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Supplementary Methods 

 

Benchmark tests for Langevin Dynamics algorithm: In CellDynaMo, all the mechanical components 

are represented by single interaction centers (beads) or as systems of beads connected by harmonic springs. 

To assess the accuracy of numerical implementation of the Langevin Dynamics, we carried 1-µs long 

simulation runs (20,000 steps of integration) for a small system of three beads connected by the harmonic 

springs (see Fig F-A). In this setup, all three beads are in the 𝑥𝑦-plane; beads 1 and 2 are fixed, and a 

constant pulling force 𝒇 is applied to bead 3 (the force vector is collinear to the 𝑥𝑦-plane). For this system 

in two dimensions, the forces and the displacements can be calculated analytically using the Newton’s 

equations in the x- and y-dimensions:  

 

 {
𝑓𝑥 =  𝑓13 cos 𝜑 − 𝑓23 cos 𝜓 = 0
𝑓𝑦 =  𝑓 − 𝑓13 sin 𝜑 − 𝑓23 sin 𝜓 = 0

        (1) 

 

In Eqs 1 above, 𝑓𝑥 and 𝑓𝑦 are the 𝑥 − and 𝑦 − components, respectively, of the total force 𝒇 applied to 

bead 3 (tagged), 𝑓13 and 𝑓23 are the restoring forces with which the first and second springs pull on bead 

3, 𝜑 is the angle formed by beads 2, 1, and 3, and 𝜓 is the angle formed by beads 1, 2, and 3 (see Fig F-

A). The forces and displacements are related through Hooke's law: 

 

𝑓13 =  𝜅13Δ𝑥13 and 𝑓23 =  𝜅23Δ𝑥23        (2) 

 

where 𝜅13 and 𝜅23 are the spring constants of the springs which connect beads 1 and 3, and beads 2 and 

3. Δ𝑥13 and Δ𝑥23 are distances between beads 1 and 3, and beads 2 and 3, respectively. By substituting 

the expressions for 𝑓13 and 𝑓23 from Eqs 2 into Eqs 1, we obtain the exact expressions for the beads’ 

displacements: 

 

 Δ𝑥13 =  
𝑓

𝜅13(cos 𝜑 tan 𝜓+ sin 𝜑)
 and Δ𝑥23 =  

𝑓

𝜅23(cos 𝜓 tan 𝜑+sin 𝜓)
    (3) 

 

In the benchmark tests for different values of the applied force 𝑓 = 5 pN and 50 pN, we set the initial 

values for the angles to 𝜑0 = 26.59° and 𝜓0 = 18.45°, and the spring constants to 𝜅13 =  𝜅23 = 10 pN/nm. 

For 5 pN force, the equilibrium (final) values of the angles were 𝜑 = 26.76° and 𝜓 = 18.58°, and for 50 

pN force, the equilibrium values came to 𝜑 = 28.36° and 𝜓 = 19.72°. These were used to calculate the 
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exact values of extensions. The time profiles of displacements Δ𝑥13 and Δ𝑥23 are displayed in Fig F, which 

show excellent agreement between the exact and numerical results. 

 

Dependence of numerical error on integration timestep: To investigate the dependence of the 

numerical error on the integration timestep 𝛿𝑡 = 5×10-2-5×102 ps, we calculated and compared for the 

three-bead system (Fig F) the asymptotic values of the particle displacements obtained for the applied 50-

pN pulling force with the CellDynaMo implementation (∆𝑥𝑠𝑖𝑚) and using the exact analytical expression 

(∆𝑥𝑒𝑥𝑎𝑐𝑡) for Δ𝑥13 and Δ𝑥23 (Fig F). The relative error, 𝐸𝑟𝑟(∆𝑥) =
|∆𝑥𝑠𝑖𝑚−∆𝑥𝑒𝑥𝑎𝑐𝑡|

∆𝑥𝑒𝑥𝑎𝑐𝑡
 was found to be very 

low (<1.8%) in the 5×10-2-5×102 ps range of the integration timestep 𝛿𝑡 (Fig F-B). 

 

Dependence of numerical error on solution viscosity: To investigate the dependence of numerical error 

on the cytoplasmic viscosity 𝜂 = 1, 5, and 10 cPs and on the integration timestep 𝛿𝑡 = 5×10-2-5×102 ps, 

we calculated and compared, for a large system of 𝑁 = 100 Brownian oscillators (with the spring constant 

𝜅 = 1 pN/nm), the numerical solution of the average particle displacements obtained with CellDynaMo 

(〈∆𝑥(𝑡)〉 𝑠𝑖𝑚) and the exact analytical expression (〈∆𝑥(𝑡)〉 𝑒𝑥𝑎𝑐𝑡). The exact expression is given by the 

formula 〈∆𝑥(𝑡)〉 =  
𝑓

𝜅
(1 − 𝑒−𝜅𝑡/𝛾), where 𝛾 = 6𝜋𝜂𝑅 is the friction coefficient, 𝜂 is the viscosity, and 𝑅 

is the particle size (see Fig F). First, we varied the viscosity but fixed the integration timestep 𝛿𝑡 = 50 ps. 

The numerical and analytical results practically collapse on the same curve (Fig F-C), and the relative 

error, 𝐸𝑟𝑟(〈∆𝑥(𝑡)〉) =
|〈∆𝑥(𝑡)〉 𝑠𝑖𝑚−〈∆𝑥(𝑡)〉 𝑒𝑥𝑎𝑐𝑡|

〈∆𝑥(𝑡)〉 𝑒𝑥𝑎𝑐𝑡
, was found to be very low <0.4% (see the inset to Fig F-C) 

for all viscosity values. Next, we fixed the viscosity at 𝜂 = 1 cPs and varied the integration timestep 𝛿𝑡 

over 4 orders of magnitude from 5×10-2 to 5×102 ps. The relative error was found to be very low <0.3% 

(see Fig F-D), and the average relative error was <0.16% (see the inset to Fig F-D). Hence, our choice of 

𝛿𝑡 = 50 ps as the timestep for Langevin Dynamics based description of the mechanical and force-

dependent processes is reasonable. 

 

Benchmark test for translational and rotational diffusion in Langevin Dynamics: To examine the 

system’s thermal fluctuations, we compared the numerical implementations of the one-dimensional 

translational diffusion for a cylinder along the 𝑥-axis (see the inset in Fig G) and one-dimensional 

rotational diffusion for a cylinder around the 𝑧-axis (see the inset in Fig G) for a single KT pair 

(centromere; CH), approximated by a cylinder, obtained with the CellDynaMo package and with the exact 

analytical expressions, 𝐷𝑥 =
𝑘𝐵𝑇∙ln (𝐿𝐶𝐻/𝑑𝐶𝐻)

4𝜋𝜂𝐿𝐶𝐻
 and 𝐷𝜃 =

𝑘𝐵𝑇∙3ln (𝐿𝐶𝐻/𝑑𝐶𝐻)

𝜋𝜂𝐿𝐶𝐻
3 , where 𝑘𝐵 is the Boltzmann’s 

constant, 𝑇 = 300 K, 𝜂 is the solution viscosity set to be equal to the viscosity of water (𝜂 = 1 cPs), and 

𝐿𝐶𝐻 = 4𝑅𝐶𝐻 = 1.450 µm is the length and 𝑑𝐶𝐻 = 2𝑅𝐶𝐻 = 0.725 µm is the diameter of the centromere. 

We carried out three 2.5-min independent runs for a single centromere. In these test simulations, the MT 

dynamics was turned off, and the integration timestep 𝛿𝑡 was decreased from 50 ps to 5 ps to make thermal 

fluctuations more noticeable. The time profiles of 〈∆𝑥2〉/2𝑡 and 〈∆𝜃2〉/2𝑡 are displayed in Fig G The 

obtained asymptotic values of 0.154 µm2/s and 0.866 rad2/s compare well with the exact analytical 

solutions for 𝐷𝑥 = 0.152 µm2/s and 𝐷𝜃 = 0.869 rad2/s, respectively (see Fig G). 

 

Benchmark test for diffusion component of RDME algorithm: To assess the accuracy of numerical 

implementation of the diffusion part of RDME, we placed 104 molecules of AB in the center of the cell 

(central subcell), 𝑥0 = 0, at the initial time 𝑡 = 0, as displayed in Fig A and observed spreading of AB 

particles at later time points 𝑡 = 1, 2, 5, 10, and 20 s. The non-parametric density estimates of the 

distributions of particles displacements in one dimension, constructed using the numerical output from 
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CellDynaMo simulations, are compared with the theoretical curves of the exact probability distributions 

of particles’ displacements, 

 

 𝑃(𝑥, 𝑡|𝑥0) =  (4𝜋𝐷𝑡)−
3

2𝑒𝑥𝑝 [
(𝑥−𝑥0)2

4𝐷𝑡
]        (4) 

 

in Fig H, which shows excellent agreement between the numerical and exact analytical results. In Eq 4, 

𝐷 = 7.3×107 nm2/s is the diffusion constant (Fig H) for AB molecules, which was estimated using the 

Einstein-Stokes formula, 𝐷 = 6𝜋𝜂𝑅𝐴, where 𝜂 is the viscosity set to be equal to the viscosity of water 

(𝜂 = 1 cPs) and 𝑅𝐴 = 2.9 nm is the size of the AB molecule (see Table A). Therefore, the results obtained 

indicate excellent agreement between the exact description of the Brownian diffusion (Eq 4) and the 

numerical description of the Brownian diffusion implemented in the CellDynaMo package. 

 

Benchmark tests for kinetics component of RDME algorithm: Consecutive two-step irreversible 

kinetics is described by the following scheme, 𝐴
𝑘1
→ 𝐵

𝑘2
→ 𝐶, with species 𝐴, 𝐵 and 𝐶 and the reaction rate 

constants for the first step (𝐴 ⟶ 𝐵) 𝑘1 and the second step (𝐵 ⟶ 𝐶) 𝑘2. The populations 𝑝𝐴, 𝑝𝐵, and 𝑝𝐶 

of species 𝐴, 𝐵 and 𝐶 are described by the following coupled ordinary differential equations: 

 

 
𝑑𝑝𝐴

𝑑𝑡
=  −𝑘1𝑝𝐴           (5) 

 
𝑑𝑝𝐵

𝑑𝑡
=  𝑘1𝑝𝐴 − 𝑘2𝑝𝐵          (6) 

 
𝑑𝑝𝐶

𝑑𝑡
=  𝑘2𝑝𝐵           (7) 

 

The exact analytical expressions for the time-dependent populations 𝑝𝐴(𝑡), 𝑝𝐵(𝑡), and 𝑝𝐶(𝑡) are the 

following: 

 

 𝑝𝐴(𝑡) =  𝑒−𝑘1𝑡          (8) 

 𝑝𝐵(𝑡) =
𝑘1

𝑘2−𝑘1
(𝑒−𝑘1𝑡 −  𝑒−𝑘2𝑡)        (9) 

 𝑝𝐶(𝑡) = 1 − 𝑒−𝑘1𝑡 −  
𝑘1

𝑘2−𝑘1
(𝑒−𝑘1𝑡 −  𝑒−𝑘2𝑡)       (10) 

 

Single-step reversible kinetics is described by the scheme 𝐴 ⥨ 𝐵, with the reaction rate constants for the 

forward step (𝐴 ⟶ 𝐵), 𝑘1, and the backward step (𝐵 ⟶ 𝐴), 𝑘−1. The populations 𝑝𝐴 and 𝑝𝐵, of states 𝐴 

and 𝐵 are described by the following coupled ordinary differential equations: 

 

 
𝑑𝑝𝐴

𝑑𝑡
= − 𝑘1𝑝𝐴 + 𝑘−1𝑝𝐵         (11) 

 
𝑑𝑝𝐵

𝑑𝑡
=  𝑘1𝑝𝐴 − 𝑘−1𝑝𝐵          (12) 

 

The exact analytical expressions for the time-dependent populations 𝑝𝐴(𝑡) and 𝑝𝐵(𝑡) are: 

 

 𝑝𝐴(𝑡) =  
𝑘−1+𝑘1𝑒−(𝑘1+𝑘−1)𝑡

𝑘1+𝑘−1
         (13) 

 𝑝𝐵(𝑡) =
𝑘1−𝑘1𝑒−(𝑘1+𝑘−1)𝑡

𝑘1+𝑘−1
         (14) 
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Eqs 8, 9, and 10 for the consecutive two-step irreversible kinetics and Eqs 13 and 14 for the single-step 

reversible kinetics were used in benchmark simulations to compare the exact description of chemical 

kinetics with the numerical description of kinetics implemented in the CellDynaMo package. 

 

Flexibility of chromosomes: To model flexible chromosomes, in the CellDynaMo package the 

chromosome arms are represented as a collection of spherical beads (see Fig 6B in the main text and Fig 

C) of 362.5-nm radius. Each pair of beads is connected by a harmonic spring characterized by the 

stretching rigidity 𝐾𝐶𝐻,𝑟 (Table A), and each triplet of connected beads is described by the bending rigidity 

𝐾𝐶𝐻,𝜃 (Table A). We parameterized the chromosome flexibility by setting the stretching rigidity to 𝐾𝐶𝐻,𝑟 = 

3.3×103 pN/nm (Table A) and by varying the bending rigidity (𝐾𝐶𝐻,𝜃) in the bending potential 𝑈𝐶𝐻
𝑏𝑒𝑛𝑑 (see 

Eq 5 in the main text). In the test LD simulations, we set 𝐾𝐶𝐻,𝜃 to be equal to 2.5×102 kJ/mol·rad2 (flexible 

chromosome arms), to 2.5×105 kJ/mol·rad2 (semi-flexible chromosome arms), and to 2.5×108 kJ/mol·rad2 

(stiff chromosome arms), and we ran ~1,000 equilibrium LD trajectories for each value of 𝐾𝐶𝐻,𝜃. Using 

the simulation output, we constructed the nonparametric density estimates (see Methods in the main text) 

of the distributions of bending angle Δ𝜃, 𝑃(Δ𝜃), for 𝐾𝐶𝐻,𝜃 = 2.5×102, 2.5×105, and 2.5×108 kJ/mol·rad2, 

which are compared in Fig B. Based on published experimental studies, which report the 1-5 degree range 

of bending-angle fluctuations [1], we selected 𝐾𝐶𝐻,𝜃 = 2.5×105 kJ/mol·rad2 to characterize the flexural 

rigidity of the chromatids within the same chromosomes. 

 

Bending constraints imposed by cohesin rings: To model cohesin rings constraining the movement of 

chromosome arms in the CellDynaMo package, we represented the cohesin rings by weak harmonic 

springs that link flexible chromatid arms together (Fig 1B in the main text and Fig C-C). Because the 

chromatid arms are described using the bead-spring representation, these weak harmonic springs connect 

the corresponding beads in different chromatids (Fig 1B in the main text, Fig C-C). We considered 

chromosomes with two different values of the contour lengths: 4 μm and 8 μm. We parametrized the 

fluctuations in the chromosome width by varying the stretching rigidity for cohesin rings (𝐾𝑐𝑜ℎ) in the 

stretching potential 𝑈𝑐𝑜ℎ
𝑠𝑡𝑟  (Eq 5 in the main text). In the test LD simulations, we set 𝐾𝑐𝑜ℎ,𝑟 to be equal to 

10-3 kJ/(mol·nm2) (soft cohesin rings) and to 103 kJ/(mol·nm2) (stiff cohesin rings), and we ran ~1,000 

equilibrium LD trajectories for each value of 𝐾𝑐𝑜ℎ,𝑟. Using the simulation output, we constructed the 

nonparametric density estimates (see Methods in the main text) of the distribution of the separation 

distances 𝑍, 𝑃(𝑍), for 𝐾𝑐𝑜ℎ,𝑟 = 103 kJ/(mol·nm2) and 10-3 kJ/(mol·nm2), which are compared in Fig C- 

A,B. Experimental studies show that chromatid ends separate from each other by distances not exceeding 

2 μm [2]. Therefore, we selected 𝐾𝑐𝑜ℎ,𝑟 =10-3 kJ/(mol·nm2) to model fluctuations in the chromosome 

width. 
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Supplementary Movies 

 

S1 Movie. Fast KT-MT dissociation and soft spring connecting KTs exhibits improvement: This 

movie shows 15 minutes of cell life and is related to Figs 4 and 7A,7C and 7E in the main text. The cell 

includes a single KT pair (blue) and centrosomes each having 1,500 MTs (lime). The KT surface area is 

0.5 µm2 (orange). The pushing/pulling force per MT is 10 pN/10 pN, and the KT-MT dissociation rate is 

(0.1–2.9)×10-1 s-1. A KT pair is placed in the equatorial plate of the cell with the KT-pair axis coinciding 

with the 𝑧-axis (perpendicular to the direction of biorientation to eliminate KT attachment bias to either 

CS). This configuration is optimal for formation of merotelic attachments; yet, due to rapid dissociation 

of the KT-MT complex and soft spring connecting KTs, the majority of trajectories show the amphitelic 

attachments. The movie consists of two parts. The first part of the movie shows a side-view of the cell for 

better observation of KT movements, whereas the second part of the move shows the KT-MT interface in 

more detail. The length of the movie is 1 min (the movie is played 30 times faster than the process). 

 

S2 Movie. Effect of chromosome arms on final CH position and orientation: This movie shows 15 

minutes of cell life and is related to Figs 6A-D and 7B, 7D and 7F in the main text. The cell includes one 

CH with arms (blue); each centrosome has 1,500 MTs (lime). The KT surface area is 0.5 µm2 (orange). 

The pushing/pulling force per MT is 10 pN/10 pN, and the KT-MT dissociation rate is (0.1–2.9)×10-1 s-1. 

A CH is placed in the equatorial plate of the cell with the CH axis coinciding with the 𝑧-axis (perpendicular 

to the direction of biorientation to eliminate KT attachment bias to either CS). The inclusion of CH arms 

did not influence the final CH position and orientation. The movie consists of two parts. The first part of 

the movie shows a view from the top of the cell for better observation of the CH movement along the 

spindle-axis. The second part of the movie sheds light on the overall 3D picture. The length of the movie 

is 1 min (the movie is played 30 times faster than the process). 

 

S3 Movie. Modeling flexible KT surface: The movie shows 15 minutes of cell life and is related to Fig 

6E-G and in the main text and Fig J-D. The cell includes a single KT pair (blue) and centrosomes each 

having 1,500 MTs (lime). The KT surface area is 0.5 µm2 (orange). The pushing/pulling force per MT is 

10 pN/10 pN, and the KT-MT dissociation rate is (0.1–2.9)×10-1 s-1. A KT pair is placed in the center of 

the cell with the KT-pair axis pointing is the 𝑥-direction (direction of biorientation to eliminate KT 

attachment bias to either CS). The movie consists of two parts. The first part of the movie shows a side-

view of the cell for better observation of KT movements. The second part of the move shows the zoomed-

in KT-MT interface for a more detailed deformation observation. The length of the movie is 1 min (the 

movie is played 30 times faster than the process). 
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Table A. Physical parameters used in Stochastic Reaction-Diffusion-Dynamics Model: Listed are 

numerical values of model parameters, which define: cell morphology (shape/curvature, size/length, 

surface area, copy number of molecules, distance between components, etc.), biochemical kinetics and 

molecular transport (size of subcells and time step used in RDME approach), MT dynamics 

(growth/shortening rate, frequency of catastrophe/rescue) and dynamic cell evolution (time step, 

temperature, viscosity, bending rigidities, stiffness, pulling and pushing force) used in LD approach. 
Parameters Value, units Description  Reference 

  Parameters of Cell Morphology 

𝑑𝐶𝑆 10 μm distance between CSs [3] 

𝑅𝐶𝑆 400 nm CS bead size [4,5] 

𝑁𝑀𝑇 750 number of MTs per CS [6,7] 

𝑅𝑀𝑇 12 nm MT bead size [8] 

𝑁𝐾𝑇 2, 4, 6, 8, 10 number of KTs (2 KTs per single CH)  

𝑑𝐾𝑇 725 nm KT-KT equilibrium distance [9] 

𝐴𝐾𝑇 0.15 µm2 KT surface area [10] 

𝜒 0 – 1 KT surface curvature  

𝑅𝐶𝐻 362.5 nm size of beads representing KT and Ch [9] 

𝐿 varied Ch contour length  

𝑁𝑁𝑑𝑐 750 number of Ndc80 per KT surface  

𝑙𝑁𝑑𝑐 65 nm size of Ndc80-complex [11,12] 

𝑅𝑁𝑑𝑐 4 nm size of Ndc80 kinetochore-associated domain [13] 

𝑎  8 µm for ellipsoidal shape, 𝑎 is semi-major axis, 𝑏 and 𝑐 are 

semi-minor axes; for rectangular shape, 𝑎, 𝑏, and 𝑐 are 

length, width, and height 

 

𝑏 5 µm  

𝑐 5 µm  

   RDME parameters 

𝑙𝑆𝑉 250 nm size of subcells  

𝜏 4.3×10-5 s time step  

𝑅𝐴 2.9 nm size of Aurora B [14] 

P:A ratio 0.1 Phosphatase to Aurora B ratio  

 MT dynamics parameters 

𝑣𝑔𝑟 7.5 µm/min MT growth rate [15] 

𝑣𝑠ℎ 27 µm/min MT shortening rate [15] 

𝜔𝑐𝑎𝑡 2.5×10-3 s-1 catastrophe frequency [15] 

𝜔𝑟𝑒𝑠 3.0×10-2 s-1 rescue frequency [15] 

 Langevin Dynamic parameters 

𝛿𝑡 50 ps time step  

𝑇 300 K Temperature  

𝜂 1 cPs Viscosity  

𝑙𝑝 4 mm MT persistence length [8] 

𝐾𝑀𝑇,𝜃 7.7×105 kJ/mol·rad2 MT bending rigidity  

𝜃𝑀𝑇,0 180° equilibrium bending angle for MT  

𝐾𝑀𝑇,𝑟 16.7 pN/nm MT stretching rigidity  

𝐾𝐾𝑇,𝑟 3.3×103 pN/nm stretching rigidity for sister KTs  

𝐾𝐶𝐻,𝑟 3.3×103 pN/nm Ch stretching rigidity  

𝐾𝐶𝐻,𝜃 2.5×105 kJ/mol·rad2 Ch bending rigidity  

𝜃𝐶𝐻,0 180° equilibrium bending angle for Ch  

𝐾𝑁𝑑𝑐,𝑟 3.1×102 pN/nm Ndc80 stiffness  

𝐾𝑐𝑜ℎ,𝑟 1.7×10-3 pN/nm Ch-Ch stretching rigidity  

𝐾𝑚𝑒𝑚 3.3×103 pN/nm membrane stiffness  

𝜀 2.1×105 kJ/mol strength of repulsive potential  

𝑓𝑝𝑢𝑠ℎ 10 pN pushing force per MT  

𝑓𝑝𝑢𝑙𝑙 10 pN pulling force per MT  
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Supplementary Figures 

 

 

 
 

Fig A. Illustration of the numerical algorithms implemented in CellDynaMo for simulations of 

molecular transport: A) Brownian diffusion of biochemical species (AB and AA enzymes) is modeled 

by the exchange of particles between the next-neighbor subcell. For each particle, the probability of 

diffusion 𝑝𝐷 is compared with a (pseudo)random number r generated at each time step. If 𝑟 < 𝑝𝐷 the 

diffusion move is accepted. B) Each subcell is surrounded by 6 next-neighbor subcells. The value of 𝑝𝐷 

determines the direction (forward, backward, up, down, left, and right) and the next-neighbor subcell for 

particle transfer. 
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Fig B. Flexibility of chromosome arms: Nonparametric density estimates of the distribution of bending 

angles Δ𝜃, 𝑃(Δ𝜃), which characterize the flexural rigidity of a single chromatid, compared for a stiff 

chromatid (𝐾𝐶𝐻,𝜃 = 2.5×108 kJ/mol·rad2; black curve), semi-flexible chromatid (𝐾𝐶𝐻,𝜃 = 2.5×105 

kJ/mol·rad2; red curve) and flexible chromatid (𝐾𝐶𝐻,𝜃 = 2.5×102 kJ/mol·rad2; blue curve). The 

nonparametric density curves were constructed as described in Ref. [16]. 
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Fig C. Force field parameterization for cohesion ring: A) and B) Histogram and nonparametric density-

based estimates of the distribution of inter-chromatid distances 𝑃(Z) separating the ends of chromatids by 

distance 𝑍 (red lines) within the chromosome (chromosome width) through cohesin rings. The histograms 

and density curves are compared for 𝐾𝑐𝑜ℎ,𝑟 = 103 kJ/(mol·nm2) (stiff cohesin rings; A) and for 𝐾𝑐𝑜ℎ,𝑟 = 

10-3 kJ/(mol·nm2) (flexible cohesin rings; B). The histograms and nonparametric density curves were 

constructed as described in Ref. [16]. C) Idealized schematic of the bending constraints imposed by the 

presence of cohesion rings connecting the chromosome arms. 
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Fig D. Dynamics of MT assembly and disassembly and likelihoods of MT catastrophe and rescue 

using CellDynaMo: Shown are the experimental rates of MT growth and shortening [15] (solid lines; 

right 𝑦-axis), and experimental frequencies of MT catastrophe and rescue [15] (dash-dotted lines; left 𝑦-

axis) profiled as functions of molar concentration of the αβ-tubulin dimers. Color denotation is presented 

in the graph. 
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Fig E. Histograms of pushing time intervals, pulling forces, and pushing forces: The histogram-based 

estimate of the distribution of pushing time intervals 𝑃(𝑡) for growing microtubules (grey bars; 105 data 

points). The inset shows the histogram-based estimates of the distributions of pushing/pulling forces 𝑃(𝑓) 

(green/blue bars; 105 data points) from the growing/shortening MTs obtained from the CellDynaMo based 

simulations are shown in the inset. 
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Fig F. Benchmark tests Langevin Dynamics algorithm implemented in CellDynaMo: A) The time-

dependent profiles of the spring extensions Δ𝑥13 (red) and Δ𝑥23 (blue) obtained numerically using 

CellDynaMo (dashed lines) and analytically using Eq 3 (solid black lines) for 𝑓 = 5 pN. The inset shows 

the three-bead system with the constrained beads 1 and 2 and tagged bead 3 in the 𝑥𝑦-plane (blue balls), 

which are connected by the harmonic springs (shown in yellow) with the spring constants 𝜅13 and 𝜅23, 

respectively. The tagged bead 3 is pulled with force 𝒇. The pulling force and the components 𝒇𝟐𝟑 and 𝒇𝟐𝟑 

of the restoring force are indicated by black arrows. Also shown are angle 𝜑 formed by beads 2, 1, and 3, 

and angle 𝜓 formed by beads 1, 2, and 3. B) The time-dependent profiles of the extensions Δ𝑥13 (red) and 

Δ𝑥23 (blue) obtained numerically using CellDynaMo (dashed lines) and analytically (solid black lines) 

using Eq 3 for 𝑓 = 50 pN. Relative error of calculation of asymptotic values of Δ𝑥13 (red lines and data 

points) and Δ𝑥23 (blue lines and data points), 𝐸𝑟𝑟(∆𝑥) =
|∆𝑥𝑠𝑖𝑚−∆𝑥𝑒𝑥𝑎𝑐𝑡|

∆𝑥𝑒𝑥𝑎𝑐𝑡
 (∆𝑥𝑠𝑖𝑚 is the asymptotic values 

of particle displacement from simulations and ∆𝑥𝑒𝑥𝑎𝑐𝑡 is the value obtained using the exact analytical 

expression), obtained for different values of the timestep 𝛿𝑡 are shown in the inset. C) Time-dependent 

profiles of the average displacement 〈∆𝑥(𝑡)〉 for the solution viscosity 𝜂 = 1 cPs (red color), 5 cPs (blue) 

and 10 cPs (green) obtained numerically with the integration timestep 𝛿𝑡 = 50 ps (dashed curves) and the 

exact analytical solution (solid curves) for the applied pulling force 𝑓 = 50 pN. The inset shows the 

relative error vs. time profiles. D) Time-dependent profiles of the relative error obtained for different 

integration timesteps: 𝛿𝑡 = 0.05 ps, 0.5 ps, 5 ps, 50 ps and 500 ps. The average relative error for different 

values for the integration timestep 𝛿𝑡 used are shown in the inset.  
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Fig G. Benchmark test simulations for translational and rotational diffusion for Langevin Dynamics 

in CellDynaMo: Time-dependent profiles of the one-dimensional translational diffusion coefficient 

〈∆𝑥2〉/2𝑡 (blue curve) and one-dimensional rotational diffusion coefficient 〈∆𝜃2〉/2𝑡 (green curve) for a 

single KT pair obtained numerically using CellDynaMo. These profiles are compared with the asymptotic 

values (dashed lines) of these quantities obtained analytically using the formulas 𝐷𝑥 =
𝑘𝐵𝑇∙ln (𝐿𝐶𝐻/𝑑𝐶𝐻)

4𝜋𝜂𝐿𝐶𝐻
= 

0.152 µm2/s and 𝐷𝜃 =
𝑘𝐵𝑇∙3ln (𝐿𝐶𝐻/𝑑𝐶𝐻)

𝜋𝜂𝐿𝐶𝐻
3 = 0.869 rad2/s, respectively. Schematic definitions of the 

displacement along the 𝑥-axis (∆𝑥) and angle of rotation (∆𝜃) in the 𝑥𝑦-plane are shown in the inset.  
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Fig H. Benchmark test for diffusion component of RDME algorithm implemented in CellDynaMo: 

A) Nonparametric density estimates (dashed lines), obtained using CellDynaMo and the exact theoretical 

profiles (thin curves), obtained with Eq 4, of the probability density function of the displacements of 

Brownian particles in one dimension, 𝑃(𝑥, 𝑡|𝑥0). The particle is positioned at the origin 𝑥0 = 0 at time 𝑡 = 

0 are the particles’ spreading is compared for the time points 𝑡 = 1, 2, 5, 10, and 20 s. The nonparametric 

density curves were constructed as described in Ref. [16]. Color denotation is presented on the graph. B) 

Snapshots of the spatial distributions of a total of 104 Brownian particles in three dimensions obtained for 

different time points, 𝑡 = 1, 2, 5, 10, and 20 s, which show spreading of the Brownian particles (AB 

molecules) due to free diffusion. 
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Fig I. Benchmark tests for kinetics component of RDME algorithm implemented in CellDynaMo: 

A) Time-dependent profiles of the populations 𝑝𝐴, 𝑝𝐵, and 𝑝𝐶 of chemical species 𝐴, 𝐵, and 𝐶 obtained 

numerically with CellDynaMo and analytically using Eqs 5, 6, and 7 for the two-step consecutive 

irreversible kinetics. The initial conditions 𝑝𝐴(0) = 1, 𝑝𝐵(0) = 0, and 𝑝𝐶(0) = 0, and the reaction rate 

constants 𝑘1 = 1 s-1 and 𝑘2 = 2 s-1 were used. B) Time-dependent profiles of the populations 𝑝𝐴 and 𝑝𝐵 

of chemical species 𝐴 and 𝐵 obtained numerically with CellDynaMo and analytically using Eqs 11 and 

12 for the single-step reversible kinetics. We used the initial conditions, 𝑝𝐴(0) = 1 and 𝑝𝐵(0) = 0, and 

the reaction rate constants 𝑘1 = 1 s-1 and 𝑘−1 = 3 s-1. Color denotation is presented on the graphs. C) 

Snapshots of the reaction volume for the two-step irreversible kinetics taken at different time points 𝑡 = 

0, 0.7, and 5.0 s, which show the reaction progress (transformation of 𝐴 into 𝐵 and formation of 𝐶 – the 

end product). D) Snapshots of the reaction volume for the reversible kinetics taken at different time points 

𝑡 = 0 and 1.5 s, which shows the presence of both species 𝐴 and 𝐵 in the equilibrium mixture. 
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Fig J. Influence of stochastic noise and centromere flexibility on types of KT-MT attachments and 

KT-KT distance: Comparison of the dynamics of KT-MT attachments (types and number of attachments) 

from the Stochastic Reaction-Diffusion-Dynamics model based simulations with the random force 

(shaded bars) and without random force component (blank bars) for: A) A single KT pair with the 

Phosphatase to Aurora B (P:AB) ratio = 1:100, B) A single KT pair with the P:AB ratio = 1:10, C) A 

single KT pair with Aurora A present, and D) A single KT pair with flexible KT corona surface area (see 

also Fig 7 in the main text). E) Distance vs. time profiles for the case of CHs with chromosome arms. 

Green, blue and red curves show the typical profiles for the amphitelic, syntelic, and merotelic 

attachments, respectively. 

 


