Chr.21 (GRCh38)	RUNX1b (N	M_001001890.3)	RUNX1c (NM_001754.5)			
genomic location	nucleotide change	protein change	nucleotide change	protein change		
g.34887027	c.86T>C	p.(Leu29Ser)	c.167T>C	p.(Leu56Ser)		
g.34880568	c.416G>A	p.(Arg139Gln)	c.497G>A	p.(Arg166Gln)		
g.34886941	c.172C>A	p.(His58Asn)	c.253C>A	p.(His85Asn)		
g.34886914	c.199A>C	p.(Ser67Arg)	c.280A>C	p.(Ser94Arg)		
g.34886875	c.238C>A	p.(Arg80Ser)	c.319C>A	p.(Arg107Ser)		
g.34880713	c.271_283del	p.(Val91Glyfs*11)	c.352_364del	p.(Val118Glyfs*11)		
g.34880698	c.286G>C	p.(Asp96His)	c.367G>C	p.(Asp123His)		
g.34880644	c.340T>G	p.(Ser114Ala)	c.421T>G	p.(Ser141Ala)		
g.34880557	c.427G>C	p.(Gly143Arg)	c.508G>C	p.(Gly170Arg)		
g.34834521	c.613C>T	p.(Arg205Trp)	c.694C>T	p.(Arg232Trp)		
g.34834482	c.652C>T	p.(Pro218Ser)	c.733C>T	p.(Pro245Ser)		
g.34834466	c.668G>A	p.(Arg223His)	c.749G>A	p.(Arg250His)		
g.34799412	c.775C>A	p.(Gln259Lys)	c.856C>A	p.(Gln286Lys)		
g.34880569	c.415C>T	p.(Arg139*)	c.496C>T	p.(Arg166*)		
g.34859486	c.520C>T	p.(Arg174*)	c.601C>T	p.(Arg201*)		
g.34834431	c.703C>T	p.(Gln235*)	c.784C>T	p.(Gln262*)		
g.34792575	c.922C>T	p.(Gln308*)	c.1003C>T	p.(Gln335*)		
g.34792415	c.1082C>A	p.(Ser361*)	c.1163C>A	p.(Ser388*)		
g.34792314	c.1183G>T	p.(Glu395*)	c.1264G>T	p.(Glu422*)		
g.34792158	c.1339G>T	p.(Glu447*)	c.1420G>T	p.(Glu474*)		

Supplementary Table 1. Investigated RUNX1 variants

Supplementary Table 2. Primer sequences

variant	sequence	oligo name			
Leu29Ser	AGATGAGCGAGGCGTCGCCGCTGGGCGCCCC	RUNX1_sdm86_f			
	GGGGCGCCCAGCGGCGACGCCTCGCTCATCT	RUNX1_sdm86_r			
His58Asn	GTGCTGGCCGACAACCCGGGCGAGC	RUNX1b_172C>A_fw			
	GCTCGCCCGGGTTGTCGGCCAGCAC	RUNX1b_172C>A_rev			
Ser67Arg	GGTGCGCACCGACCGCCCCAACTTCC	RUNX1b_199A>C_fw			
	GGAAGTTGGGGCGGTCGGTGCGCACC	RUNX1b_199A>C_rev			
Arg80Ser	CTGCCTACGCACTGGAGCTGCAACAAGACC	RUNX1_sdm_c.238C>A_f			
	GGTCTTGTTGCAGCTCCAGTGCGTAGGCAG	RUNX1_sdm_c.238C>A_r			
Val91Glyfs*11	CGCTTTCAAGGGGATGTTCCAGATGGCACTCTGGTCACTGTGATGGC	RUNX1_sdm_ c.271_283del_fw			
	GGAACATCCCCTTGAAAGCGATGGGCAGGGTCTTGTTGCAGCG	RUNX1_sdm_ c.271_283del_rev			
Asp96His	GGTGGCCCTAGGGCATGTTCCAGATGGC	RUNX1b_sdm_286G>C_f			
	GCCATCTGGAACATGCCCTAGGGCCACC	RUNX1b_sdm_286G>C_r			
Ser114Ala	GCAATGATGAAAACTACGCGGCTGAGCTGAGAAATGC	RUNX1b_340T>G_fw			
	GCATTTCTCAGCTCAGCCGCGTAGTTTTCATCATTGC	RUNX1b_340T>G_rev			
Arg120*	CCTCAGGTTTGTCGGTTGAAGTGGAAGAGGGAA	RUNX1_sdm415_f			
AIGIJJ	TTCCCTCTTCCACTTCAACCGACAAACCTGAGG	RUNX1_sdm415_r			
Arg120Clp	CCTCAGGTTTGTCGGTCAAAGTGGAAGAGGGAA	RUNX1_sdm416_f			
///61330///	TTCCCTCTTCCACTTTGACCGACAAACCTGAGG	RUNX1_sdm416_r			
Gly1/3Arg	CGGTCGAAGTGGAAGACGGAAAAGCTTCACTCTG	RUNX1_sdm_c.427G>C_fw1			
OIVIADAIE	CAGAGTGAAGCTTTTCCGTCTTCCACTTCGACCG	RUNX1_sdm_c.427G>C_rev1			
Arg174*	CAGTGGATGGGCCCTGAGAACCTCGAAGA	RUNX1_C520T_fw			
	TCTTCGAGGTTCTCAGGGCCCATCCACTG	RUNX1_C520T_rev			
Arg205Trp	CTGGAGCAGCTGTGGCGCACAGCCATG	RUNX1b_sdm_613C>T_f			
118200119	CATGGCTGTGCGCCACAGCTGCTCCAG	RUNX1b_sdm_613C>T_r			
Pro218Ser	CACCACCCAGCCTCCACGCCCAACC	RUNX1b_sdm_c.652C>T_f			
	GGTTGGGCGTGGAGGCTGGGTGGTG	RUNX1b_sdm_c.652C>T_r			
Arg223His	CGCCCAACCCTCATGCCTCCCTGAACCA	RUNX1b_sdm_668G>A_f			
1.192231113	TGGTTCAGGGAGGCATGAGGGTTGGGCG	RUNX1b_sdm_668G>A_r			
Gln235*	CCACTGCCTTTAACCCTTAGCCTCAGAGTCAGATGC	RUNX1b_sdm_703C>T_f			
	GCATCTGACTCTGAGGCTAAGGGTTAAAGGCAGTGG	RUNX1b_sdm_703C>T_r			
Gln259Lys	CCTACGATCAGTCCTACAAATACCTGGGATCCATTG	RUNX1_sdm_c.775C>A_tw			
22002,0	CAATGGATCCCAGGTATTTGTAGGACTGATCGTAGGAC	RUNX1_sdm_c.775C>A_rev			
Gln308*	GLGALLLGLGLIAGIILLLLGLGL	RUNX1b_sdm_c.922C>1_f			
	GCGCGGGGAACTGGCGCGGGTCGC	RUNX1b_sdm_c. c.922C>T_r			
Ser361*	CCCTACCCGGCTAGTCGCAAGCGC	RUNX1b_sdm_c.1082C>A_f			
	GLGCTTGLGACTAGLGGGGGTAGGG	RUNX1b_sdm_c.1082C>A_r			
Glu395*	CATGGTGGGCGGCTAGCGCCGCC	RUNX1_sdm_c.1183G>T_tw			
	GGLGGLGAGLGLIAGCCGCCCACCATG	RUNX1_sdm_c.1183G>T_rev			
Glu447*		RUNX1D_sdm_1339G>1_t			
	GGCCTCCACACGGCCTACTCCAGGCGCGCGCGGAGG	RUNX1b_sdm_1339G>1_r			

Supplementary Table 3. Variant classification following present classification guidelines

RUNX1b (NM_001001890.3)			051/51	ClinVar ID RCV	ACMG/AMP ¹ + MM-VCEP criteria ²	func. criteria our assays	func.criteria incl. literature	classification w/o func. criteria	classification w/ func. criteria	report of germline variant carriers in literature	reference to Fig. 2,
protein change	cDNA change	gnomAD REVEL max. frequency score	associated with RUNX1-FPD	applied genetic testing approach							
p.(His58Asn)	c.172C>A	0.000439 (EA)	0.8519	RCV000549373.5 1xVUS (Invitae)¥ 1xLB (MM-VCEP)	BS1 strong PP3 supporting	PS3 supporting	uncertain function [§] PMID 23817177 ³ (normal TA, DNA binding, dimerization)	VUS	VUS	PMID 34233450 ⁴	
p.(Ser67Arg)	c.199A>C		0.947		PS4 supporting PM2 moderate PP3 supporting	PS3 moderate	PS3 strong PMID 23817177 ³ and PMID: 17290219 ⁵ (dimerization defect)	vus	likely pathogenic	PMID 34233450 ⁴	
p.(Ser67Arg)	c.201C>G		0.911		PS4 supporting PS1 moderate (c.199A>C) PM2 moderate PP3 supporting	PS3 moderate	PS3 strong PMID 23817177 ³ and PMID: 17290219 ⁵ (dimerization defect)	likely pathogenic	likely pathogenic		Fig. 2A Custom NGS panel ^a ; NGS- based copy number analysis
p.(Arg80Ser)	c.238C>A		0.921	RCV001062338.2 VUS (Invitae)¥	PS4 moderate (incl. ClinVar) PM1 moderate PM2 moderate PP3 supporting PM5 supporting (Arg80His)	PS3 moderate	PS3 moderate	likely pathogenic	likely pathogenic		Fig. 2B <i>Trusight Myeloid</i> NGS panel (Illumina); no copy number analysis performed
p.(Asp96His)	c.286G>C	0.00002639 (NFE)	0.943		PM1 supporting PP3 supporting	BS3 supporting	BS3 supporting	VUS	VUS	PMID 34233450 ⁴	Fig. 2D WES; NGS-based copy number analysis
p.(Val91Glyfs*11)	c.271_283del				PVS1 PS4 supporting PM2 moderate	(PS3 moderate)#	(PS3 strong)# PMID 10508512 ⁶ (CFU defect)	pathogenic	pathogenic	PMID 10508512 ⁶	
p.(Ser114Ala)	c.340T>G	0.00001549 (NFE)	0.851	RCV000685769.4 VUS (Invitae)¥	PM1 supporting PP3 supporting	BS3 supporting	BS3 supporting	vus	VUS	PMID 32315381 ⁷ PMID 34233450 ⁴	
p.(Gly143Arg)	c.4276>C		0.947		PS4 supporting PS1 moderate (c.427G>A) PM1 moderate PM2 moderate PP3 supporting	uncertain function, some evidence for TA defect	uncertain function, no secondary assays from the literature integrated, because of other/missing nucleotide change in case of a variant which might affect splicing	likely pathogenic	likely pathogenic	PMID 22430633 ⁸ (different nucleotide change) PMID: 24732596 ⁹ (nucleotide change not reported)	
p.(Arg205Trp)	c.613C>T		0.796		PS4 supporting PM2 moderate PP3 supporting	PS3 moderate	PS3 moderate	VUS	likely pathogenic		Fig. 2C NGS-based sequencing of <i>RUNX1</i> ; no copy number analysis
p.(Pro218Ser)	c.652C>T		0.444	RCV000707170.2 VUS (Invitae) [¥]	PS4 moderate (incl. ClinVar) PM2 moderate	BS3 supporting	BS3 supporting	vus	VUS	PMID 29146883 ¹⁰ PMID 26316320 ¹¹	Fig. 2E NGS panels (i) for myeloid malignancies ^b and (ii) for thrombocytopenia ^c ; SNP array for copy number analysis
p.(Arg223His)	c.668G>A	0.00007028 (NFE)	0.488			BS3 supporting	BS3 strong PMID:23817177 ³ (normal TA, DNA binding, dimerization)	vus	vus	PMID 34233450 ⁴ PMID 33075818 ¹²	Fig. 2F WES; NGS-based copy number analysis Fig. 2G Custom NGS panel ^d ; NGS-based copy number analysis
p.(Gln259Lys)	c.775C>A	0.00003096 (NFE)	0.1519	RCV000697732.3 VUS (Invitae)¥		BS3 supporting	BS3 supporting	vus	VUS	PMID 20955399 (JMML patient) ¹³	

⁶ Our data provide evidence for the applicability of PS3 supporting for His58Asn, but other studies demonstrate functionality of this variant ³, so we suggest no application of functional data due to conflicting results. [#] PS3 and PVS1 cannot be combined. [¥] Classifications from the submitter *Invitae* are based on general ACMG/AMP guidelines, but do not follow RUNX1-specific MM-VCEP recommendations. ^a Custom NGS panel incl. *ANKRD26, ETV6, RUNX1, CYCS, SLFN14, DDX41,* and *STX11.* ^b Custom NGS panel for myeloid malignancies incl. *ASXL1, BCOR, BCORL1, CALR, CBL, CSF3R, DNMT3A, ETV6, EZH2, FLT3, GATA2, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NIPBL, NPM1, NRAS, PHF6, PTPN11, RAD21, RIT1, RUNX1, SETBP1, SF3B1, SMC1A, SMC3, SRSF2, STAG2, TET2, TP53, U2AF1, WT1, and ZRSR2. ^c Custom NGS panel for thrombocytopenia incl. <i>ABCCS, ABCG8, ACTN1, ANKRD26, AP3B1, AP3D1, BLOC1S5, CYCS, DIAPH1, DTNBP1, ETV6, FERMT3, FLI1, FLNA, FYB1, GATA1, GF1B, GNAS, GP1BA, GP1BB, GP6, GP9, HOXA2, HPS1, HPS3, HPS4, HPS5, HPS6, ITGB3, LYST, MECOM, MPIG6B, MPL, MYH9, NBEAL2, P2RY12, PLAU, PRKAC6, PTPN11, RAB27A, RASGRP2, RBM8A, RGS18, RUNX1, SRC, AP3B1, ATR, BRCA1, BRCA2, BRIP1, CDAN1, CSF3R, CTC1, CXCR4, DKC1, DNAJ21, ELAV, FNB1, VIPA339, VPS33B, VWF, and WAS. ^a ACBD5, ACD, AK2, ANKRD26, AP3B1, ATR, BRCA1, BRCA2, BRIP1, CDAN1, CSF3R, CTC1, CXCR4, DKC1, DNAJ21, ELAVE, EPO, ERCC4, ERCC6L2, ETV6, FANCA, FANCB, FANCC, FANCC, FANCC, FANCC, FANCC, FANCC, FANCC, FANCC, FANCA, FANCB, FANCL, FANCB, FANCC, FANCA, FANCB, FANC, FANCB, FANC, FANCB, FANC, FANCB, FANC, FANC, FANCC, FANCA, FANCB, RNC17, RP13, RP137, RP137, RP137, RP137, R*

Supplementary Figure 1. Transcriptional activation assay rCSF1R in HEK293T analyzing the set of RUNX1b variants of interest.

The bar graph displays firefly/renilla ratios relative to wild-type RUNX1b (WT) (mean+ standard deviation (SD); 3 biological and 6 technical replicates; one-way ANOVA in comparison to WT; Dunnett's post hoc test; *, $P \le .05$; **, $P \le .01$; ***, $P \le .001$; ****, $P \le .001$).

Supplementary Figure 2. Transcriptional activation assay rMYL9 in HEK293T analyzing the set of RUNX1b variants of interest.

The bar graph displays firefly/renilla ratios relative to wild-type RUNX1b (WT) (mean+SD; 3 biological and 6 technical replicates; one-way ANOVA in comparison to WT; Dunnett's post hoc test; *, $P \le .05$; **, $P \le .01$; ****, $P \le .001$; ****, $P \le .001$).

Supplementary Figure 3. Transcriptional activation assay rCSF1R in HEL analyzing the set of RUNX1b variants of interest.

The bar graph displays firefly/renilla ratios relative to wild-type RUNX1b (WT) (mean+SD; 2 biological and 5 technical replicates; one-way ANOVA in comparison to WT; Dunnett's post hoc test; *, $P \le .05$; **, $P \le .01$; ***, $P \le .001$; ****, $P \le .001$).

Supplementary Figure 4. Representative Western Blot analyzing transfection conditions used for transactivation assays of missense variants in HEK293T cells. Transfection and Western Blotting was performed as previously described ¹⁴. The truncated protein variant RUNX1b-Arg139* was too small to be clearly detected using standard conditions. Under these conditions, only a very slight band could be observed. However, the overexpression of Arg139* and an YFP-tagged Arg139* fusion protein has already been demonstrated by real-time PCR and western blotting, respectively ¹⁴.

Supplementary Figure 5. Representative Western Blot analyzing transfection conditions used for transactivation assays of VOI in HEK293T cells. Transfection and Western Blotting was performed as previously described ¹⁴.

Supplementary Figure 6. Representative Western Blot verifying the expression of RUNX1.Val91Glyfs*11 in HEK293T cells. As the resulting truncated RUNX1 protein is too small to be detected under standard western blot conditions, we analyzed the YFP-tagged WT and YFP-tagged variant RUNX1 protein as previously described ¹⁴.

Supplementary Figure 7. Representative Western Blot analyzing transfection conditions used for transactivation assays in HEL cells. Transfection and Western Blotting was performed as previously described ¹⁴.

References

1. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med*. 2015;17(5):405-424.

2. Luo X, Feurstein S, Mohan S, et al. ClinGen Myeloid Malignancy Variant Curation Expert Panel recommendations for germline RUNX1 variants. *Blood Adv.* 2019;3(20):2962-2979.

3. Koh CP, Wang CQ, Ng CE, et al. RUNX1 meets MLL: epigenetic regulation of hematopoiesis by two leukemia genes. *Leukemia*. 2013;27(9):1793-1802.

4. Homan CC, King-Smith SL, Lawrence DM, et al. The RUNX1 Database (RUNX1db): establishment of an expert curated RUNX1 registry and genomics database as a public resource for familial platelet disorder with myeloid malignancy. *Haematologica*. 2021.

5. Matheny CJ, Speck ME, Cushing PR, et al. Disease mutations in RUNX1 and RUNX2 create nonfunctional, dominant-negative, or hypomorphic alleles. *Embo j*. 2007;26(4):1163-1175.

6. Song WJ, Sullivan MG, Legare RD, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. *Nat Genet*. 1999;23(2):166-175.

7. Simon L, Spinella JF, Yao CY, et al. High frequency of germline RUNX1 mutations in patients with RUNX1-mutated AML. *Blood*. 2020;135(21):1882-1886.

8. Buijs A, Poot M, van der Crabben S, et al. Elucidation of a novel pathogenomic mechanism using genome-wide long mate-pair sequencing of a congenital t(16;21) in a series of three RUNX1-mutated FPD/AML pedigrees. *Leukemia*. 2012;26(9):2151-2154.

9. Sakurai M, Kunimoto H, Watanabe N, et al. Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients. *Leukemia*. 2014;28(12):2344-2354.

10. Bluteau O, Sebert M, Leblanc T, et al. A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. *Blood*. 2018;131(7):717-732.

11. Antony-Debré I, Duployez N, Bucci M, et al. Somatic mutations associated with leukemic progression of familial platelet disorder with predisposition to acute myeloid leukemia. *Leukemia*. 2016;30(4):999-1002.

12. Ernst MPT, Kavelaars FG, Löwenberg B, Valk PJM, Raaijmakers MHGP. RUNX1 germline variants in RUNX1-mutant AML: how frequent? *Blood*. 2021;137(10):1428-1431.

13. Pérez B, Kosmider O, Cassinat B, et al. Genetic typing of CBL, ASXL1, RUNX1, TET2 and JAK2 in juvenile myelomonocytic leukaemia reveals a genetic profile distinct from chronic myelomonocytic leukaemia. *Br J Haematol*. 2010;151(5):460-468.

14. Decker M, Lammens T, Ferster A, et al. Functional classification of RUNX1 variants in familial platelet disorder with associated myeloid malignancies. *Leukemia*. 2021.