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S1 Notations

Y P Rpmˆnq`: bulk gene expression matrix, each row represents a gene and
each column represents a sample. When there are two groups of samples with
different sample sizes, we denote Y1 P R

pmˆn1q` and Y P Rpmˆn2q`.
W P Rpmˆkq`: cell type-specific gene expression profile, each row represents a
gene and each column represents a cell type.
H P Rpkˆnq`: cell types proportion matrix, each row corresponds to a given
cell type’s proportion and each column is a sample. When there are two
groups of samples with different sample sizes, we denote H1 P R

pkˆn1q` and
H2 P R

pkˆn2q`.
Y : sub-Y matrix with only rows containing signature genes.
W : sub-W matrix with only rows containing signature genes.
˜̄W : weighted-W matrix where each row is given different weight based on

their cell type differentiating power.
Ỹ : transpose of bulk gene expression matrix Y .
E: weight matrix used for SCAD-penalty, E is of the same dimension as WT .
W̄k: separate estimate of W using the k-th group for k “ 1, 2.
W o

k , H
o
k : the underlying profile and the proportion matrix in the theoretical

model Yk “W 0
kH

0
k ` εk for k “ 1, 2.

Ŵk: the proposed estimate of W o
k for k “ 1, 2.

W̃ “ rW1,W2s
T P Rp2kˆmq`.

ΣW1´W2
: the entry-specific standard deviation matrix for W1 ´W2, when

referring to its element, we used σW1´W2
.
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S2 Supplementary Figures and Tables

Figure S1: W and H accuracy over iteration for three W -update methods:
NNLS, ridge regression, and SCAD-penalized regression. a. W1 accuracy over
iteration; b. W2 accuracy over iteration; c. H1 accuracy over iteration; d. H2

accuracy over iteration.
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Figure S2: Histograms showing the estimated W2{W1 for known up-regulated
and down-regulated DEG entries from three W -update methods: NNLS, ridge
regression and SCAD-penalized regression. Sensitivity, specificity and posi-
tive predictive rate (PPV) are shown under each figure’s title. Red vertical
lines indicate the true fold change level. Due to the matrix-wise dissimilarity
penalty in ridge regression, sensitivity from ridge regression is extremely low.
Both independent W -update through NNLS and SCAD-penalty achieve high
sensitivity, but SCAD has better false positive control (shown by higher PPV)
due to its entry-specific precise penalty, this is also lined up with results from
Figure 2. As the vast majority of entries are non-DEGs, specificity in this case
is less meaningful than PPV.
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Figure S3: Benchmark cell type proportion estimations from SCADIE against
DWLS, CIBERSORTx, MuSiC, and the naive iterative procedure with NNLS
W-update: a. K-L Divergence between H and the ground truth proportions
across three data sets, SCADIE and NNLS iteration’s Hs were from the final
iteration output, and Hs of DWLS and CIBERSORTx were directly from de-
convolution; b. Same results as a) but measured by root-mean-square error
(RMSE), the result patterns are consistent with those in K-L Divergence; c-
e: H accuracy over iterations, where figure b is simulation dataset, figure c is
pseudo-bulk dataset, figure d is bulk microarray dataset.
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Cell #DEGs 
from single 

cell (SC)

%DEGs 
Correct 

Direction  
from SCADIE

%Correctly 
Identified SC 

DEGs

#Additional 
DEGs from 

SCADIE

Stromal 437 61.6 31.1 1106

Myeloid 216 77.3 32.9 1114

Lymphoid 75 64.0 21.3 542

Epithelial 428 67.8 9.3 41

Endothelial 293 75.8 27.3 69

Figure S4: A summary table comparing single cell-derived DEGs and
SCADIE-inferred DEGs between COPD and control samples, the column
“ %DEGs Correct Direction from SCADIE ” represents the percentages of
single cell DEGs that were of concordant directional changes from bulk data
inferred by SCADIE, the column “%SC Correctly Significant DEGs identi-
fied from SCADIE” represents the percentages of single cell DEGs that were
also identified as significant DEGs from bulk data by SCADIE, the column “
#Additional DEGs from SCADIE” represents the DEGs SCADIE identified
from bulk data that were not identified by single cell DEG.

Stromal Myeloid Lymphoid Epithelial Endothelial

#MSigDB pathways 
present in both outcomes

21507 18670 12447 20744 18826

Expected overlapping 
(Top 5%)

53 47 31 52 47

Actual overlapping 
(p-value)

149 (p < 10-5) 128 (p < 10-5) 46 (p = 5 x 10-3) 179 (p < 10-5) 58 (p = 0.05)

Expected overlapping 
(Top 10%)

215 187 124 207 188

Actual overlapping 
(p-value)

422 (p < 10-5) 332 (p < 10-5) 205 (p < 10-5) 479 (p < 10-5) 248 (p = 1.2 x 10-5)

Figure S5: A summary table comparing GSEA outcomes for single cell and
SCADIE derived DEG lists. The first row indicates the number of MSigDB
pathways that present in both single cell and SCADIE GSEA outcomes. The
2nd-3rd rows indicate the expected number of overlapped pathways under
null hypothesis, and the actual overlappings along with p-values for the top
5% pathways. The 4th-5th rows indicate the expected number of overlapped
pathways under null hypothesis, and the actual overlappings along with p-
values for the top 10% pathways.
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Figure S6: Sensitivities and false positive rates for up-regulated and down-
regulated DEGs over a range p values under initialization: “0” is using the
ground truth H for initialization, “Ini” is the same SCADIE initialization
used in Section “SCADIE can better identify DEGs”, “Ini + 0.01” refers to
additional sd=0.01 Gaussian noise was added to Ini’s H and each column of
H was re-balanced to 1, similar for “Ini + 0.05” where the sd = 0.05.

S3 Supplementary Results

S3.1 Theoretical properties

Because NNLS is used when updating W and H, in this subsection, we
develop a general theory for the NNLS estimate under some regularity
conditions. Let ŵ and w̃ be the NNLS and Ordinary Least Squares (OLS)
estimators, respectively. Even in the non-negative regression coefficient
setting, we can empirically check that there is no guarantee that the error
}ŵ ´ wo} is less than }w̃ ´ wo}, where wo is the underlying non-negative
coefficient vector. For example, we considered a linear regression model
y “ Xwo ` ε, where m “ 300, k “ 5, entries in X’s are i.i.d. N(0,1), and
rwosj ’s are i.i.d. Uniform(0,5). We observed that }ŵ ´ wo} is greater than
}w̃ ´ wo} for about 30% of the cases. With this regard, the bound in Theorem
1 is not trivial.

Theorem 1. [General estimation error bound] Suppose that y “ Xwo ` ε,
where y P Rm is a response vector, X P Rmˆk is observable and its columns
have full-rank, and wo P Rk

`, i.e., its components are non-negative. Suppose
that κpXTXq :“ λmaxpX

TXq{λminpX
TXq ďM for some constant M ą 0. Let

ŵ be the non-negative least squares estimate, i.e.,

ŵ “ argminwPRk
`
}y ´Xw}2.

Then, the estimation error of ŵ satisfies }ŵ ´ wo} ď
?
M}ε}.
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Proof. Recall OLS estimate w̃ “ pXTXq´1XT y. Then, for any w P Rk, it
holds that

}y ´Xw}2 “ }y ´Xw̃}2 ` }Xpw ´ w̃q}2.

Thus, we have
ŵ “ argminwPRk

`
}Xpw ´ w̃q}2.

Note that K “ tXw : w P Rk
`u is a closed convex cone. Then, for a projection

mapping pp¨q onto K, we can write

Xŵ “ ppXw̃q, Xwo “ ppXwoq.

Since pp¨q is non-expansive as in Lemma 3 of [11], we have

}Xpŵ ´ woq} “ }ppXw̃q ´ ppXwoq} ď }Xpw̃ ´ woq}.

Thus

λminpX
TXq}ŵ ´ wo}2 ď pŵ ´ woqTXTXpŵ ´ woq ď pw̃ ´ woqTXTXpw̃ ´ woq

ď λmaxpX
TXq}w̃ ´ wo}2.

Hence,

}ŵ´wo} ď

b

κpXTXq}w̃´wo} ď
?
M}w̃´wo} “

?
M}XpXTXq´1XT ε} ď

?
M}ε},

where the last inequality follows from the fact that XpXTXq´1XT is a
projection matrix. This completes the proof.

The following Corollary 1 shows theoretical properties of the proposed
method.

Corollary 1. [Estimation error bound of Ŵi for i “ 1, 2] Suppose that
Y1 “W 0

1H
0
1 ` ε1 and Y2 “W 0

2H
0
2 ` ε2. Let Ω :“ tpj, kq : rW 0

1 s
T
jk ‰ rW

0
2 s

T
jku.

Suppose that the separate estimates W̄1 and W̄2 satisfy
3.7ζn ď minpj,kqPΩ |rW̄1s

T
jk ´ rW̄2s

T
jk|. Then, the proposed estimates Ŵ1 and

Ŵ2 satisfy
}Ŵ1 ´W

0
1 }

2 ` }Ŵ2 ´W
0
2 }

2 ďMp}ε1}
2 ` }ε2}

2q,

where M “ κ

„ˆ

H1H
T
1 ` λdiagpEjq ´λdiagpEjq

´λdiagpEjq H2H
T
2 ` λdiagpEjq

˙

.

Proof. Recall that updating the jth column of W̃ “ rW1,W2s
T is equivalent

to solving
x̂pjq “ arg min

xPR2kˆ1
`

}Ỹ pjq ´ X̃pjqx}2F ,
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where

Ỹ pjq “

»

–

rY T
1 sj

rY T
2 sj

0k,1

fi

fl P Rp2n`kqˆ1, X̃pjq “

»

–

HT
1 0n,k

0n,k HT
2?

λdiagp
a

Ejq ´
?
λdiagp

a

Ejq

fi

fl .

Thus, by Theorem 1, for each j “ 1, ¨ ¨ ¨ ,m, }x̂pjq ´ wo
j } ď

?
M}rεsj}, where

rεsj and wo
j represent the jth columns of rε1, ε2, 0s

T and rW o
1 ,W

o
2 s

T ,

respectively. This implies that }x̂´ rW o
1 ,W

o
2 s

T } ď
?
M}ε}, where

x̂ “ rx̂1, ¨ ¨ ¨ , x̂ms and M “ κprX̃pjqsT X̃pjqq. Note that

rX̃pjqsT X̃pjq “

ˆ

H1H
T
1 ` λdiagpEjq ´λdiagpEjq

´λdiagpEjq H2H
T
2 ` λdiagpEjq

˙

.

We complete the proof of the corollary.

Because X̃pjq defined in the proof of Corollary 1 has a uniformly bounded
condition number κ over j due to the fact that Ej ’s are bounded, Theorem 1

implies that Ŵ1, Ŵ2 are as closed as the norm of the error to the underlying
W o

1 ,W
o
2 . Corollary 1 also shows that the proposed estimator with an

appropriately chosen ζn has the bounded estimation error. The condition
imposed on ζn implies that the weight Ejk is non-zero only when the

underlying parameter satisfies rW
p1q
0 sTjk “ rW

p2q
0 sTjk. Although the condition

imposed on ζn can not be verified in real data application, in theory, this
condition always holds for ζn in an appropriate range.

S3.2 Sensitivity analysis regarding to ζn

We performed simulations to study the sensitivity of the results with respect
to ζn. We used the following model:

Y1 “W1H1, Y2 “W2H2, (S1)

In this model, data were simulated under n “ 200, m “ 50, and k “ 5. All
columns in H1 were generated from the same Dirichlet distribution, while all

columns in H2 were from another Dirichlet distribution, i.e., ~h1
i

i.i.d.
„ Dirpπ1q

and ~h2
i

i.i.d.
„ Dirpπ2q. For the concentration parameters πk, we used

π1 “ π2 “ r1, 2, 3, 4, 5s.For W1 and W2, we constructed a matrix W with i.i.d.
N(0,2) entries, then randomly chose 5% entries, called Ω, such that the
selected genes were differentially expressed for the two groups. Then, we set
rW1sij “ rW2sij “Wij for pi, jq R Ω, and rW1sij “ 0.5Wij and rW1sij “ 2Wij

for pi, jq P Ω.For the ζn value, we considered
ζn P t1, 2, 4, 8, 16, 32, 64, 128, 256, 512u.

Tables S1 and S2 summarize the mean correlations of the estimated Hk from
different ζn for k “ 1, 2, respectively. We can see that the obtained Hks were
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quite robust with respect to ζn values, demonstrating the robustness of the
result when ζn is in an appropriate range. Tables S3 and S4 show the relative
difference norm of the estimate Wk obtained from the different ζn for k “ 1, 2,
respectively. For example, for the estimates obtained from ζ1 and ζ2, we
record }Wkpζ1q ´Wkpζ2q}{p}Wkpζ1q} ` }Wkpζ2q}q, where Wkpζq is the output
using the ζ value. We can observe that the relative errors are quite small,
which implies that the results of Wks are robust to the choice of ζn if it is
chosen from an appropriate range.

ζn 1 2 4 8 16 32 64 128 256 512 1024

1 1.000 0.998 0.998 0.998 0.998 0.998 0.996 0.996 0.994 0.990 0.994
2 0.998 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.996 0.992 0.996
4 0.998 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.996 0.992 0.996
8 0.998 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.996 0.992 0.996
16 0.998 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.996 0.992 0.996
32 0.998 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.996 0.992 0.996
64 0.996 0.998 0.998 0.998 0.998 0.998 1.000 1.000 0.998 0.994 0.998
128 0.996 0.998 0.998 0.998 0.998 0.998 1.000 1.000 0.998 0.994 0.998
256 0.994 0.996 0.996 0.996 0.996 0.996 0.998 0.998 1.000 0.996 1.000
512 0.990 0.992 0.992 0.992 0.992 0.992 0.994 0.994 0.996 1.000 0.996
1024 0.994 0.996 0.996 0.996 0.996 0.996 0.998 0.998 1.000 0.996 1.000

Table S1: Correlation of the estimate H1 obtained from different ζn values.

ζn 1 2 4 8 16 32 64 128 256 512 1024

1 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.994 0.990 0.992
2 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.994 0.990 0.992
4 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.994 0.990 0.992
8 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.994 0.990 0.992
16 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.994 0.990 0.992
32 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.994 0.990 0.992
64 0.998 0.998 0.998 0.998 0.998 0.998 1.000 1.000 0.996 0.992 0.994
128 0.998 0.998 0.998 0.998 0.998 0.998 1.000 1.000 0.996 0.992 0.994
256 0.994 0.994 0.994 0.994 0.994 0.994 0.996 0.996 1.000 0.992 0.994
512 0.990 0.990 0.990 0.990 0.990 0.990 0.992 0.992 0.992 1.000 0.998
1024 0.992 0.992 0.992 0.992 0.992 0.992 0.994 0.994 0.994 0.998 1.000

Table S2: Correlation of the estimate H2 obtained from different ζn values.
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ζn 1 2 4 8 16 32 64 128 256 512 1024

1 0.000 0.000 0.000 0.000 0.002 0.003 0.006 0.008 0.012 0.016 0.016
2 0.000 0.000 0.000 0.000 0.002 0.003 0.006 0.008 0.012 0.016 0.016
4 0.000 0.000 0.000 0.000 0.002 0.003 0.006 0.008 0.012 0.016 0.016
8 0.000 0.000 0.000 0.000 0.001 0.003 0.006 0.008 0.011 0.016 0.016
16 0.002 0.002 0.002 0.001 0.000 0.001 0.004 0.007 0.010 0.015 0.015
32 0.003 0.003 0.003 0.003 0.001 0.000 0.003 0.006 0.010 0.014 0.015
64 0.006 0.006 0.006 0.006 0.004 0.003 0.000 0.003 0.007 0.011 0.013
128 0.008 0.008 0.008 0.008 0.007 0.006 0.003 0.000 0.004 0.009 0.011
256 0.012 0.012 0.012 0.011 0.010 0.010 0.007 0.004 0.000 0.005 0.008
512 0.016 0.016 0.016 0.016 0.015 0.014 0.011 0.009 0.005 0.000 0.009
1024 0.016 0.016 0.016 0.016 0.015 0.015 0.013 0.011 0.008 0.009 0.000

Table S3: Relatively difference between W1s obtained from different ζn values.

ζn 1 2 4 8 16 32 64 128 256 512 1024

1 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.009 0.015 0.021 0.025
2 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.009 0.015 0.021 0.025
4 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.009 0.015 0.020 0.025
8 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.009 0.015 0.020 0.025
16 0.001 0.001 0.001 0.001 0.000 0.001 0.004 0.008 0.014 0.020 0.024
32 0.002 0.002 0.002 0.002 0.001 0.000 0.003 0.008 0.014 0.019 0.024
64 0.005 0.005 0.005 0.005 0.004 0.003 0.000 0.004 0.010 0.016 0.020
128 0.009 0.009 0.009 0.009 0.008 0.008 0.004 0.000 0.006 0.012 0.016
256 0.015 0.015 0.015 0.015 0.014 0.014 0.010 0.006 0.000 0.006 0.011
512 0.021 0.021 0.020 0.020 0.020 0.019 0.016 0.012 0.006 0.000 0.006
1024 0.025 0.025 0.025 0.025 0.024 0.024 0.020 0.016 0.011 0.006 0.000

Table S4: Relatively difference between W2s obtained from different ζn values.

Next, we examine how ζn might affect real data DEG outcomes. We ran
SCADIE with ζn “ 2 and ζn “ 0.1, and plot volcano plots similar to Figure 5.
As can be seen from Figure S7, the DEGs log2 fold-change and p-values are
largely similar, which indicates our DEG results are robust if the parameter
ζn is in the appropriate range.
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Figure S7: Volcano plots for cell type-specific DEGs in AD under different
ζns.

S3.3 Computational efficiency

We conducted simulations to investigate the computational cost of the
proposed algorithm. We used the following model:

Y1 “W1H1, Y2 “W2H2.

To assess whether the proposed algorithm is even feasible to be run on the
whole transcriptome, we set m P t500, 1000, 2000, 5000, 10000u, n “ 100, and
k “ 5 to simulate data. The other model parameters are set as in Subsection
S3.2. We conduct simulation 50 times and record its average minutes and the
one standard deviations. We compare the proposed SCADIE with the
conventional NMF method, which updates W1 and W2 separately via NNLS.
As can be seen in Table S5, compared to the NNLS, SCADIE takes more
time. But even for large m “ 10000 case, the proposed algorithm takes less
than 8 minutes on average, which implies that it may be feasible in such large
data cases.

11



Method
m

500 1000 2000 5000 10000

SCADIE 0.4 (0.1) 0.7 (0.3) 1.9 (0.5) 4.4 (0.9) 7.8 (1.2)
NNLS 0.2 (0.1) 0.3 (0.1) 0.7 (0.3) 2.0 (0.5) 3.6 (0.8)

Table S5: Average of computational time and 1 standard deviation in paren-
thesis obtained from different n values. It is implemented on a linux server (
Intel Server System R2308WF (2U / Xeon 6226R x2CPU / 768GB Memory))
using the R.

S3.4 Performances of SCADIE under different cell
type-sample size ratios

As discussed in Section “DEG identification under poor initialization and
limited sample size”, SCADIE’s performance might be limited when the
sample size only marginally larger than the number of cell types. In this
section we perform a comprehensive examination of sample size’s effect on
outcome quality through simulations.

We first conducted simulations to investigate how estimation performance of
SCADIE depends on the underlying number of cell-types compared to the
sample sizes. Given the number of samples n and the number of genes m, we
assume that the underlying number of cell types k is less than minpn,mq.
This is because if k ě minpn,mq, the columns of the factor matrix W or F is
linearly dependent or full rank, which is undesired case in the factorization
methods such as NMF. Note that one of the main goals of NMF is to reduce
the number of parameters in the estimation procedure using kpn`mq
parameters. If k ě minpn,mq, the number of estimated parameters is
kpn`mq Á nm, which is the order of the number of components in the data
Y .

Thus, in this simulation, for a given underlying number of cell types k “ 5
and the number of genes 200, we consider n P t6, 10, 20, 50, 100, 200, 500, 1000u
number of samples in SCADIE. The other model parameters are set as in
Subsection S3.2. For the estimates Ŵk and Ĥk, we record the relative error
(RE) of the Ŵk with respect to the underlying Wk, i.e., }Ŵk ´Wk}F {}Wk}F ,
and the average correlation of columns of Ĥk and Hk. Table S6 reports the
performances of SCADIE when the sample size n varies. It can be seen that
SCADIE’s output W s and Hs show robust high similarities with groundtruth
when sample size equal or greater than 2x number of cell types.
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n 6 10 20 50 100 200 500 1000

RE (Ŵ1) 0.26 0.18 0.18 0.18 0.12 0.16 0.19 0.12

RE (Ŵ2) 0.30 0.22 0.19 0.18 0.19 0.15 0.18 0.12

Correlation (Ĥ1) 0.79 0.86 0.84 0.85 0.82 0.85 0.85 0.90

Correlation (Ĥ2) 0.81 0.89 0.87 0.85 0.83 0.90 0.87 0.92

Table S6: Performances of the estimates with respect to sample sizes.

To further investigate how these similarities reflect on DEG outcomes, we
used the previous mouse ISC pseudo bulk data set to benchmark DEG
identifications. There are four cell types in the dataset and we used sample
sizes equal 6, 8, 12, 16, 20 in our simulations.
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Figure S8: Sensitivities and false positive rates for up-regulated and down-
regulated DEGs over a range p values under different sample sizes

As can be seen from Figure S8, both sensitivity and specificity increase with
sample size, and when sample size equals 6, SCADIE’s performance in
up-regulated DEGs was not significantly better than random. Taken together,
we recommend using SCADIE for DEG identification when sample size is at
least 1.5x of number of cell types.

S3.5 When the sample sizes n1 and n2 are different

SCADIE gives the same weight to the first two terms in the objective
function, i.e., w1 “ w2 in w1}Y1 ´W1H1}

2
F ` w2}Y1 ´W1H1}

2
F . One may take

different values to w1 and w2, e.g., depending on the sample sizes, one may
set w1{w2 “ n2{n1. Specifically, we propose to use w1 “ n2{n1, w2 “ 1 for the
first two terms if the ratio of n1 and n2 is very different from 1. This is
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motivated by the fact that the first two terms can be understood as empirical
risks, by averaging the loss function on the samples.

In this subsection, we conduct simulation analysis to investigate the
performance of SCADIE and the weighted SCADIE by assigning different
weights on the first two terms such that w1 “ n2{n1, w2 “ 1, when the ratio
of the sample sizes of two groups vary. We set the number of samples
n1 “ 100 and n2 “ rαn1s, where α P t 1

50 ,
1
20 ,

1
10 ,

1
4 ,

1
2 , 1, 2, 4, 10, 20, 50u.

The other model parameters are set as in Subsection S3.2. We conduct
simulation 50 times and record average performances of SCADIE and the
weighted SCADIE using the measures defined in Subsection S3.4. As can be
seen in Table S7, for all the ratio values α, SCADIE well estimates Hi and
Wi.

Table S8 records the performance measures of the weighted SCADIE, which
shows that weighted SCAIDE performs better than SCADIE when the ratio
of two dimensions are very small or large, e.g., α P t 1

50 , 50u. However, when
the ratio of two dimensions are moderate, the weighted SCADIE does not
outperform SCADIE. Given that ratios of sample sizes in our real data
analyses always between 1/10 and 10, assigning equal weights to the first two
terms in the objective function in SCADIE seems to be reasonable.

It is worth noting that imposing another tuning parameter to the first or
second term can improve the performances of SCADIE, but it will take
additional time to tune the additional tuning parameter. We leave this issue
for future research.

α 1
50

1
20

1
10

1
4

1
2 1 2 4 10 20 50

RE (Ŵ1) 0.20
p0.18q

0.15
p0.05q

0.20
p0.21q

0.16
p0.15q

0.17
p0.16q

0.19
p0.14q

0.13
p0.08q

0.12
p0.06q

0.16
p0.14q

0.19
p0.20q

0.14
p0.11q

RE (Ŵ2) 0.20
p0.18q

0.21
p0.09q

0.23
p0.22q

0.17
p0.16q

0.18
p0.17q

0.19
p0.15q

0.11
p0.06q

0.13
p0.06q

0.16
p0.14q

0.18
p0.15q

0.19
p0.24q

Correlation (Ĥ1) 0.84
p0.19q

0.87
p0.06q

0.83
p0.20q

0.85
p0.18q

0.86
p0.17q

0.82
p0.17q

0.91
p0.05q

0.91
p0.04q

0.88
p0.09q

0.87
p0.14q

0.85
p0.18q

Correlation (Ĥ2) 0.80
p0.28q

0.88
p0.09q

0.82
p0.20q

0.87
p0.12q

0.86
p0.22q

0.83
p0.20q

0.93
p0.04q

0.91
p0.04q

0.89
p0.11q

0.86
p0.18q

0.85
p0.24q

Table S7: Average (one standard deviation) of the performance measures of
SCADIE with respect to ratio of sample sizes.
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α 1
50

1
20

1
10

1
4

1
2 1 2 4 10 20 50

RE (Ŵ1) 0.18
p0.12q

0.14
p0.05q

0.15
p0.06q

0.15
p0.10q

0.15
p0.13q

0.19
p0.14q

0.20
p0.17q

0.18
p0.14q

0.18
p0.13q

0.19
p0.08q

0.15
p0.12q

RE (Ŵ2) 0.18
p0.15q

0.19
p0.10q

0.17
p0.09q

0.16
p0.10q

0.19
p0.14q

0.19
p0.15q

0.20
p0.18q

0.18
p0.15q

0.17
p0.11q

0.18
p0.10q

0.15
p0.13q

Correlation (Ĥ1) 0.88
p0.14q

0.88
p0.18q

0.88
p0.06q

0.86
p0.12q

0.86
p0.16q

0.82
p0.17q

0.83
p0.12q

0.86
p0.11q

0.83
p0.17q

0.86
p0.10q

0.85
p0.15q

Correlation (Ĥ2) 0.83
p0.22q

0.89
p0.20q

0.87
p0.08q

0.90
p0.08q

0.87
p0.15q

0.83
p0.20q

0.84
p0.19q

0.89
p0.12q

0.86
p0.14q

0.87
p0.21q

0.87
p0.15q

Table S8: Average (one standard deviation) of the performance measures of
the weighted SCADIE with respect to ratio of sample sizes.

S3.6 Comparison of Jackknife and Bootstrap

We evaluated the jackknife standard error estimates by comparing them with
bootstrap estimates on the simulated data described in Section “Methods -
Simulation models and benchmarking” in the main text.

For bootstrapping, we chose a wide range for the number of resamplings: from
half of sample size 10, to 20x sample size 400. And each random sample was
generated by sampling 20 columns (which equals the observed sample size)
from Y1, Y2 and H1, H2, respectively. And the standard error Σbs

W1´W2
was

obtained by empirical standard error across all samples.

The column-column correlations between jackknife ΣW1´W2
and bootstrap

Σbs
W1´W2

s show extremely high concordances (Figure S9).
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Figure S9: JF: jackknife; BS10: bootstrapping with the number of resam-
plings equals 10; BS20: bootstrapping with the number of resamplings equals
20; BS40: bootstrapping with the number of resamplings equals 40; BS100:
bootstrapping with the number of resamplings equals 100; BS200: bootstrap-
ping with the number of resamplings equals 200; BS400: bootstrapping with
the number of resamplings equals 400.

Next, we investigate the run time of jackknife and bootstrap. As can be seen
from Figure S10, the run time is proportional to the number of SCADIE runs.
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Figure S10: Run time for jackknife and bootstrap with different numbers of
re-sampling.

Although jackknife and bootstrap show highly concordant empirical results,
due to the sampling with replacement nature of bootstrap, there exists risk of
higher noise due to singularity in Y s and Hs, i.e., the duplicated columns in
sampled Y sample and Hsample increases uncertainty in regression. In this
regard, we recommend using jackknife for general purposes. In general, the
bootstrap is more computationally intensive than Jackknife [35]. The
Jackknife tends to perform better for confidence interval estimation for
pairwise agreement measures and the Jackknife is more suitable for small
original data samples [6].
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