	Nivolumab	PD-1	
189	68	М	SCC	IV	2018/8	Nivolumab	PD-1	
190	47	М	AC	IV	2018/10	Permbrolizumab	PD-1	
191	51	М	SCC	IV	2018/10	Tislelizumab	PD-1	
192	63	М	SCC	IIIB	2018/8	Nivolumab	PD-1	
193	58	М	SCC	IV	2018/7	Tislelizumab	PD-1	
194	44	М	AC	IV	2018/5	Tislelizumab	PD-1	
195	63	М	AC	IV	2018/1	Camrelizumab	PD-1	
196	64	F	AC	IV	2017/12	Camrelizumab	PD-1	
197	63	М	SCC	IV	2018/2	Camrelizumab	PD-1	
198	70	Μ	SCC	IV	2018/7	Nivolumab	PD-1	
199	53	М	SCC	IV	2018/2	Camrelizumab	PD-1	
200	59	Μ	SCC	IV	2018/6	Tislelizumab	PD-1	
201	50	М	SCC	IV	2016/11	Atezolizumab	PD-L1	

202	61	Μ	SCC	IV	2016/12	Atezolizumab	PD-L1		
203	63	М	SCC	IV	2018/3	Tislelizumab	PD-1		
204	67	М	SCC	IV	2017/1	Atezolizumab	PD-L1		
205	65	М	AC	IV	2018/2	Permbrolizumab	PD-1		
206	54	М	AC	IV	2018/1	Tislelizumab	PD-1		
207	54	F	AC	IV	2017/1	Atezolizumab	PD-L1		
208	53	М	SCC	IV	2016/9	Nivolumab	PD-1		
209	64	F	AC	IV	2016/10	Atezolizumab	PD-L1		
210	53	М	AC	IV	2017/8	Camrelizumab	PD-1		
211	63	М	SCC	IIIB	2018/3	Tislelizumab	PD-1		
Panc	Pancreatic cancer								
1	65	М	SCC	IV	2021/1	MV11 (Maiwei, Shanghai, China)	PD-1	2019/7	continued

Abbreviations: A, Age; G, Gender; PT, Pathological types; S, Stage; D-ICI, Date of ICI treatment start;

N-ICI, Name of ICI; T-ICI, Targe of ICI, D-US, Date of Ursofalk treatment start; D-UE, Date of Ursofalk

treatment end; AC, Adenosquamous carcinoma; SCC, Squamous cell carcinoma; AC, Adenocarcinoma

Supplementary Table 3: The antibo	dies for FC and IB.		
Antibodies	Source	Identifier	Dilution ratio
fixable viability dye eFluor TM 450	ThermoFisher	65-0863-14	1:500
fixable viability dye eFluor TM 520	ThermoFisher	65-0867-14	1:500
PB anti-CD45	BioLegend	103125	1:500
PE-cy5 anti-CD19	BioLegend	115510	1:500
PE anti-CD4	ThermoFisher	12-0041-82	1:500
APC anti-CD8	BioLegend	100712	1:500
PE anti-Granzyme B	ThermoFisher	12-8898-82	1:500
PE anti-IFN-γ	ThermoFisher	12-7311-82	1:500
PE anti-ST2	BioLegend	146607	1:500
PE anti-Perforin	BioLegend	154405	1:500
APC anti-CD11c	BioLegend	117310	1:500
PE anti-MHC II	ThermoFisher	12-5321-82	1:500
PE anti-CD11b	ThermoFisher	12-0112-83	1:500
APC anti-F4/80	BioLegend	123115	1:500
APC anti-CD3	BioLegend	100235	1:500
PE anti-NK1.1	BioLegend	108707	1:500
APC anti-Foxp3	ThermoFisher	17-5773-82	1:500
APC anti-Gr1	ThermoFisher	17-5931-82	1:500
PE anti-human/mouse Ki-67	BioLegend	151209	1:500
PE anti-mouse CD152 (CTLA4)	BioLegend	106305	1:500
PE anti-mouse CD278 (ICOS)	ThermoFisher	12-9942-81	1:500
PE anti-human CD152 (CTLA4)	BioLegend	369603	1:500
PE anti-human CD357 (GITR)	ThermoFisher	12-5875-41	1:500
PE anti-TGF-1/-2/-3	R&D	IC1835P	1:500
PE anti-CD25	ThermoFisher	12-0251-83	1:500
APC anti-CD44	ThermoFisher	17-0441-83	1:500
PE anti-CD62L	ThermoFisher	12-0621-82	1:500
FITC anti-CD25	BioLegend	101907	1:500
Pacific Blue anti-CD4	ThermoFisher	MCD0428	1:500
PE anti-CD8	ThermoFisher	12-0081-85	1:500
APC anti-IFN-γ	ThermoFisher	17-7311-82	1:500
APC-cy7 anti-CD4	BioLegend	100526	1:500
CellTrace TM CFSE Cell	ThermoFisher	C34554	1:200
Proliferation Kit			
Annexin V-FITC/PI	MultiSciences	70-AP101-100	1:200
PB anti-CD4	BioLegend	100428	1:500
APC-cy7 anti-CD8	BioLegend	100713	1:500
PE anti-human CD4	ThermoFisher	12-0047-41	1:500

Supplementary Table 3: Information of antibodies used in this study.

FITC anti-human CD4	ThermoFisher	11-0048-42	1:500
APC anti-human Foxp3	ThermoFisher	17-4777-42	1:500
TGF-β1	Cell Signaling	3711	1:1000
TGF-β2	Abclonal	A3640	1:1000
TGF-β3	Abclonal	A8460	1:1000
β-Actin	Cell Signaling	3700	1:1000
p-Smad3	Cell Signaling	9520	1:1000
Smad3	Cell Signaling	9523	1:1000
р-РКА	abcam	ab75991	1:3000
РКА	abcam	ab76238	1:3000
LC3B	Invitrogen	MA5-37852	1:3000
ATG3	Abclonal	A19594	1:1000
ATG5	Abclonal	A0203	1:1000
K48-UB	Cell Signaling	12805	1:1000
K63-UB	Cell Signaling	12930	1:1000
UB	Cell Signaling	3936	1:1000
CHIP	abcam	ab228742	1:3000
Flag	Cell Signaling	14793	1:1000
His	Cell Signaling	12698	1:1000
Мус	Cell Signaling	2276	1:1000
НА	Cell Signaling	3724	1:1000
p-Ser/Thr	Cell Signaling	9631	1:1000
GM130	Abclonal	A11408	1:1000
Alix	Abcam	ab275377	1:3000
Tsg101	Abcam	ab125011	1:3000
CD63	Abcam	ab217345	1:3000
GAPDH	Cell Signaling	5174	1:1000
HRP-conjugated goat anti-mouse	Cell Signaling	7076	1:1000
HRP-conjugated goat anti-rabbit	Cell Signaling	7074	1:1000

mRNA	Primers
<i>mActb</i> F	5'-CGTTGACATCCGTAAAGACC-3'
mActb R	5'-AACAGTCCGCCTAGAAGCAC-3'
<i>mFoxp3</i> F	5'-CTCGTCTGAAGGCAGAGTCA-3'
<i>mFoxp3</i> R	5'-TGGCAGAGAGGTATTGAGGG-3'
<i>mTgfb1</i> F	5'-TGATACGCCTGAGTGGCTGTCT-3'
<i>mTgfb1</i> R	5'-CACAAGAGCAGTGAGCGCTGAA-3'
mTgfbr1 F	5'-TGCTCCAAACCACAGAGTAGGC-3'
mTgfbr1 R	5'-CCCAGAACACTAAGCCCATTGC-3'
<i>mTgfbr2</i> F	5'-CCTACTCTGTCTGTGGATGACC-3'
<i>mTgfbr2</i> R	5'-GACATCCGTCTGCTTGAACGAC-3'
<i>mSmad7</i> F	5'-GTCCAGATGCTGTACCTTCCTC-3'
<i>mSmad7</i> R	5'-GCGAGTCTTCTCCTCCCAGTAT-3'
<i>mFos</i> F	5'-GGGAATGGTGAAGACCGTGTCA-3'
<i>mFos</i> R	5'-GCAGCCATCTTATTCCGTTCCC-3'
#1 sgRNA for <i>Chip</i>	5'-AGTCAGCAAGTGCCTGTTCAGG-3'
#2 sgRNA for <i>Chip</i>	5'-GGCAGTGTACTACACTAACCGG-3'

Supplementary Table 4: Information of sequences for real-time primers of PCR and sgRNA.