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Figure S1. Modulation of optical field using diffractive meta-atoms. (A) A schematic view of metaline 

composed of diffractive meta-atoms, which are the 1D rectangular silica slot arrays etched on silicon-on-

insulator (SOI) substrate. The thickness of the silicon membrane of SOI is 220 nm, and the height of the 

slot is 400 nm. The period of the diffractive meta-atom is 300 nm. The amplitude and phase modulations 

of optical fields are controlled by varying the slot width. (B) Comparison of the electric field distribution 

between free propagation of light in SOI substrate (the first and third lines) and that modulated by a silica 

slot with 100 nm wide (the second and fourth lines). The electric field distribution is obtained via FDTD 

numerical evaluation. (C) The phase and amplitude modulation coefficients of a diffractive meta-atom 

with respect to the slot width. 



 

  

 

Figure S2. Evaluation of the analytical model accuracy using photonic finite-difference time-domain 
(FDTD). (A) The input light source for the module is a plane optical wave with an amplitude of 1, which 
is modulated by two metalines that are evaluated by using FDTD. Each metaline is configured with 150 
binary diffractive meta-atoms, in which every consecutive 3 meta-atoms are set to have the same 
modulation. With a size of 300 nm for each meta-atom, the length of metaline is 45 µm. The distance of 
metaline layers is set to be 20 µm, and the optical fields at positions of L1 and L2 are monitored. (B) 
Comparisons of the intensity of optical fields at the position of L1 and L2 between the analytical and 
FDTD evaluations. (C) The phase modulation coefficients obtained by the FDTD evaluation (orange plot) 
with comparisons to the analytical model (blue plot) and analytical model with Gaussian noise (standard 
deviation of 0.3, dash line). The result shows the highly-matched output optical fields and phase 
modulation of the analytical model with respect to FDTD evaluation, where the residual errors can be 
further modeled by including Gaussian noise for high-accuracy analytical evaluation. 



 

  

 
Figure S3. Evaluation of the output waveguide coupling. The analytical modeling of each output 
waveguide is obtained by first computing the Fast Fourier Transform (FFT) of the optical field at the 
output plane, where each Fourier component represents an incident light angle. Second, the coupling 
coefficients between the output waveguide and different incident light angles are obtained by using FDTD, 
where the 180° angle is divided into 45 parts and the coupling coefficient of each part is assumed to be 
the same. Third, the complex value of the output waveguide is computed by the weighted sum of the FFT 
values with respect to their corresponding coupling coefficients. (A) The electric field coupling between 
the incident plane wave and an output waveguide evaluated with FDTD. (B) The normalized coupling 
coefficients with respect to the incident light angles obtained via FDTD, forming as a Gaussian profile. 
(C) The electric field of the light source being modulated, propagated, and coupled to eight output 
waveguides. (D) The comparison of the amplitude of waveguide outputs between FDTD and analytical 
evaluations. 



 

  

 

Figure S4. Evaluation of DPU computational results. (A) The DPU structure with 20 input and 8 output 
waveguides and the electric field propagation obtained with FDTD, where the distance between every two 



 

 

successive layers is 20 µm. (B) The electric field coupling between the input waveguide and the first 
diffractive layer. In analytical modeling, the complex value of every input waveguide is multiplied by the 
coupling coefficients obtained via FDTD to obtain its electric field at the input plane with a 9 μm 
diameter region, where the amplitude values exhibit a Gaussian profile. (C) The comparison of the 
amplitude of 8 output waveguides between the analytical and FDTD evaluation, which demonstrates the 
effectiveness of using the analytical model for designing the photonic neural network architecture. 

 



 

  

 

Figure S5. DPU output port with the tapered waveguide. (A) The coupling of the electric field between 
the plane optical wavefront and a tapered waveguide. Tapered waveguides can be used for coupling more 
optical energy to the output ports of integrated DPU, where the core width at the beginning is wider (i.e., 
2 𝜇𝑚  in this example) than single-mode waveguides (500 𝑛𝑚 ). (B) The normalized coupling 
coefficients of the tapered waveguide with respect to the incident angle of the plane wave source were 
obtained via FDTD. (C) Classification results of DGNN-E on the Synthetic SBM graph under different 
top-𝑘 neighboring node settings. Node representations are obtained via FDTD evaluations by using the 
DPU with tapered output waveguides in (A). The results achieve a maximum test accuracy of 99.7% with 
𝑘 = 32, which is comparable to the DPU with single-mode output waveguides in Fig. 2 of the main text. 
(D) Confusion matrix of the classification results with 𝑘 = 16, corresponding to an accuracy of 93.7%. 

 



 

  

 
Figure S6. Performance of the DGNN-E with single-mode and tapered output waveguides. Power 
distributions of DPU output ports configured with single-mode (A) and tapered (B) output waveguides on 
the synthetic graph test nodes are obtained based on the FDTD evaluation. (C) The photocurrent SNR of 
classifier input signals with respect to the input light source power. (D) The classification accuracy of 
DGNN-E on the synthetic SBM graph with respect to the photocurrent SNR of DPU outputs. 

 



 

  

 
Figure S7. Optimizing the taper angle of output waveguides. The classification accuracy of DGNN on 
the synthetic SBM graph (A) and the averaged power transmission rate of DPU (B) with respect to the 



 

  

taper angle are obtained by varying the input width of tapered waveguides under a fixed waveguide length 
of 20 𝜇𝑚. (C) The corresponding output port power distributions under different input widths of tapered 
waveguides. Notice that 500 𝑛𝑚 input width corresponds to the single-mode waveguide. 

 



 

  

 
Figure S8. Scale-up the neural message dimension of the DGNN node. The high-dimensional optical 
neural messages of neighborhood nodes calculated from the DPU module are aggregated through the 
optical strip waveguide and optical Y-coupler with waveguide crossing. 

 



 

  

 
Figure S9. DPU inputs of the DGNN. The node attributes can be encoded as inputs to the DPU module 
by using the MZI modulators, where the coherent light source is injected through the optical strip 
waveguide and optical on-chip beam-splitter with waveguide crossing. 

 



 

  

 

Figure S10. Training of DGNN-E with binary modulation. (A) The convergence plot of test accuracy 
on three benchmark databases during the initial training procedure. (B) The optical parameters of the 
trained DPU are fixed, and the output electronic classifier is re-trained. (C) The Gaussian random noise 
with a standard deviation of 0.3 is included in both the amplitude and phase modulation coefficients of 
diffractive layers obtained from (a), and the output electronic classifier is re-trained. (D) The test accuracy 
with respect to the different amounts of Gaussian noise included, with standard deviation varying from 
0.1 to 0.9. 

 



 

  

 
Figure S11. Ablation study of DGNN in semi-supervised node classification. (A) The performance of 
DGNN-E with respect to the number of neighbors selected by top-k personalized PageRank scores. (B) 



 

 

The performance of DGNN-E with respect to the number of heads 𝑃. (C) The performance of DGNN-E 
by encoding the node attributes to the amplitude/phase of the coherent light. (D) The performance of 
DGNN-E without optical modulations in MSG(⋅). (E) The performance of DGNN-E with random phase 
modulation in MSG(⋅). 



 

  

 

Figure S12. Ablation study of geometric parameters of DPUs. (A) The performance of DGNN-E with 
respect to the number of diffractive layers in DPU. (B) The performance of DGNN-E with respect to the 
distance between successive diffractive layers in DPU. (C) The performance of DGNN-E with respect to 
the number of effective meta-atoms per diffractive layer in DPU, where consecutive meta-atoms with the 
same parameters are considered as one effective meta-atom. 

 



 

  

 

Figure S13. t-SNE visualization of node representations of DGNN-E. Extended t-SNE visualizations 
on Citeseer (A) and Cora-ML (B) databases in addition to Fig. 3C of the main text. 

 



 

  

 

Figure S14. Inductive classification results of DGNN on three benchmark graphs. The performance 
of DGNN-O (A) and DGNN-E (B) architectures on the Cora-ML, Citeseer, and Amazon Photo databases 
are analytically evaluated by using inductive learning. The test accuracy convergence plots are shown. 

 

 



 

  

 

Figure S15. Extended results of DGNN on skeleton-based action recognition. A selected sub-sequence 
from the test set for performing the action category of wave hands is visualized. The normalized amplitude 
of each frame processed after optical MSG(⋅), AGG(⋅), the 𝐿!-normalized intensity values after optical 
Read-Out(⋅), and the classification result are shown. 

 



 

  

 
Figure S16. Schematic of the fabrication process for photonic metalines. The fabrication process of 
diffractive metalines can be based on silicon photonic semiconductor fabrication techniques, including the 
photoresist coating, deep ultraviolet (DUV) exposure, developing, etching, photoresist removal, and top 
cladding. 

 



 

  

Table S1. Summary of dataset statistics. The isolated nodes and nodes without attributes are removed. 
Dataset Cora-ML Citeseer Amazon Photo 
# Nodes 2995 3312 7535 
# Edges 8158 4536 119081 
# Features 2879→20 3703→20 745→20 
# Classes 7 6 8 

 
 



 

  

Table S2. Inductive node classification results (%) on three graph benchmark datasets. Note that 
the DGNN are configured with 𝑘 = 8 and 𝑃 = 4. 

Dataset Cora-ML Citeseer Amazon Photo 
PCA 77.7 70.2 89.9 
MLP 80.5 70.8 93.0 
PPRGo-S 86.0 73.3 94.9 
PPRGo-WS 86.7 75.4 95.1 
DGNN-O 85.0 73.1 93.9 
DGNN-E 86.3 73.4 94.9 
DGNN-E (binary modulation) 86.2 73.9 94.3 

 

 



 

  

Table S3. Semi-supervised node classification results (%) on the Amazon Photo dataset under 
different sizes of training labels. 

# Labels per class 1 5 10 15 20 25 
PCA 37.9 69.3 78.1 81.5 84.7 85.3 
MLP 37.8 67.3 76.4 80.2 82.3 83.1 

PPRGo-S 65.9 76.6 84.3 87.4 89.6 90.4 
PPRGo-WS 57.7 76.5 81.6 87.2 89.3 90.6 

DGNN-O 65.8 83.6 88.6 89.3 90.9 90.7 
DGNN-E 58.1 77.0 86.4 88.3 90.2 90.4 
DGNN-E (binary modulation) 70.6 83.1 87.7 89.3 90.9 91.1 
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