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ABSTRACT Blebs are pressure-driven protrusions that have been observed in cells undergoing apoptosis, cytokinesis, or
migration, including tumor cells that use blebs to escape their organs of origin. Here, we present a minimal 1D model of
bleb-driven cell motion that combines a simple mechanical model with turnover kinetics of the actin cortex and adhesions be-
tween the membrane and the cortex. The deterministic version of this model is used to study the properties of individual blebbing
events. We further introduce stochastic turnover of the adhesions, which allows for spontaneous initiation of repeated blebbing
events, thus leading to sustained cell travel. We explore how the main parameters of the system control the properties of the
blebbing events and the speed of cell travel. Finally, we derive a further simplification by deriving a Langevin approximation
to this stochastic model.
SIGNIFICANCE Bleb-driven migration requires spontaneous, repeated blebbing. This study presents a simple model of
cell motility using blebs, and introduces stochastic fluctuations to the membrane-cortex adhesions that can lead to
sustained unidirectional motion. The model presented allows us to identify the determinants of the distance traveled by
cells employing blebs.
INTRODUCTION

Blebs are cellular protrusions that appear as smooth spherical
expansions of the membrane formed when it separates from
the underlying actin cortex (see Fig. 1, top), driven by hydro-
static pressure generated in the cytoplasm by the contractile
actomyosin cortex (1–3). They were originally associated
with cells undergoing apoptosis, but have also been observed
in cytokinesis and in migrating cells. Many cell types can use
protrusions such as blebs for motility, including mammalian
tumor cells (4), which can use blebs to force their way
through the endothelium and invade new tissues, and meta-
static cells, which can use blebs to escape antitumor treat-
ments that rely on protease inhibitors (2). Pressure-driven
expansion is faster than lamellipodial protrusion and, since
such protrusions have no cortex, can occur in any direction
and adapt to the shape of the extracellular environment.
There are also data to suggest that such growth requires
less energy than lamellipodium formation (2).
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The life cycle of the bleb can be divided into three steps:
initiation, growth, and retraction. Two mechanisms have
been proposed for initiation: a local decrease in mem-
brane-cortex attachment or a local rupture of the cortex.
They could also be functioning together (1). Both of these
have been observed experimentally in both motile and
nonmotile blebbing cells (2). The bleb initially appears
devoid of filamentous actin and grows as cytoplasmic fluid
fills the protrusion. Bleb inflation is thought to be driven
by intracellular pressure transients generated by myosin II
contraction of the actin cortex (6). Over time, the actin cor-
tex reassembles at the bleb plasma membrane and drives
cortex retraction: once expansion ceases, ERM (Ezrin, Rad-
ixin, Moesin) proteins (responsible for cortex-membrane
adhesion) are recruited to the membrane, followed by actin,
actin-bundling proteins, and lastly contractile proteins (6).
In migrating cells, retraction does not always occur since
movement depends on a stable bleb, and instead the cell
body moves forward as a result of contraction at the rear
of the cell (1). In such cells, a new bleb often forms after
cortex repolymerization under the membrane (2).

Biochemically, cortex composition is dominated by
actin, actin-bundling proteins, and myosin II. High myosin
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FIGURE 1 (Top) Schematic figure of cell bleb-

bing mechanism. Stochastically induced local

detachment of cortex-membrane linking proteins

drives the membrane expansion. By reconnecting

the cortex-membrane attachment, the inflation re-

tracts back to the steady state. (Bottom) Schematic

figure of our bleb-driven cell migration model in

1D. Local bleb formation dynamics (5) at both

ends are coupled with the mechanical model of

the whole cell.
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II activity is critical for the formation of blebs (7). The cor-
tex is linked to the membrane by ERM proteins, which can
switch from an inactivated closed conformation to an
active open conformation that exposes an actin binding
site and a membrane-targeting domain (6). Thus, a
decrease in membrane-cortex attachment corresponds to
ERM proteins returning to the closed conformation. The
actin cortex that remains at the base of the bleb is disas-
sembled by the constitutive turnover of actin (2). An
important question in bleb dynamics is how cortex reas-
sembly begins. One possibility with some experimental
support is that cortex assembly is constitutive, but slow
compared with bleb expansion, so that it can only catch
up when the expansion slows down (6).

An important aspect of bleb initiation and growth is that
it can be localized to just a part of the cell, so that different
parts of the cell can be mechanically isolated (as they often
are chemically) (8). The precise mechanisms that deter-
mine where a bleb is initiated during migration are not
known. However, observations suggest that asymmetries
in the membrane-cortex attachment could play a role in
determining the cell front: in Walker carcinosarcoma cells,
the level of Ezrin (a member of the ERM family) is elevated
at the back of the cell, and reduced at the leading edge,
facilitating bleb formation in the front of the cell (2,9). Un-
derstanding the formation of pressure-driven protrusions
and their part in cell travel is important as treatments are
developed for pathologies where cells may employ this
type of migration, such as cancer (2) and immune defi-
ciencies. The precise mechanics of this are not well
understood.

In this paper, we present a simple reduced stochastic
model of blebbing that can simulate continuous cell move-
ment. The model consists of a 1D mechanical model in
which the front, back, and central (nucleus) position are
tracked, together with a turnover model for the actin cortex
and adhesion molecules at the front and the back. The
breakage and formation of adhesion bonds are stochastic,
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so that blebs are initiated spontaneously either at the front
or back of the cell. Although our model was initially
conceived as a reduced model of blebbing in general, recent
experimental evidence suggests that cells can undergo bleb-
bing in a narrow 1D channel (10,11) for which our model
should be directly applicable.

There have been many previous modeling studies on
blebbing that focus on different aspects of this phenome-
non. In a series of papers, Woolley and co-workers have
developed a continuum mechanical model of blebs based
on the assumption of axisymmetric geometry (12–15).
These papers focus primarily on membrane and cortical
mechanics. On the other hand, in (16,17) the authors intro-
duce a 2D mechanical model of immersed boundary type
wherein membrane and cortical structures interact with
the cytosolic and extracellular fluids. In contrast to the
above models, which focus on mechanical and geometric
aspects of cell blebbing, (5) focuses on the turnover ki-
netics of the cortex and adhesions. Cortical and adhesion
densities defined at each point of the membrane satisfy
an equation expressing their turnover. These protein den-
sities are coupled to a simple mechanical model of the
membrane. The analysis and simulations of all of the above
models are confined mostly to the growth and retraction of
a single blebbing event.

In this paper, we introduce a simple model of pressure-
driven cell migration model in 1D, which connects subcel-
lular adhesion process and cell migration dynamics. We
neglect the geometry of the bleb and focus on how intrinsic
noise from molecular interaction of cortex components can
generate stochastic membrane-cortex separation, which al-
lows cells to migrate by hydrostatic pressure. In our model,
the cell configuration is described by five coordinate loca-
tions in one dimension: the cortical and membrane positions
at the front and back, and the position of the nucleus. At the
front and back of the cell, cortical and adhesion densities
that undergo turnover are defined. The adhesion kinetics
in particular is stochastic, making it possible for the cell



Model of bleb-driven cell migration
to initiate spontaneous blebbing events. The incorporation
of this stochastic initiation mechanism allows for the simu-
lation of repeated blebbing events and thus continuous cell
movement. In its simplicity, our mechanical model is anal-
ogous to (18,19), where models of low Reynolds number
swimmers of Purcell type (20) are adapted to study cell
blebbing. The focus of their study, however, is on the me-
chanical and hydrodynamical aspects of blebbing, espe-
cially as they relate to swimming efficiency.

There have been a handful of modeling studies in which
the full blebbing cycle has been studied, much like our study
here. In (21), the authors incorporate bleb initiation into
their axisymmetric mechanical model (12,13–15) by
randomly selecting a bleb location over the surface of the
cell from a given probability distribution. Bleb initiation
thus does not arise from an internal dynamical process.
Arguably the most ambitious effort in incorporating cell
biological details in a computational model of blebbing
motility is that of (22), in which the authors develop an
agent-based model of both membrane and cortex and their
attachment to the underlying substrate, incorporating sto-
chasticity in several different processes. Our model is
much simpler and does not match (22) in its biophysical re-
alism. However, the simplicity of our model allows for a
more extensive parameter study and a clearer conceptual un-
derstanding of the mechanisms that may allow blebbing to
lead to cell motility.

We also point out that, although the aim of this study is to
clarify the properties of cell blebbing, the reduced nature of
the model may make it applicable to other modes of pres-
sure-driven cell migration more generally. For example, in
(3) it is suggested that lamellipodial protrusions are pressure
driven, and not driven by actin polymerization.

In the next section (Methods), we describe our model
setup. We first describe our differential equation model,
which is formed by combining a turnover model of based
on (5) with a mechanical model similar to (23). In the model
from (5) the position of the cell is fixed, which is clearly not
suitable for our purposes of modeling persistent movement.
We allow our cell to move by introducing coordinates at the
front and back position of the cell, as well as the position of
the nucleus. At the front and back of the cells, cortical and
adhesion density experience turnover (5). Much like the
model in (5), this model exhibits excitable behavior but
also exhibits other dynamical behaviors as studied in the
Results. We also study the distance the cell travels when a
blebbing event is induced.

Our parametric study indicates the importance of the
membrane water permeability and myosin contraction to
bleb formation. Sufficient water permeability and an
appropriate level of myosin contraction is needed for the
system to reside within the excitable regime. When water
permeability is too low or when myosin contraction is too
high or too low, the deterministic system loses its excit-
ability, making it difficult to generate blebs.
The above deterministic model is only capable of gener-
ating one blebbing event under an external perturbation,
particularly in the excitable regime. As described in the
Methods section, we further introduce stochastic fluctua-
tions to the membrane-cortex adhesion density by taking
into account the fact that these links are finite in number.
This results in a stochastic hybrid system (24,25). This sto-
chasticity leads to spontaneous blebbing events, which can
lead to unidirectional motion in the presence of a parametric
bias between the front and back of the cells. The stochastic
bleb initiations are correlated with the kinetics of the mem-
brane and the actin cortex, in contrast to (21). Our model of
bleb-based motility thus constitutes a dynamical system (an
excitable system) in which the cell is stochastically kicked
out the basin of attraction of the sedentary state. This is
similar to the spontaneous generation of action potentials
through the fluctuation of opening and closing of ion chan-
nels, as studied in (24).

To highlight the importance of stochastic fluctuations in
our model, we highlight two observations. First, we find
that bleb-driven cell migration is possible even when the un-
derlying deterministic dynamical system is in the bistable
regime. In the deterministic regime, the bleb never heals,
but in the stochastic case the blebwill be stochastically driven
to heal, thereby making migration possible. This implies that
the cell can utilize a wider parameter range for bleb-driven
motility. Second, the frequency of blebbing is a major
contributor to speed, which is determined by the escape prob-
ability frombasin of attraction of the steady state. This, again,
is a feature that is clearly absent in the deterministic system.

We conclude this section with a study of the statistics of
the blebbing events using a renewal process approximation.
We derive a Langevin equation of cell migration by match-
ing the asymptotic moments of the approximation process.
We conclude our paper with a discussion of our results
and future directions.
METHODS

Wemodel the cell as a 1D strip in a narrow channel. This is the situation that

corresponds to the experiments of (10,11). We do, however, believe that our

model captures essential features of blebbing more generally, especially as

the cell moves in confined environments.

Consider a bounded interval in which the cell lies xbm < x < xfm, where x
f
m

is the front membrane position and xbm is the back membrane position. In the

intracellular region between these two points, the unknowns are the fluid

velocity u and hydrostatic pressure p, which we will assume to be spatially

constant. Other unknown quantities are the adhesion density a, cortex thick-

ness c, the cortical positions at the front and back xf ;bc ðtÞ, and the nucleus

location xNðtÞ. The adhesion and cortex densities (a and c), are defined at

the front and back of the cell, denoted by af , ab, cf , and cb. A schematic di-

agram for our model is given in Fig. 1 (bottom).
Assembly and turnover

We model the cortex thickness c, following (5), assuming simple first-order

kinetics,
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dc

dt
¼ ua � rc; (1)

where u governs cortex assembly, and assumes that a new cortex requires

adhesion to a nearby membrane. The second term describes cortex turnover,

with rate r. In this context, c is interpreted as a combination of density and

spatial thickness, with arbitrary units.

The cortex is attached to the membrane via ERM proteins. We refer to the

effect of these proteins as ‘‘adhesions.’’ We use the model of (5), employing

similar first-order kinetics for the adhesion assembly and turnover, and

three additional assumptions: 1) adhesion assembly saturates at high cortex

thickness; 2) adhesion attachment requires proximity between cortex and

membrane, with characteristic distance d, that describes the ‘‘reach’’ of

the adhesion molecules; and 3) adhesion detachment is force dependent,

with characteristic breaking force f0. These considerations lead to

da

dt
¼ konc

c0 þ c
exp

�� jxm � xcj
d

�

� koff a exp

�
kjxm � xcj

f0

�
; (2)

where kon and koff are the adhesion assembly and turnover rates, respec-

tively, and c0 is the cortex thickness at which adhesion assembly is half-

maximal. The numerator kjxm � xcj follows from the assumption that

adhesions collectively behave like springs with Hookean stiffness k. Note

that adhesion turnover is significantly faster than cortex turnover, leading

to a separation of timescales.

Equations 1 and 2 are the same at the front and back of the cell, with the

appropriate superscripts.
Mechanics

We assume that the pressure p inside the cell and the fluid velocity u are

both constant in space. At the front membrane position xfm, we have the

following condition:

½p�f ¼ p � �
pN þ dgu

� ¼ af k
�
xfm � xfc

�
þ km

�
xfm � xN � l

�
: (3)

The above equation states that the difference in pressure across the mem-

brane at the front is balanced by the adhesion and membrane forces. The

exterior pressure is given by pN þ dgu, where dg is a drag coefficient.

The pressure pN is the pressure in the far field, which we take to be the

same in the far front and far back of the cell. Since the pressure is defined

only up to a constant, we may take pN ¼ 0 without loss of generality. The

drag coefficient dg represents the resistance of the exterior fluid to flow, and
was used previously in (23). The adhesion force acts between the cortex and

the membrane, modeled as a spring force whose spring constant is propor-

tional to the adhesion density af . The membrane force is modeled as a

spring connecting the membrane and the nucleus position, with a natural

length of l. Likewise, force balance at the back membrane is given by:

½p�b ¼ p � �
pN � dgu

� ¼ � abk
�
xbm � xbc

�
� km

�
xbm � xN þ l

�
: (4)

At the front and back membranes, we also impose the following

conditions:
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dxfm
dt

� u ¼ � z½p�f ; (5)
dxbm b
dt
� u ¼ z½p� : (6)
The fluid velocity u is spatially uniform (but varying in time), an imme-

diate consequence of our assumption that the fluid in the narrow channel is a

1D incompressible fluid. The difference in the membrane velocity dxf ;bm =dt

and the fluid velocity u is given by the transmembrane water flow. This

transmembrane water flow in turn is proportional to the difference in pres-

sure across the membrane interface, as given in Eqs. 3 and 4, where z is the

water permeability coefficient.

At the cortex, we have the following force balance equations:

hcc
f dx

f
c

dt
¼ af k

�
xfm � xfc

� � scf
�
xfc � xN

�
; (7)
dxb � � � �

hcc

b c

dt
¼ abk xbm � xbc � scb xbc � xN : (8)
Here, we have assumed that the cortex experiences a drag force with

respect to the underlying substrate, whose strength is proportional of the

cortical density cf ;b. This drag force is balanced by the adhesion forces

between the cortex and membrane and the force between the nucleus

and cortex. We attribute the latter to the force generated by the actin

cytoskeletal network that permeates the cytosol, which is continuous

with the actin cortex underlying the membrane. In our simple model,

the actin network generates a force between the center, which we as-

sume to be the nucleus, and the actin cortex residing close to the front

and back of the cell. This force is assumed to be Hookean. We model

this as a Hookean spring force whose spring constant is proportional

to the cortical density cf ;b, with the coefficient s controlling the strength

of actomyosin contractility. The position of the cell nucleus satisfies the

following equation

hN

dxN
dt

¼ km
�
xfm � xN � l

�þ km
�
xbm � xN þ l

�
þ scf

�
xfc � xN

�þ scb
�
xbc � xN

�
; (9)
where the nucleus is assumed to experience a drag force with respect

to the substrate with drag coefficient hN . The spring force connecting

the nucleus and the membrane positions are required for the model

cell to maintain a stable fixed length at rest. The inclusion of the nu-

cleus in the model is motivated by observations of the importance of

nuclear mechanics for confined cell movement (26). From the point of

view of model behavior, the presence of the nucleus allows for the

front and back to be less tightly coupled. Nuclear positioning is

controlled by cytoskeletal elements and the microtubules in particular

(27), and we attribute the spring-like force between nucleus and mem-

brane to these structures in a simplified manner. The incorporation of

rest length is a reflection of the assumed rigidity of the microtubular

network.

The above model satisfies the following power identity:
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X
k ¼ f ;b

�
kak

2

d

dt

�
xkm � xkc

�2 þ km

2

d

dt

�
xkm � xN � l

�2
þsck

2

d

dt

�
xkc � xN

�2�

¼ � 2dgu
2 �

X
k ¼ f ;b

 
hcc

k

�
dxkc
dt

�2

þ hN

�
dxkN
dt

�2

þz
�
½p�k
�2!

: (10)

The above equality is a statement of power balance. The first line is an

expression for the power exerted by the spring forces, and the second

line represents viscous and frictional dissipation. The adhesion and cortical

densities ak , ck , k ¼ f ; b change in time according to Eqs. 1 and 2, but let us

replace these values by constants ak0, c
k
0 in the above expression (i.e., we

consider a model in which the adhesion and cortical densities are constant).

Then, we will have:

d

dt

 X
k ¼ f ;b

�
kak0
2

�
xkm � xkc

�2 þ km

2

�
xkm � xN � l

�2

þsck0
2

�
xkc � xN

�2�!

¼ � 2dgu
2 �

X
k ¼ f ;b

 
hcc

k

�
dxkc
dt

�2

þ hN

�
dxkN
dt

�2

þz
�
½p�k
�2!

: (11)

The above relation is a statement that the elastic energy of the system de-

creases in time, and shows that the cell should eventually come to a full

stop. The above calculation shows that the dynamics of the adhesions

and the cortex is crucial for the model exhibits nontrivial dynamics.
TABLE 1 Model parameters

Symbol Dimensions Meaning

U (A.U.) mm2 s �1 cortex assembly rate constant

R s�1 cortex turnover rate constant

kon mm�2 s�1 adhesion assembly rate

koff s�1 adhesion turnover rate

c0 (A.U.) cortex thickness at half-maximal

adhesion

D Mm adhesion length between cortex and

membrane

K pN mm�1 adhesion spring constant

f0 pN adhesion breaking strength

pN Pa pressure far from the cell

km Pa mm�1 hydrostatic pressure scale

dg Pa s mm�1 fluid drag constant

Z mm s�1 Pa�1 water permeability constant

S Pa (A.U)�1 mm�1 actin-myosin contractility

L Mm membrane rest length

hc Pa s mm�1 (A.U) �1 cortex drag factor

hN Pa s mm�1 nucleus drag factor
Physical parameters are summarized in Table 1

Nondimensionalization and parameter estimates

First, we can simplify the fluid equations as follows: subtracting Eq. 3 from

Eq. 4, we get that

2dgu ¼ � af k
�
xfm � xfc

� � abk
�
xbm � xbc

�
� km

�
xfm � xN � l

� � km
�
xbm � xN þ l

�
: (12)

We nondimensionalize the system choosing characteristic cortex

thickness cc ¼ c0, characteristic density of adhesions ac ¼ kon
koff

(kon � 100 mm�2 s�1 (8)), characteristic time tc ¼ 1
r � 10 s (28), character-

istic length lc ¼ l � 10 mm (29), characteristic pressure pc ¼ kml

(km � 100 Pa mm�1 (8)), and characteristic fluid velocity uc ¼ lr. This re-

sults in the nondimensional system:

dc

dt
¼ Ua � c (13)

da c
�� jxm � xcj

� �jxm � xcj
�

ε

dt
¼

1þ c
exp

D
� aexp

F

(14)

2D u ¼ � af
�
xf � xf

� � ab
�
xb � xb

�

g m c m c

� Km

�
xfm � xN � 1

� � Km

�
xbm � xN þ 1

�
(15)

�
dxf

� � � � �

gm

m

dt
� u ¼ � af xfm � xfc � Km xfm � xN � 1

(16)

�
dxb

�
b
�

b b
� �

b
�

gm
m

dt
� u ¼ � a xm � xc � Km xm � xN þ 1

(17)

dxf � � � �

gcc

f c

dt
¼ af xfm � xfc � Mcf xfc � xN (18)

bdx
b

b
�

b b
�

b
�

b
�

gcc
c

dt
¼ a xm � xc � Mc xc � xN (19)

dxN �
f

� �
b

�

gN dt

¼ Km xm � xN � 1 þ Km xm � xN þ 1

þMcf
�
xfc � xN

�þMcb
�
xbc � xN

�
; (20)

with 10 nondimensional parameters defined in Table 2. Note that we use the

same labels for all quantities for simplicity, but these are now nondimen-

sional. Many of the parameters were already estimated in (5). For the re-

maining parameters, we obtain estimates based on matching the cell

velocity with that reported in (30). In subsequent sections, we will vary

gc and gm within a specified range to determine their impact on model

behavior. The parameters Dg and gN are set to a small positive value as

shown in Table 2 unless indicated otherwise. Indeed, setting Dg and gN

to 0 does not lead to appreciably different results in our computations.

We note that, if we set Dg ¼ 0, Eq. 15 becomes a constraint that implicitly
Biophysical Journal 121, 1881–1896, May 17, 2022 1885



TABLE 2 Nondimensional parameters

Symbol Definition Interpretation Estimate Source

U ukon
koffrc0

cortex intensity 6:5 � 100 (5)

e r

koff
ratio of cortex turnover and adhesion rates 0.1 (5)

D d

l

adhesion reach 0:15 � 0:23 (5)

F f0
lk

adhesion bond strength 1:0 � 6:3 (5)

Km koffkm
konk

pressure relative to adhesion strength 0:016 � 0:1 (5)

M sc0koff
konk

myosin contractility relative to adhesion strength 0:007 � 0:43 (5)

Dg dgrkoff
konk

fluid drag relative to adhesion strength 10� 6 see text

gm rkoff
zkonk

ratio of cortex turnover rate and mechanical changes

rate
10� 2 � 10� 5 see text

gc hcc0rkoff
konk

drag on cortex relative to adhesion strength 10� 2 � 10� 5 see text

gN hNrkoff
konk

drag on nucleus relative to adhesion strength 10� 6 see text
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determines u as an algebraic constraint; an explicit equation for u can be

obtained by taking the time derivative of (15) and plugging in (16–20) in

the resulting equation. The behavior of the model with respect to larger

values of gN and Dg is briefly discussed at the end of the Results section.
Stochastic model formulation

We now look at modifying the model system, Eqs. 13–20, to include sto-

chastic effects in the adhesion density. Individual adhesion proteins have

two possible conformations: open (when they tether the membrane and cor-

tex together) and closed (when they do not). To formulate the stochastic

model, we think of the adhesion dynamics as a birth-death process, with

proteins changing conformation so that as the system evolves it may in-

crease or decrease the number of proteins attached and hence the adhesion

density. We let a ¼ ak, where a is the per-protein adhesion density and k is

the number of proteins, and we replace Eq. 14 with a Markov chain where

the probabilities that a new protein will be attached or detached given by g

and h respectively, where

gðc; a; xm; xcÞ ¼ c

1þ c
exp

�
� 1

D
jxm � xcj

�
; (21)

�
1

�

hðc; a; xm; xcÞ ¼ a exp

F
jxm � xcj : (22)

To begin the simulation, we choose an initial, or ‘‘base,’’ number of adhe-

sion proteins to be the number of adhesions at steady state and use that to

determine a, which is then kept constant. The steady state is computed us-

ing the deterministic system. To observe the cell blebbing cycle, it is neces-

sary for the initial condition to be chosen so that the system starts close to

the deterministic steady state. The stochastic simulations are then run using

a continuous-time Gillespie’s algorithm to update the number of adhesions

attached as the system progresses:

1. Possible events:
1886
� e1: adhesion forms (k/k þ 1)

� e2: adhesion breaks (k/k � 1)
2. Rates:
� r1 ¼ gðc;a; xm; xcÞ
� r2 ¼ hðc;a; xm; xcÞ
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3. rtotal ¼ r1 þ r2
4. Time until next event dt,Z dt

0

rtotalðtÞ dt ¼ � lnðRANDU½0; 1�Þ: (23)

At each Dt, update the integral using the trapezium rule and check the

equality. When it holds, go on.

5. ej is selected with probability

rj
rtotal

(24)

to update a ¼ ak.

6. Update all other variables.
RESULTS

Deterministic model

The model, Eqs. 13–20, combines the mechanisms of mem-
brane-cortex interaction (force-sensitive adhesion, cortex
contractility, cortex turnover) with force balance in the
cell (fluid pressure, membrane, and cortex tension). Numer-
ical simulations of the model reveal several classes of dy-
namics: stable nonblebbing states, stationary blebbing, and
bleb-driven migration. Note that, throughout this section,
parameters are the same on both sides of the cell. Without
loss of generality, we focus on the effect of perturbations
from steady state on the front side, which will then be the
‘‘leading edge’’ of the cell.

For a bleb to form, enough adhesions have to break so that
the membrane and cortex will detach. In the blebbing
parameter regime, a large enough perturbation to the steady
state, by breaking the adhesions (lowering af ), leads to a
large excursion of the cortical density and results in cell



FIGURE 2 Deterministic bleb-driven migration.

Plots of a sample simulation with a perturbed initial

condition (af ¼ 0:5� afss, where a
f
ss is the value of

af at steady state). (Left) af versus cf trajectory.

(Right) Membrane, cortex, and nucleus positions.

Parameters used here are U ¼ 40, ε ¼ 0:01,

D ¼ 0:15, F ¼ 0:99, M ¼ 0:0081, gm ¼
0:8� 10� 3, Km ¼ 0:1, gN ¼ 10� 6, gc ¼
10� 4, and Dg ¼ 10� 6.

Model of bleb-driven cell migration
movement. The system thus exhibits excitable behavior, as
was documented in (5). A small perturbation, however,
will not lead to bleb formation and subsequent movement.
In the nonblebbing parameter regime, even if all adhesions
are removed, the system returns to steady state without the
membrane separating enough from the cortex for the cortex
to depolymerize before adhesions reappear. This is a mono-
stable regime, in which the system always returns to steady
state after a perturbation of even large size.

A sample simulation for the bleb-driven migration case is
shown in Fig. 2, obtained by setting the system to steady
state, and generating a perturbation at the front of the cell
by removing 50% of the adhesions. When this perturbation
is significant (enough adhesions are removed), as in the case
shown in Fig. 2, the remaining adhesions are destroyed and
the cortex depolymerizes. This leads to the membrane
detaching from the cortex and protruding. This initial
expansion is very rapid compared with the full life cycle
of the bleb, in line with measurements in (8). The adhesions
subsequently accumulate under the protruding membrane
and the cortex is able to reattach and thicken. Cortex
contraction then drives the bleb to heal, returning the system
to equilibrium. It is important to note that, while a and c will
return to the same initial steady state after the bleb heals, the
positions of the membrane, cortex, and nucleus will have a
new steady state. This is because these positions do not have
a reference location (in contrast, for example, to (5)), but
rather a reference distance between the various points (in
other words, any parallel translation of a steady state will
yield a steady state).

In the blebbing regime we observe four qualitatively
different behaviors, as shown in Fig. 3: bleb formation
FIGURE 3 Various deterministic model behav-

iors. (a) Single bleb that heals shown in Fig. 2.

(b) Bleb forms but never heals (M ¼ 0:0084).

This is the bistable regime. (c) Front bleb drives a

secondary bleb at the back (U ¼ 44:3). (d) Oscil-

latory blebbing events alternating from front to

back (gm ¼ 0:8� 10� 2). Sample paths are initi-

ated at the perturbed af ¼ 0:5� afss. Other param-

eters are the same as in Fig. 2.
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and healing on the side of the perturbation (Fig. 3 a), a bleb
forming but never healing (Fig. 3 b), a bleb on one side
propagating to induce a bleb on the other side (Fig. 3 c),
or an oscillation where blebs alternate from front to back
(Fig. 3 d). These behaviors are summarized in Fig. 4.

We can recover most model behaviors by varying the
cortex assembly rate U, and the inverse permeability of
the cell membrane gm. The transitions between behaviors
as these parameters are varied are shown in Fig. 4. We first
observe that a sufficiently high value of U is necessary for
the system to be in the blebbing regime (be it excitable,
osicllatory, or the secondary bleb regime). We may under-
stand this as follows. When U is small, the steady-state
value of the cortex is small (see Eq. 13), thus making it
easier for the system to go back to steady state after an
initial perturbation. Given this quick recovery, there is
not enough time for the cortex to detach from the mem-
brane to form a bleb.

A sufficiently small value of gm (greater membrane wa-
ter permeability) is needed for the cell to reside in the
excitable regime. A larger value of gm pushes the cell
into a monostable regime, an oscillatory regime, or a
regime in which secondary blebs are seen. Larger values
of gm implies that both xf ;bm tend to follow the same velocity
u (see Eqs. 16 and 17). Another way to understand this is
through incompressibility. If water permeability is low,
then the length of the cell should stay roughly constant,
which implies that the front and back of the cell must
move at roughly the same velocity. For small values of
U, this has a stabilizing effect; a perturbation on the front
side is stabilized by the back side which is not experiencing
a perturbation. For larger values of U wherein the system is
in the blebbing regime, perturbation at the front will tend to
lead to blebbing on the back side as well. We point out that
this kind of oscillatory behavior has been previously
FIGURE 4 Phase diagram of the deterministic model over the plane of

the cortex intensity U and the inverse of water permeability gm. Other pa-

rameters are the same as Fig. 2.

1888 Biophysical Journal 121, 1881–1896, May 17, 2022
observed for protrusions in fibroblasts which, like blebs,
are devoid of actin (31).

Myosin contractility,M, plays a major role in bleb forma-
tion and cell travel. As can be seen in Fig. 5 if M is too low,
the system is nonblebbing, in line with experimental evi-
dence (32). When M is above a critical value, the system
reaches a blebbing state. There is a second critical value
of M, above which the system is bistable; a bleb will form
but will not heal. The adhesions do not reform under the
membrane, and the system reaches a new steady state with
one side of the membrane permanently detached as shown
in Fig. 3 b.

Similar behaviors can be observed by varying the cortical
kinetic parameters D and F. We find that, if D or F are too
small, the system becomes bistable, with a second steady
state such that the bleb will not heal (see Fig. 3 b). This
can be simply explained: if the reach of adhesion molecules
is too small, adhesions between membrane and cortex
cannot reform; similarly, if F is too small, bonds that do re-
form are weak and the bleb cannot heal. An increase in Km

does not lead to larger blebs, although it does lead to greater
displacement.

We next examine how the time course, size, and total
displacement per bleb event varies with the parameters
of the system by varying each parameter one by one while
fixing the others. Based on this study, we make the predic-
tions shown in Table 3. We find that, as adhesion reach D
increases, healing accelerates—the membrane-cortex dis-
tance needed for reattachment is wider, allowing for faster
recruitment of adhesions. Similarly, decreases in M lead to
faster healing. Increases in Km lead to smaller bleb size,
as the overall force pushing the membrane outward
decreases.

In Fig. 6 we plot the dependence of travel distance and
duration on the parameters M, F, and D. Further parameter
studies on travel distance can be found in the supporting
material. As M increases in the excitable regime, both
the travel distance and bleb duration increase. Stronger
myosin contraction tends to pull the cortex away from
the membrane and thus leads to a longer bleb duration.
Although the bleb travel distance does increase, this
change is about 10% and thus smaller in proportion than
the change in duration. In this sense, we may say that
an increase in M in fact decreases the velocity of the
cell. The effect of D and F is similar in the sense that
the change in duration is much larger proportionally
than the change in total bleb travel distance. As D de-
creases, the total displacement of the cell increases, and
bleb healing is slower. It is clear that, if the adhesion reach
is very large, it is easy (and fast) for the adhesions to re-
form and the cortex to reattach compared with when the
adhesion reach is small. However, if D becomes too small,
the system reaches a stable nonblebbing state. Similarly,
as F decreases, the total displacement of the cell increases,
and bleb healing slows down.



FIGURE 5 Phase diagram of the deterministic

model as M is varied. Other parameters are the

same as Fig. 2.

Model of bleb-driven cell migration
While variations on the drag in the cortex and nucleus (gc

and gN , respectively) do not affect the cell’s ability to form a
bleb, and the system will remain in the blebbing or nonbleb-
bing regime based on the other parameters, variations in
drag can affect the distance traveled. If either drag param-
eter becomes too large, the net displacement of the cell be-
comes negligible, even if the bleb does form. Furthermore,
changes in gc and gN can decouple the front and back of
the cell, eliminating bleb propagation between the front
and back.
Stochastic model

Here, we consider a stochastic model in which the adhesions
are modeled as being discrete, as described in the Methods
section.

In contrast with the deterministic system, the stochastic
system does not require an initial perturbation to generate
a bleb, but can instead be set initially to the steady state
of the deterministic system. Then, eventually, stochastic
fluctuations make the adhesion density become low enough
for the membrane and cortex to detach and the system to
form a bleb. An example is shown in Fig. 7 (left) overlayed
on a deterministic simulation for reference.

A full sample simulation is shown in Fig. 8. Since the sys-
tem is symmetric between the front and the back, both
sides are equally likely to form a bleb, so that, in the long
run, the cell does not have an overall displacement
(E½total distance� ¼ 0 for long simulation times).

To start the stochastic simulation, we first set the system
to steady state using the deterministic model to compute the
starting values. As laid out in the Methods section, we then
let a ¼ ak, where a is constant and k is the number of
attached proteins. The choice of initial k, is key to the fre-
quency of bleb formation, as illustrated in Fig. 9: if the
base value of k is too small, adhesions are removed too
easily and the system becomes erratic; if the base value of
k is too large, the adhesions never decrease enough for the
membrane and cortex to detach and for a bleb to form.
TABLE 3 Model predictions for experimental perturbations

Perturbation Parameter Prediction

Decrease adhesion strength Km[ Smaller blebs

Increase myosin contractility M[ Slower bleb healing

Increase molecular size

of adhesion molecules

D[ Faster healing
We choose a value of k in line with measurements of protein
density at the membrane (33).
Model behaviors

In this section, we discuss the differences in system behavior
in the stochastic and deterministic regimes.

Recall that, in the deterministic regime, cell travel was
accomplished in the excitable regime but not in the bistable
regime. In the stochastic regime, bistability (Fig. 3 b) is not a
deterrent for the cell to travel, as the system is able to escape
also the basin of attraction of the second steady state, as seen
in Fig. 7 (right). Then, even for parameter regimes which
would be bistable in the deterministic case, we still get sus-
tained blebbing in the stochastic case. This means, for
example, that the values of M for which sustained travel is
possible extends from the excitable into the bistable regime
as shown in Fig. 5.

We find that the onset of oscillations, as shown in Fig. 3 d,
shifts when we make the system stochastic. We showed in
Fig. 4 that increases in gm make the system oscillatory.
The onset of these oscillations requires a higher value of
gm in the stochastic regime than in the deterministic regime.
The reason for this is as follows: in the oscillatory regime,
simulations suggest that a stable fixed point and a stable
limit cycle coexist. The generation of this limit cycle should
be traceable to a subcritical Hopf bifurcation, possibly
through a canard explosion (34). When the value of gm is
small, the stable limit cycle is too close to the stable steady
state in the deterministic phase plane. A noisy periodic tra-
jectory along the deterministic stable limit cycle will then
fall into the basin of the stable steady state, thus aborting
the oscillatory dynamics. As gm is increased, the distance
between the stable limit cycle and steady state is increased,
and the oscillatory dynamics can persist. A sample stochas-
tic oscillatory simulation is shown in Fig. 10.
INTRODUCING BIAS

The system, as simulated in Fig. 8, is symmetric, so that the
cell does not exhibit net displacements over a long time.
Thus, in order to get a net movement, we bias the cell so
that it is more likely to bleb at the front by making the front
excitable and the back monostable in the corresponding
deterministic system (the choice of front and back is arbi-
trary). Then, only the front side will retain the ability to
Biophysical Journal 121, 1881–1896, May 17, 2022 1889



FIGURE 6 Traveling distance and duration for

individual blebbing event with various parameters.

Other parameters are the same as Fig. 2. Note

that only parameters in the excitable regime are

considered.
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bleb, and the cell will be able to sustain travel in that specific
direction.

There are multiple theories regarding the polarization of
a blebbing cell. One such theory suggests that there are
fewer ERM proteins at the side where the bleb forms
(3,9). In our model, this corresponds to having a different,
smaller number of attached proteins at the front compared
with the back (kf < kb), under the assumption that the adhe-
sion constant a is equal on both sides. To determine the
regime (monostable or excitable/bistable) on each side
we use the deterministic system and modify appropriate pa-
rameters so that the adhesion densities at the front and back
of the cell at steady state are different (afss < abss). It is then
expected that the side with the smaller deterministic steady
state value of a (and hence smaller initial k) will be more
likely to produce a bleb. Indeed, in examples that we
have checked, for steady states with smaller value of
steady-state value of a, a smaller perturbation in a was suf-
FIGURE 7 Sample stochastic simulation, starting at steady state, with the dete

(Right) M ¼ 0:0084.
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ficient for the solution to leave the steady state (for
example, in Fig. 11, the size of perturbation necessary to
generate a bleb is smaller at the front than at the back).
In particular, we choose the parameters with the front in
the excitable regime (blebbing) and the back in the mono-
stable regime (nonblebbing) as determined in the determin-
istic setting. At the excitable side (front), noise allows the
system to escape the basin of attraction of the steady state,
while at the monostable side (back) the basin of attraction
cannot be escaped. We emphasize that the biased determin-
istic simulations still require a manual perturbation for the
system to initiate a bleb and travel.

To bias the cell, we change the values of some of the pa-
rameters so that they are different at the front and back of the
cell (this effectively breaks the symmetry of the system).
Since we found thatM, F, and D control the overall distance
traveled, we test these parameters to bias the cell by
choosing MfsMb, etc. A sample polarized simulation is
rministic case shown for reference. (Left) Parameters are the same as Fig. 2.



FIGURE 8 Stochastic simulation, starting at steady state. Parameters are

the same as Fig. 2.
FIGURE 10 Stochastic simulation in the oscillatory regime, starting at

steady state. Here, gm ¼ 0:8� 10� 1, while other parameters are the

same as Fig. 2.

Model of bleb-driven cell migration
shown in Fig. 11. Varying the parameters at the front and
back to get different bias magnitudes showed that if kb is
less than 4% bigger than kf the system does not yield a clear
cell polarization.
Determinants of distance traveled

Let us now consider the biased system in the deterministic
case, such that the front is excitable and the back is mono-
stable. As discussed in the previous section, low values of
M lead to a nonblebbing state, while increasing M takes
the system first into the excitable (blebbing) regime and
then into the bistable regime (see also Fig. 5). Simulations
show that this trend holds for the front myosin strength
Mf as well. Within the excitable regime, as shown in
Fig. 12 (top), Mf leads to an increase in bleb duration
much like the case studied in Fig. 6. The change in travel
distance is minimal as Mf is varied is minimal. Thus, the
speed per blebbing event decreases with an increase Mf .

In the stochastic case, however, the overall speed of the
cell increases with Mf , as shown in Fig. 12 (bottom). We
find that, even though individual events take longer, as
seen in the deterministic simulations, the frequency of bleb-
bing also increases in the stochastic simulations, so that the
cell travels further. A larger value of Mf leads to a smaller
value of the steady-state value of the adhesion density af ,
thus making the basin of attraction of the stable state smaller
with respect to perturbations in af .
FIGURE 9 Stochastic simulation compared with

the deterministic case for various choices of initial

number of attached proteins k (T ¼ 15). Parame-

ters are the same as Fig. 2.
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FIGURE 11 Biased stochastic simulation, starting at steady state.Mf ¼
0:0078, Mb ¼ 0:0065. Other parameters are the same as Fig. 2. Note that

the simulation is first run as deterministic to steady state.

FIGURE 13 (Top) Distance traveled and event time for a single bleb in

the deterministic case as Ff varies. (Bottom) Average and standard deviation

of total distance traveled for time T ¼ 100 and number of blebbing events

for the stochastic case as Ff varies with Fb ¼ 1:7. The time step was set at

Dt ¼ 0:0001 and the initial number of adhesions was set to k ¼ 300.

Parameters are as in Fig. 2.

Muñoz-López et al.
If we bias the cell by modifying F or D instead (Ffs
Fb, or DfsDb), decreases in Ff or Df still lead to in-
creases in the distance traveled in a single event (Figs.
6, 13, top, and 14, top). However, the increase in dis-
tance is much smaller in the biased case. For changes
FIGURE 12 (Top) Distance traveled and event time for a single bleb in

the deterministic case as Mf varies. (Bottom) Average and standard devia-

tion of total distance traveled for time T ¼ 100 and number of blebbing

events for the stochastic case as Mf varies with Mb ¼ 0:0065. The time

step was set at Dt ¼ 0:0001 and the initial number of adhesions was set

to k ¼ 300. Parameters are as in Fig. 2.
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in F or D, the event duration does not change much be-
tween the biased and unbiased settings. Decreasing Ff

or Df any further would lead to the bistable regime.
In the stochastic case, cell velocity increases as Ff or
Df decreases, as shown in Figs. 13 (bottom) and 14
(bottom).
Approximation of biased stochastic model

One important feature of the biased stochastic model is that
the bleb expansion period takes place in a very short time-
scale compared with the overall span of bleb formation, as
seen in Fig. 15 a. Such series of events can be approximated
by a renewal process (35,36). A single bleb event consists of
two random variables: the interblebbing time D and
the traveling distance Q. Let us label the bleb events by
n ¼ 1; 2;/. We collect the statistics of ðDn;QnÞ from a to-
tal of 103 sample paths whose initial condition is at the
steady state of the deterministic model. Results show that
the statistics of ðDn;QnÞ are approximately independent
and identically distributed for all n. This is because each
bleb event is generated by stochastically escaping the
same deterministic basin of attraction, as shown in Fig. 7.
Another observation is that Dn and Qn are almost
uncorrelated: ����CovðDn;QnÞ

E½Dn�E½Qn�
���� � 0:015:



FIGURE 14 Parameters are as in Fig. 2. (Top) Distance traveled and

event time for a single bleb in the deterministic case as Df varies. (Bottom)

Average and standard deviation of total distance traveled for time T ¼ 100

and number of blebbing events for the stochastic case as Df varies with

Db ¼ 0:159. The time step was set at Dt ¼ 0:0001 and the initial number

of adhesions was set to k ¼ 300.

Model of bleb-driven cell migration
We thus assume that the two random variables are inde-
pendent even for the same n. We approximate the discrete
statistics of the random variables by continuous gamma dis-
tributions. That is, the distributions of the random variables
take the form
P½Dn % t� ¼
Z t

0

fDnðt0Þdt0; P½Qn % x�

¼
Z x

0

fQnðx0Þdx0;

where fXðtÞ ¼ f ðt;aX; bXÞ is the gamma distribution with
shape aX and scale bX. Therefore, our assumptions imply that

fDn
¼ fDm

: ¼ fD; fQn
¼ fQm

: ¼ fQ;

for all n;m. We estimate ðaDn
; bQn

Þ by the maximum likeli-
hood estimation, as depicted in the subpanel of Fig. 15 a.
Introducing the blebbing time

Tn ¼ Tn� 1 þ Dn; T0 ¼ 0;

then the nucleus position is approximated by the renewal
process

XðtÞ ¼
X
Tn % t

QnHðt � TnÞ; (25)

where HðtÞ is the Heaviside function giving one if t > 0

otherwise zero. Note that the time-averaged speed and vari-
ance of the approximation process can be written in terms of
the bleb statistics

vN : ¼ lim
t/N

E½XðtÞ�
t

¼ E½Q�
E½D�; (26)

and
FIGURE 15 Approximation of the biased sto-

chastic model. (a) Nucleus position xNðtÞ is

approximated by a renewal process XðtÞ with inter-
blebbing time Dn and traveling distance Qn for

n ¼ 1; 2;/. The statistics of the first bleb event

and the following events (red dots) are independent

and identically distributed. (b) Average nucleus po-

sition as a function of time. The first moment of the

original process (blue curve) comes from averaging

a total of 48 sample paths (gray curves). Corre-

sponding curves for the approximation processes

(red-dotted curve) are computed by numerically

solving Eq. 5 in supporting material for k ¼ 1.

(c) Time-averaged speed (top) and variance (bot-

tom) of the original process is compared with the

asymptotic speed and variance of the approxima-

tion process by Eqs. 26 and 27. Parameters used

here are Uf ¼ 40 and Ub ¼ 32, and the others

are the same as Fig. 2.
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s2
N : ¼ lim

t/N

E½ðXðtÞ� vNtÞ2�
t

¼ Var½Q�þv2NVar½D�
E½D� ; (27)

as derived in the supporting materials. Therefore, the
asymptotic behavior of the approximation process can be
matched by the following stochastic differential equation

dYt ¼ vNdt þ sNdWt; (28)

where Wt is a Wiener process.
Numerical comparison in Fig. 15 b shows that the first

moments of the original stochastic model and our approxi-
mation are in good agreement. In particular, the asymptotic
slope for both processes converges to the value in Eq. 26 as
t/N.
CONCLUSION

The model presented here considers the bleb formation and
healing cycle together with the mechanics of the system to
produce bleb-driven cell migration in a reduced 1D model.
We investigate the size of the blebs, the time from formation
to healing, and the distance traveled in individual blebbing
events. The stochastic model allows sustained cell travel
by repeated blebbing.

We find that myosin contractility, and the molecular
reach and strength of adhesions, determine the distance
traveled by the cell with a single bleb (Fig. 6). Our model
makes predictions about how the distance traveled changes
with experimental perturbations, such as changes in
myosin contractility that could be induced by changes in
blebbistatin (32).

We also investigate the effect of varying biophysical pa-
rameters on bleb size and healing time. In this case, we
find that changes in the molecular reach of adhesions, in
the nondimensional parameter D, affect the time taken for
the bleb to heal as in (5). In contrast with the results in
(5), where increases in M abolish blebbing, increases in
myosin contractility in our model lead to a case where the
bleb forms, but never heals (see Fig. 3 b, Fig. 5). We also
find that a sufficiently high water permeability is a crucial
parameter for cell bleb-driven cell migration to be possible
(Fig 4), a conclusion that is supported by recent experi-
mental evidence (11).

In contrast to the deterministic model, the stochastic
version of the model allows for sustained travel, wherein
the intrinsic stochasticity accorded by the finiteness of the
adhesion links leads to repeated blebbing events. Here, the
front and back of the cells are in different parametric re-
gimes so that the cell is given a bias. When the front end
of the cell is excitable, a sufficiently strong stochastic
perturbation is amplified to generate a bleb at the front.
An increase in Mf lengthens the duration of the bleb event
with a small change in the total travel distance per bleb
1894 Biophysical Journal 121, 1881–1896, May 17, 2022
event, thus leading to a decrease in speed. In the stochastic
case, however, the basin of attraction of the steady state be-
comes smaller, which leads to a greater frequency of bleb-
bing events, making the cell travel faster. Interestingly,
excitability in the narrow sense is not strictly necessary
for persistent travel. Indeed, it is also possible for the
stochastic model to generate sustained travel in the bistable
case, as the system can produce enough noise to escape both
basins of attraction in tandem (see Fig. 12). This increases
the range of parameters over which the cell is able to sustain
persistent travel.

We point out that what we observe is sustained travel un-
der an externally applied bias. Our model, by itself, does not
seem to be capable of polarization through symmetry
breaking. The mathematical reason for this is that, after
each bleb, the model returns to the steady state and thus for-
gets in which direction the cell had blebbed. Most models of
cell polarization require intracellular signaling cascades
(37) that our model does not consider. It would be inter-
esting for future directions to combine cell polarization
models with our cell blebbing model.

From a theoretical perspective, we studied a stochastic
hybrid system that combines a deterministic system (cell
migration dynamics) with a Markov chain on a discrete
space (adhesion protein assembly and turnover). The sto-
chasticity of the Markov process leads to spontaneous exci-
tation (cell bleb event) in which the system escapes from the
deterministic basin of attraction of the stable steady state.
Such escape time problems have been studied in the context
of cellular neuroscience by applying Kramer’s rate theory
(38,39) and the large deviation theory (40,24,41). Instead
of the analytic approximations, we directly obtain the
escape time distribution by Monte Carlo simulation and
focus on analyzing the resulting behavior driven by the se-
ries of excitation events.

Furthermore, we derive a simple effective stochastic dif-
ferential equation of bleb-driven cell migration (Eq. 28) by
approximating our stochastic model with a renewal process
and calculating its asymptotic velocity and variance (Eqs.
26 and 27). These kinematic parameters are determined by
the statistics of the bleb size and the interblebbing time,
which can be obtained directly from experimental data.
Thus, this gives us a method to compare the theoretical
result generated from biophysical parameters with experi-
mental data.

There are recent experiments of bleb-driven cell migra-
tion in 1D channels for which our model is directly appli-
cable (10,11). Blebbing is confined to the front and back
ends of the cell in this context, and this situation is well
captured by our model. Insofar as blebbing is seen in this
1D situation, our model can be regarded as a simple theoret-
ical model that captures some of the essential features of
blebbing.

It is, however, clear that one of the greatest limitations of
our model is that it is 1D. In our 1D model, the blebs only
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form at the front and the back. In the case of a 2D or 3D
model, blebs can form along any position along the mem-
brane, and the spatial extent of the bleb that forms will
influence the dynamics. Papers (12–15) have considered
the cortical and membrane mechanical aspects of this
issue and (16–19) have focused on the intracellular and
extracellular hydrodynamic aspects of this problem. It is
hoped that the 2D or 3D situation can also be studied using
a similar framework of an excitable dynamical system com-
bined with a suitable mechanical model, coupled with
random perturbations arising from molecular noise. Indeed,
(5) performs simulation on a spatially extended version of
the model, although their simulations are deterministic.
Combining a spatially extended excitable model with sto-
chasticity will result in a stochastic partial differential equa-
tion , which is generally difficult both from an analytical and
computational points of view.
SUPPORTING MATERIAL

Additional studies on the effect of parameters on total bleb displacement

and the derivation of the asymptotic approximation process can be found

in the supporting material. It can be found online at https://doi.org/10.

1016/j.bpj.2022.04.016.
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S.1 Effect of parameters on total bleb displacement
Here, we include further studies on the parametric dependence of bleb events, with a focus on the total displacement per bleb
event. The table below shows how the travel distance depends on �6 and  <. When  < is large, we expect that the protrusion
formed in the membrane by that pressure when the adhesions are removed will be large, while if the hydrostatic pressure in the
cell is low, the membrane expansion will be small. We find that while larger values of  < lead to greater distances traveled, the
bleb size actually decreases. If  < is too small, the system becomes non-blebbing, while if  < is too large, a secondary bleb is
generated at the back.  < can be interpreted as hydrostatic pressure inside the cell pushing the membrane outward.

Figure 1 plots is the color map of the distance traveled per bleb event. In general, as W< is increased the travel distance per
bleb event is increased. It should be noted, however, that these changes are not that large, amounting to about a 10% difference
over the parametric range.

Table 1: Predicted Effect of Biophysical Parameters on the Distance Traveled

Perturbation Parameter Effect on Distance Traveled

Increase drag �6 ↑ Decrease

Increase hydrostatic pressure  < ↑ Increase
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Figure 1: Traveling distance as Ω and W< change. Other parameters are the same as Fig. 2 of the main text.
Note that only the excitable regime as plotted in Figure 4 of the main text is relevant for travel distance per
bleb event.
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S.2 Derivation of the asymptotic approximation process
A single bleb event consists of two random variables: the inter-blebbing time Δ and the traveling distance &. Let us label
the bleb events by = = 1, 2, · · · . We determine the distribution information of the renewal process in terms of the gamma
distributions. Introducing the blebbing time

)= = )=−1 + Δ=, )0 = 0,

then one can write the renewal process by
- (C) =

∑
)=≤C

&=� (C − )=), (1)

where � (C) is the Heaviside function giving one if C > 0 otherwise zero. For given )1 = Δ1 = g1 and &1 = [1, we have

- (C) =
{

0, C < g1

[1 + -∗ (C − g1), C ≥ g1
, (2)

where -∗ (C) is identical with - (C). Thus, applying the conditional expectation theorem gives

"- (b, C) := E[4 b- (C) ] = E
[
E[4 b- (C) |)1 = g1,&1 = [1]

]
=

∫ ∞

C

5Δ (g)3g + E
[
1g1≤CE[4 b&14 b-

∗ (C−)1) |)1 = g1,&1 = [1]
]

. (3)

Since &1 and )1 are independent, we have

"- (b, C) =
∫ ∞

C

5Δ (g)3g + "& (b)
∫ C

0
"- (b, C − g) 5Δ (g)3g. (4)

Since the moments of the approximation process satisfies

M: (C) := E[- : (C)] = m:"- (b, C)
mb:

����
b=0

,

for : = 1, 2, · · · , taking derivatives with respect to b gives

M: (C) =
:∑
9=0
E[&:− 9 ]

∫ C

0
M 9 (C − g) 5Δ (g)3g. (5)

The time-averaged moments of the approximation process can be calculated by performing a Laplace transformation. Taking
the Laplace transform of Eq. 5

M̃: (B) = 5̃Δ (B)
:∑
9=0

(
:

9

)
E[&:− 9 ]M̃ 9 (B), (6)

and solving for M̃: (B) yields

M̃: (B) =
5̃Δ (B)

1 − 5̃Δ (B)
©­«
:−1∑
9=1

(
:

9

)
E[&:− 9 ]M̃ 9 (B) +

E[&: ]
B

ª®¬ , (7)

in accordance with M̃0 (B) = B−1. In particular, the first moment takes the form

M̃1 (B) =
E[&] 5̃Δ (B)

B

(
1 − 5̃Δ (B)

) . (8)

Performing integration by parts and l’Hospital rule yields

lim
C→∞
M1 (C)
C

= lim
B→0

B

∫ ∞

B

M̃1 (B′)3B′

= lim
B→0

B2M̃1 (B). (9)
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Substituting Eq. 8 into the above equation and another application of the l’Hospital rule gives

lim
C→∞
M1 (C)
C

= E[&] lim
B→0

B 5̃Δ (B)(
1 − 5̃Δ (B)

)
= E[&] lim

B→0

5̃Δ (B) + B 5̃ ′Δ (B)
− 5̃ ′

Δ
(B)

=
E[&]
E[Δ] := E∞, (10)

according to the fact that

5̃ ′Δ (B) = −
∫ ∞

0
C 5Δ (C)4−BC3C → −E[Δ],

as B→ 0. One can also calculate the asymptotic limit of the variance of the approximation process. Similar to Eq. 9, we have

lim
C→∞
E[(- (C) − E∞C)2]

C
= lim

C→∞
M2 (C) − (E∞C)2

C
− 2E∞ (M1 (C) − E∞C)

= lim
B→0

B2
(
M̃2 (B) −

2E2
∞
B3

)
− 2E∞B

(
M̃1 (B) −

E∞
B2

)
. (11)

Substituting the Laplace transform of the second moment

M̃2 (B) =
1
B


E[&2] 5̃Δ (B)

1 − 5̃Δ (B)
+ 2

(
E[&] 5̃Δ (B)
1 − 5̃Δ (B)

)2 , (12)

into Eq. 11 and performing l’Hospital rules yields

lim
C→∞
M2 (C) − (E∞C)2

C
= lim

B→0
B


E[&2] 5̃Δ (B)

1 − 5̃Δ (B)
+ 2

(
E[&] 5̃Δ (B)
1 − 5̃Δ (B)

)2 −
2E2
∞
B

=
E[&2] + 2E2

∞
(
E[Δ2] − 2E[Δ]2

)
E[Δ] . (13)

Similarly, one can determine the limit of the second term of Eq. 11

lim
C→∞
M1 (C) − E∞C = lim

B→0

E[&] 5̃Δ (B)
1 − 5̃Δ (B)

− E[&]
BE[Δ]

=
E∞ (E[Δ2] − 2E[Δ]2)

2E[Δ] . (14)

Substituting Eqs. 13 and 14 into Eq. 11, we finally have the asymptotic variance

lim
C→∞
E[(- (C) − E∞C)2]

C
=
E[&2] + 2E2

∞
(
E[Δ2] − 2E[Δ]2

)
E[Δ] − 2E∞ ·

E∞ (E[Δ2] − 2E[Δ]2)
2E[Δ]

=
Var[&] + E2

∞Var[Δ]
E[Δ] := f2

∞. (15)
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