
S5 Appendix 

Autoregressive integrated moving average (ARIMA) modelling  

For a detailed description of ARIMA modelling, please see Schaffer et al.1 We provide a brief 

overview below. 

Many time series exhibit seasonality and/or autocorrelation, which violate the assumptions of 

ordinary least squares (OLS) regression if not appropriately controlled. Thus, for this project we 

chose to use ARIMA modelling based on our previous experience with Pharmaceutical Benefit 

Scheme (PBS) data. While ARIMA is used to model continuous data, and our data consists of 

counts (i.e. number of dispensings or new users), a Poisson distribution can be approximated by a 

Normal distribution when the expected counts (𝜆) are large and the distribution is not bounded by 

zero.  

In contrast to linear regression which includes time as a predictor, ARIMA models have a single 

dependent variable (𝑌!) that is a function of past values of 𝑌 and the error term (𝜀!) only. An ARIMA 

model combines an autoregressive (AR) component, a differencing component (I, also called 

“integration”), and a moving-average (MA) component to induce stationarity. A stationarity time 

series has constant mean, variance, and covariance, and thus is easier to predict. An ARIMA 

model is specified by (p,d,q), where p is the number of autoregressive terms, d is the order of 

differencing, and q is the order of the moving-average. If data are seasonal, a seasonal ARIMA 

model can be used which is specified by (p,d,q)x(P,D,Q)S, where D is the seasonal order of 

differencing, and P and Q are the AR and MA components of the seasonal model, and S is the 

seasonality (e.g. 12 for monthly date). 

To identify the most appropriate orders for p and q that gave the best fitting model, we used the 

function auto.arima() in the forecast package in R.2 Based on preliminary visualisation, for series 

that exhibited trends we prespecified a first difference (d=1). For series that exhibited seasonality, 

we prespecified a first seasonal difference (D=1). The values for p, q, P, and Q were chosen by 

auto.arima() to minimise the AIC and BIC. Having the lowest AIC and/or BIC does not guarantee a 



good fitting model; therefore, we verified that the model selected by the algorithm met the 

regression modelling assumptions, specifically that the residuals were normally distributed, with 

constant variance (no heteroscedasticity), and no residual autocorrelation. To check the first two 

assumptions, we visualised the plots of residuals against time and residuals against fitted values, 

as well as normal quantile plots. To check for residual autocorrelation, we examined the 

autocorrelation and partial autocorrelation plots of the residuals and used the Ljung-Box test for 

white noise up to lag 12.  The null hypothesis of the Ljung-Box test is that the data are 

independently distributed and that any observed correlation is a result of randomness rather than 

serial correlation. If any of these assumptions were violated, we chose different values for p, q, P, 

and/or Q and rechecked the model fit. We estimated the p, d, q, P, D, Q orders separately for each 

model being estimated. The ARIMA model specifications for each model are listed in Table 1, and 

an example of the R code used is in Box 1. 

To estimate the change in dispensing compared with the counterfactual (i.e. predicted dispensing 

had previous trends continued), we included dummy variables representing each month during the 

COVID-19 period (March through November 2020 for analyses using the Section 85 data). As the 

date of dispensing is offset in the person-level data, we also included a dummy variable for 

February 2020. To determine the percentage change, we calculated the difference between the 

observed and predicted values. To visualise the difference between the observed and predicted 

values had the trends prior to COVID-19 continued, we truncated the time series at February 2020 

and estimated the predicted values and their 95% confidence intervals using the forecast() function 

in the forecast package and the ARIMA specification identified above. 
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