Supplementary information

Cell types of origin of the cell-free transcriptome

In the format provided by the authors and unedited

Supplementary Information for Vorperian et al. 'Cell types of origin of the cell free transcriptome'

Table of Contents

Supplementary Figure 1	2-7
Supplementary Note 1	8
Supplementary Note 2	9
The Tabula Sapiens Consortium Author List.	10-12
References	13

Supplementary Figure 1

large v

each Dsa a

- plasma cell
 immature enterocyte/intestinal crypt stem cell/intestinal crypt stem cell
 of stall intestine/transit amplifying cell of large intestine
 adventital cell
 enterocyte of epithelium of large intestine/enterocyte of epithelium of small
 intestine/intestinal crypt stem cell of large intestine/arge intestine/arge
 cell/mature enterocyte/paneth cell of epithelium of large intestine/arge
 cell/mature enterocyte/paneth cell of epithelium of large intestine/arge
 cell/mature enterocyte/paneth cell of epithelium of large
 intestina cyste stem cell of large intestine/arge intestine/arge
 intestina cyste cell
 arge to cell/mature enterocyte/paneth cell
 arge to cell/mature/paneth cell/mature/paneth

type ii pneumocyte
 macrophage
 adventitial cell
 mature conventional dendritic cell
 club cell/type i pneumocyte

Supplementary Figure 1: Deconvolved fractions of cell type specific RNA from various GTEx tissues using nu-SVR and the *Tabula Sapiens* basis matrix.

Top 20 largest fractional contributions of cell type specific RNA for a given tissue. The two tissues whose cell types were absent from the basis matrix column space were Kidney – Medulla and Brain. Kidney medulla samples reported to be contaminated with cortex are reflected by deconvolved kidney epithelia fractions. The brain, which is absent from the TSP v1.0, yields majority fractions of schwann cell-specific RNA, a peripheral nervous cell type. Majority cell types for a given tissue, such as lung pneumonocytes and immune cells in the lung or kidney epithelia for the kidney cortex underscore the ability for the basis matrix to capture representative fractions of cell type specific RNA and reflect underlying cell heterogeneity in bulk RNA-seq data. Additional discussion is in Supplementary Note 1.

- (a) Bladder
- (b) Brain
- (c) Colon Transverse
- (d) Kidney Cortex
- (e) Kidney Medulla
- (f) Liver
- (g) Lung
- (h) Small Intestine Terminal Ileum
- (i) Spleen
- (j) Whole Blood

Supplementary Note 1: Deconvolution of bulk GTEx tissues using the *Tabula Sapiens*-derived basis matrix

To assess the ability of the basis matrix to deconvolve tissues whose cell types were wholly present in the cell type column space, we deconvolved a subset of bulk RNA-seq GTEx samples. The determined fractions of cell type specific RNA recapitulated the predominant cell types within a given tissue (Supplementary Information Fig. 1). Organs with increased cell type heterogeneity (lung, bladder, kidney, intestine, colon) in contrast to tissues with reduced spatial heterogeneity (liver, spleen, whole blood)¹, exhibited greater variance in deconvolved fractions (Supplementary Information Fig. 1) and deconvolution performance (Extended Data Fig. 3). Tissues with reduced spatial heterogeneity whose cell types were wholly in the basis matrix column space include predominantly b cells/plasma cells and erythrocytes in spleen; hepatocytes, liver; erythrocytes and leukocytes, whole blood. Cell types belonging to tissues with increased spatial heterogeneity exhibited greater variance in deconvolved fractions: kidney cortex majority fractions were from kidney epithelia and lymphocytes; small intestine, intestinal enterocytes and lymphocytes; lung, pneumonocytes and immune cells, colon, intestinal enterocytes, lymphocytes, and muscle cells. Cells with larger volume yielded larger deconvolved fractions across all tissues. Variance in the relative cell type fractional contributions across the deconvolved bulk samples within a given tissue reflects the underlying cell type heterogeneity, particularly in these complex samples. GTEx kidney medulla samples recorded to be contaminated with renal cortex reflect the presence of the kidney epithelia, the majority cell type in the renal cortex. Given that the kidney medulla is not part of TSP v1.0, we did not expect high deconvolution performance since its cell types are absent from the basis matrix column space. The brain, whose cell types were wholly absent from the cell type column space exhibited poor deconvolution performance, as expected. However, the majority cell type fraction assigned was to the cell type belonging to the peripheral nervous system that was present in Tabula Sapiens version 1, the schwann cell, underscoring the ability of our deconvolution method to assign fractional contributions to similar cell types from those that are absent from the basis matrix column space.

Supplementary Note 2: Noninvasive measurement of trophoblast cell type signatures in preeclampsia

In pregnancy, extravillous trophoblast (EVT) invasion is a stage in uteroplacental arterial remodeling^{2,3}. Arterial remodeling occurs to ensure adequate maternal blood flow to the growing fetus^{2,3} and is sometimes reduced in preeclampsia². Previously, the EVT was reported by Tsang et al to be noninvasively resolvable and elevated in early onset preeclampsia (gestational age at diagnosis < 34 weeks) as compared to healthy pregnancy⁴. However, examination of the trophoblast gene profiles used by Tsang et al. using two independent placental single-cell atlases^{3,5} revealed several genes that were not cell type specific or exhibited very low trophoblast expression (Extended Data Fig. 9c, d), thereby adversely impacting signature score interpretation.

CERCAM, IL18BP, and *PYCR1* are not extravillous trophoblast specific, exhibiting higher expression in fibroblast cell types in both atlases, despite Tsang's inclusion in their EVT gene profile (Extended Data Fig. 9c, d). Furthermore, EVT genes in Tsang's gene profile, *RRAD, SLC6A2*, and *UPK1B* all exhibit very low EVT expression across both placental atlases. Numerous PSG genes (*PSG11*, *PSG1/PSG2*, *PSG3*, *PSG4*, *PSG6*, *PSG9*) do not exhibit high syncytiotrophoblast (SCT) expression, despite their inclusion in Tsang's SCT gene profile. *GH2* either exhibits no expression or comparable non-SCT specific expression across cell types in both atlases (Extended Data Fig. 9c, d).

The presence of these non-cell type specific genes in a cell type gene profile consequently impacted the interpretation of Tsang et al's signature scores. Using our criteria for deriving a given cell type gene profile (Methods), we derived gene profiles for the same two cell types, EVT and SCT (Extended Data Fig. 8), and then quantified their respective signature scores in two previously published preeclampsia cohorts⁶ (Extended Data Fig. 9a, b). In contrast to Tsang et al, we observed no significant difference in either trophoblast signature score in cfRNA samples collected at diagnosis for mothers with early-onset preeclampsia (p = 0.703 and U = 1524, 0.794 and U = 1504 respectively, two-sided Mann Whitney U) (Extended Data Fig. 9a) and for mothers with either early- or late-onset preeclampsia (p = 0.24 and H = 4.18, 0.54 and H = 2.15 respectively, Kruskal Wallace) (Extended Data Fig. 9b), as compared to samples from mothers with no complications at a matched gestational age.

In our work deriving cell type gene profiles for signature scoring in cfRNA, we only considered genes with high log fold change in a given cell type population and low expression in any other measured cell type (Methods). We acknowledge that this method may miss some genes for a given cell type population with low uniform expression (i.e. low expression in a large fraction of cells of a given type) or with heterogeneous expression (i.e. high expression in a small fraction of cells of a given type). However, since this work is the first comprehensive examination of cell type specific origins in the cell free transcriptome, we sought to be conservative in what we asserted to be cell type specific so that we could be confident in measuring a cell type signature score noninvasively; this approach boded well for all diseases presented in our work.

Taken together with validation in two independent placental cell atlases, we conclude that the EVT and SCT cell type gene profiles by Tsang et al. do not enable estimation of trophoblast pathology from cfRNA in preeclampsia. The role of extravillous trophoblast invasion and the ubiquity of its cellular pathophysiology in preeclampsia thus remains an open question.

The Tabula Sapiens Consortium Author List

Overall Project Direction and Coordination

Robert C. Jones¹, Jim Karkanias², Mark Krasnow^{3,4}, Angela Oliveira Pisco², Stephen R. Quake^{1,2,5}, Julia Salzman^{3,6}, Nir Yosef^{2,7,8,9}

Donor Recruitment

Bryan Bulthaup¹⁰, Phillip Brown¹⁰, William Harper¹⁰, Marisa Hemenez¹⁰, Ravikumar Ponnusamy¹⁰, Ahmad Salehi¹⁰, Bhavani A. Sanagavarapu¹⁰, Eileen Spallino¹⁰

Surgeons

Ksenia A. Aaron¹¹, Waldo Concepcion¹⁰, James M. Gardner^{12,13}, Burnett Kelly^{10,14}, Nikole Neidlinger¹⁰, Zifa Wang¹⁰

Logistical coordination

Sheela Crasta^{1,2}, Saroja Kolluru^{1,2}, Maurizio Morri², Angela Oliveira Pisco², Serena Y. Tan¹⁵, Kyle J. Travaglini³, Chenling Xu⁷

Organ Processing

Marcela Alcántara-Hernández¹⁶, Nicole Almanzar¹⁷, Jane Antony¹⁸, Benjamin Beyersdorf¹⁹, Deviana Burhan²⁰, Kruti Calcuttawala²¹, Matthew M. Carter¹⁶, Charles K. F. Chan^{18,22}, Charles A. Chang²³, Stephen Chang^{3,19}, Alex Colville^{21,24}, Sheela Crasta^{1,2}, Rebecca N. Culver²⁵, Ivana Cvijović^{1,5}, Gaetano D'Amato²⁶, Camille Ezran³, Francisco X. Galdos¹⁸, Astrid Gillich³, William R. Goodyer²⁷, Yan Hang^{23,28}, Alyssa Hayashi¹, Sahar Houshdaran²⁹, Xianxi Huang^{19,30}, Juan C. Irwin²⁹, SoRi Jang³, Julia Vallve Juanico²⁹, Aaron M. Kershner¹⁸, Soochi Kim^{21,24}, Bernhard Kiss¹⁸, Saroja Kolluru^{1,2}, William Kong¹⁸, Maya E. Kumar¹⁷, Angera H. Kuo¹⁸, Rebecca Leylek¹⁶, Baoxiang Li³¹, Gabriel B. Loeb³², Wan-Jin Lu¹⁸, Sruthi Mantri³³, Maxim Markovic¹, Patrick L. McAlpine^{11,34}, Antoine de Morree^{21,24}, Maurizio Morri², Karim Mrouj¹⁸, Shravani Mukherjee³¹, Tyler Muser¹⁷, Patrick Neuhöfer^{3,35,36}, Thi D. Nguyen³⁷, Kimberly Perez¹⁶, Ragini Phansalkar²⁶, Angela Oliveira Pisco², Nazan Puluca¹⁸, Zhen Qi¹⁸, Poorvi Rao²⁰, Hayley Raquer-McKay¹⁶, Nicholas Schaum^{18,21}, Bronwyn Scott³¹, Bobak Seddighzadeh³⁸, Joe Segal²⁰, Sushmita Sen²⁹, Shaheen Sikandar¹⁸, Sean P. Spencer¹⁶, Lea Steffes¹⁷, Varun R. Subramaniam³¹, Aditi Swarup³¹, Michael Swift¹, Kyle J. Travaglini³, Will Van Treuren¹⁶, Emily Trimm²⁶, Stefan Veizades^{19,39}, Sivakamasundari Vijayakumar¹⁸, Kim Chi Vo²⁹, Sevahn K. Vorperian^{1,40}, Wanxin Wang²⁹, Hannah N.W. Weinstein³⁸, Juliane Winkler⁴¹, Timothy T.H. Wu³, Jamie Xie³⁸, Andrea R.Yung³, Yue Zhang³

Sequencing

Angela M. Detweiler², Honey Mekonen², Norma F. Neff², Rene V. Sit², Michelle Tan², Jia Yan²

Histology

Gregory R. Bean¹⁵, Vivek Charu¹⁵, Erna Forgó¹⁵, Brock A. Martin¹⁵, Michael G. Ozawa¹⁵, Oscar Silva¹⁵, Serena Y. Tan¹⁵, Angus Toland¹⁵, Venkata N.P. Vemuri²

Data Analysis

Shaked Afik⁷, Kyle Awayan², Olga Borisovna Botvinnik², Ashley Byrne², Michelle Chen¹, Roozbeh Dehghannasiri^{3,6}, Angela M. Detweiler², Adam Gayoso⁷, Alejandro A Granados², Qiqing Li², Gita Mahmoudabadi¹, Aaron McGeever², Antoine de Morree^{21,24}, Julia Eve Olivieri^{3,6,42}, Madeline Park², Angela Oliveira Pisco², Neha Ravikumar¹, Julia Salzman^{3,6}, Geoff Stanley¹, Michael Swift¹, Michelle Tan², Weilun Tan², Alexander J Tarashansky², Rohan Vanheusden², Sevahn K. Vorperian^{1,40}, Peter Wang^{3,6}, Sheng Wang², Galen Xing², Chenling Xu⁶, Nir Yosef^{2,6,7,8}

Expert Cell Type Annotation

Marcela Alcántara-Hernández¹⁶, Jane Antony¹⁸, Charles K. F. Chan^{18,22}, Charles A. Chang²³,

Alex Colville^{21,24}, Sheela Crasta^{1,2}, Rebecca Culver²⁵, Les Dethlefsen⁴³, Camille Ezran³, Astrid Gillich³, Yan Hang^{23,28}, Po-Yi Ho¹⁶, Juan C. Irwin²⁹, SoRi Jang³, Aaron M. Kershner¹⁸, William Kong¹⁸, Maya E Kumar¹⁷, Angera H. Kuo¹⁸, Rebecca Leylek¹⁶, Shixuan Liu^{3,44}, Gabriel B. Loeb³², Wan-Jin Lu¹⁸, Jonathan S Maltzman^{45,46}, Ross J. Metzger^{27,47}, Antoine de Morree^{21,24}, Patrick Neuhöfer^{3,35,36}, Kimberly Perez¹⁶, Ragini Phansalkar²⁶, Zhen Qi¹⁸, Poorvi Rao²⁰, Hayley Raquer-McKay¹⁶, Koki Sasagawa¹⁹, Bronwyn Scott³¹, Rahul Sinha^{15,18,35}, Hanbing Song³⁸, Sean P. Spencer¹⁶, Aditi Swarup³¹, Michael Swift¹, Kyle J. Travaglini³, Emily Trimm²⁶, Stefan Veizades^{19,39}, Sivakamasundari Vijayakumar¹⁸, Bruce Wang²⁰, Wanxin Wang²⁹, Juliane Winkler⁴¹, Jamie Xie³⁸, Andrea R.Yung³

Tissue Expert Principal Investigators

Steven E. Artandi^{3,35,36}, Philip A. Beachy^{18,23,48}, Michael F. Clarke¹⁸, Linda C. Giudice²⁹, Franklin W. Huang^{38,49}, Kerwyn Casey Huang^{1,16}, Juliana Idoyaga¹⁶, Seung K Kim^{23,28}, Mark Krasnow^{3,4}, Christin S. Kuo¹⁷, Patricia Nguyen^{19,39,46}, Stephen R. Quake^{1,2,5}, Thomas A. Rando^{21,24}, Kristy Red-Horse²⁶, Jeremy Reiter⁵⁰, David A. Relman^{16,43,46}, Justin L. Sonnenburg¹⁶, Bruce Wang²⁰, Albert Wu³¹, Sean M. Wu^{19,39}, Tony Wyss-Coray^{21,24}

Affiliations

¹Department of Bioengineering, Stanford University; Stanford, CA, USA.

²Chan Zuckerberg Biohub; San Francisco, CA, USA.

³Department of Biochemistry, Stanford University School of Medicine; Stanford, CA, USA.

⁴Howard Hughes Medical Institute; USA.

⁵Department of Applied Physics, Stanford University; Stanford, CA, USA.

⁶Department of Biomedical Data Science, Stanford University; Stanford, CA, USA.

⁷Center for Computational Biology, University of California Berkeley; Berkeley, CA, USA.

⁸Department of Electrical Engineering and Computer Sciences, University of California Berkeley; Berkeley, CA, USA.

⁹Ragon Institute of MGH, MIT and Harvard; Cambridge, MA, USA.

¹⁰Donor Network West; San Ramon, CA, USA.

¹¹Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine; Stanford, California, USA.

¹²Department of Surgery, University of California San Francisco; San Francisco, CA, USA.

¹³Diabetes Center, University of California San Francisco; San Francisco, CA, USA.

¹⁴DCI Donor Services; Sacramento, CA, USA.

¹⁵Department of Pathology, Stanford University School of Medicine; Stanford, CA, USA.

¹⁶Department of Microbiology and Immunology, Stanford University School of Medicine; Stanford, CA, USA.

¹⁷Department of Pediatrics, Division of Pulmonary Medicine, Stanford University; Stanford, CA, USA.

¹⁸Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine; Stanford, CA, USA.

¹⁹Department of Medicine, Division of Cardiovascular Medicine, Stanford University; Stanford, CA, USA.
²⁰Department of Medicine and Liver Center, University of California San Francisco; San Francisco, CA, USA.

²¹Department of Neurology and Neurological Sciences, Stanford University School of Medicine; Stanford, CA, USA.

²²Department of Surgery - Plastic and Reconstructive Surgery, Stanford University School of Medicine; Stanford, CA, USA.

²³Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA

²⁴Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine; Stanford, CA, USA.

²⁵Department of Genetics, Stanford University School of Medicine; Stanford, CA, USA.

²⁶Department of Biology, Stanford University; Stanford, CA, USA.

²⁷Department of Pediatrics, Division of Cardiology, Stanford University School of Medicine; Stanford, CA, USA.

²⁸Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, California

²⁹Center for Gynecology and Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco; San Francisco, CA, USA.

³⁰Department of Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College; Shantou, China.

³¹Department of Ophthalmology, Stanford University School of Medicine; Stanford, CA, USA.

³²Division of Nephrology, Department of Medicine, University of California San Francisco; San Francisco, CA, USA.

³³Stanford University School of Medicine; Stanford, CA, USA.

³⁴Mass Spectrometry Platform, Chan Zuckerberg Biohub; Stanford, CA, USA.

³⁵Stanford Cancer Institute, Stanford University School of Medicine; Stanford, CA, USA.

³⁶Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA

³⁷Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California San Francisco; San Francisco, CA, USA.

³⁸Division of Hematology and Oncology, Department of Medicine, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California San Francisco; San Francisco, CA, USA. ³⁹Stanford Cardiovascular Institute; Stanford CA, USA.

⁴⁰Department of Chemical Engineering, Stanford University; Stanford, CA, USA.

⁴¹Department of Cell & Tissue Biology, University of California San Francisco; San Francisco, CA, USA.

⁴²Institute for Computational and Mathematical Engineering, Stanford University; Stanford, CA, USA.

⁴³Division of Infectious Diseases & Geographic Medicine, Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA.

⁴⁴Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA

⁴⁵Division of Nephrology, Stanford University School of Medicine; Stanford, CA, USA.

⁴⁶Veterans Affairs Palo Alto Health Care System; Palo Alto, CA, USA.

⁴⁷Vera Moulton Wall Center for Pulmonary and Vascular Disease, Stanford University School of Medicine; Stanford, CA, USA.

⁴⁸Department of Urology, Stanford University School of Medicine, Stanford, CA, USA

⁴⁹Division of Hematology/Oncology, Department of Medicine, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.

⁵⁰Department of Biochemistry, University of California San Francisco; San Francisco, CA, USA.

References

- 1. The Tabula Sapiens Consortium & Quake, S. R. The Tabula Sapiens: a single cell transcriptomic atlas of multiple organs from individual human donors. *BioRxiv* (2021) doi:10.1101/2021.07.19.452956.
- 2. Kaufmann, P., Black, S. & Huppertz, B. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. *Biol. Reprod.* **69**, 1–7 (2003).
- 3. Vento-Tormo, R. *et al.* Single-cell reconstruction of the early maternal-fetal interface in humans. *Nature* **563**, 347–353 (2018).
- 4. Tsang, J. C. H. *et al.* Integrative single-cell and cell-free plasma RNA transcriptomics elucidates placental cellular dynamics. *Proc Natl Acad Sci USA* **114**, E7786–E7795 (2017).
- 5. Suryawanshi, H. *et al.* A single-cell survey of the human first-trimester placenta and decidua. *Sci. Adv.* **4**, eaau4788 (2018).
- 6. Munchel, S. *et al.* Circulating transcripts in maternal blood reflect a molecular signature of earlyonset preeclampsia. *Sci. Transl. Med.* **12**, (2020).