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Outcomes



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Here Bustoros et al have performed an analysis on a set of 214 SMM patients to identify genetic 

subtypes that are associated with risk of progression to MM. This is a good paper that provides some 

information on the risk of a SMM patient on likelihood of progression to MM based on their genomics. 

Some minor comments are below. 

 

Comments: 

1. I find the clustering subtypes a little confusing. It is known that the primary events in myeloma 

(and its precursors) are the immunoglobulin translocations and hyperdiploidy. These primary events 

are then followed by the addition of copy number changes and mutations. Therefore, I find it 

surprising that some of the subgroups identified mix together the hyperdiploid and translocation 

groups – such as the HMC group that contains hyperdiploidy and t(14;20) patients. This doesn’t make 

any sense. It may be that the computational approach puts them together, but etiologically these 

groups are very different and have separate origins. Previous papers doing similar clustering in the MM 

stage, using genomics or gene expression, generally always keep the translocation and hyperdiploid 

groups apart for this very reason. The authors should use some reasoning when deciding the groups 

and not just follow the informatics. 

2. Previous groups looking at MM subgroups have also shown the importance of 11q+ in defining 2 

subgroups of hyperdiploidy, which are associated with over-expression of CCND1, and define the 

CCDN1/CCND2 expression groups in hyperdiploid MM. The authors do not use this important marker in 

their classifier. Given the importance of the gain of 11q in defining 2 groups at MM, it should also be 

used in classifying SMM patients. 

3. In addition, the authors have previously shown that MYC rearrangements are highly important in 

the risk stratification of SMM, but MYC is not included in their classifier. Again, there is an association 

with MYC and hyperdiploid subgroups and this may be a key factor in determining the subtypes of 

SMM. The authors should use their MYC data to more accurately define the hyperdiploid SMM samples. 

They have, in part, done this using expression data, but it is still not clear if MYC rearrangements are 

the only mechanism of dysregulating MYC expression. 

4. There are many ways to classify MM and the authors are performing this here on SMM. However, I 

find that the new groupings are probably not that different to the ones found in MM, and indeed the 

authors compare their classification to one of the gene expression classifications used in MM. There 

seems to be a lot of overlap in Fig 2. Is this classification and nomenclature really any different to 

previous ones? Or is it just confusing the readers? 

5. Given that the authors have performed a classification of SMM and identified high risk groups, how 

does a physician in the clinic use this information? What is the minimal information required for a 

physician to be able to use this and stratify their patients? Perhaps high-risk translocations (t(4;14), 

t(14;16)) and hyperdiploid with MYC rearrangements/high expression? 

6. Others have shown that t(14;16) is not high risk in SMM, and indeed this group did not find an 

association with t(14;16) and high risk of progression in their previous JCO paper. Is this really a high 

risk group or is it just because it is clustered with the t(4;14)? Many think of the MAF groups as being 

more stable in the SMM stage and not being high risk at SMM. Can the authors more conclusively 

convince us that the t(14;16) patients in SMM should be high risk? 

7. Raw data should be submitted for the DNA and RNA sequencing performed on these patients to 

dbGAP, in line with the journals expectations and the groups NIH funding obligations. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

 

This paper aims to addresses a key clinical question – which patients with smoldering myeloma are at 



risk of progression and what are their biological features. Currently the risk scores are based on 

clinical read-outs such as M component value, BMPC%, SFLC value, and occasionally FISH 

abnormalities. The authors have used up to 214 cases of smoldering myeloma and characterized 

mutations and gene expressions to determine 6 distinct subgroups. They have then gone on to 

compare these subgroups with survival and the current SMM prognostic score. 

 

Recent data in myeloma has suggested that mutational signatures (e.g. apopbec, aging,etc) and 

structural variants (e.g. chromothripsis) may be important in prognosis. Is there any difference in the 

frequency of these abnormalities between the subgroups and does this link to prognosis in 

smoldering? 

I am unsure what the data concerning the serial clinical features and clusters adds to the story? Is the 

fall in Hb or rise in M component just a feature of the disease progression and therefore it is no 

surprise this is more common in the high-risk genetic groups. Or am I missing something? 

Please be consistent with the cluster labeling. Sometimes it is C1-6 other times by their initials 

e.g.FMD, especially in the supplementary data. 

All the data should be deposited in dbgap 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Smoldering multiple myeloma is a precursor condition of multiple myeloma which the authors observe 

to be characterized by significant heterogeneity in terms of disease progression, which is not fully 

captured by current clinical models; this is the motivation for the need of a more expressive clinical 

model capable of better characterizing such heterogeneity in disease progression. The authors perform 

such task by unsupervised binary matrix factorization considering 42 genetic alterations and discover 

6 genetic subtypes associated with different clinical features including increased risk of progression to 

multiple myeloma. 

 

My major worry with this manuscript is the lack of motivation of the algorithm used to perform the 

analsis and of a comprehensive validation of the results on unseen data. I believe this severely limits 

any real clinical application of such results. 

 

1) Concerns regarding the methods. 

 

Currently the paper is mostly focused on the description of the translational results. But, I would ask 

the authors to motivate their computational framework used to determine the 6 clusters. Currently, 

most of the details are provided as supplementary materials and I failed to fully understand what are 

all the performed steps (of notice, the link to the Github provided as supplementary material wasn't 

working) in the analysis. 

 

The authors process different data types (i.e., mutations, copy numbers, etc.) derived from different 

technologies and settings (i.e., whole exome sequencing with or without matched normal, targeted 

sequencing, etc.), by means of an elaborate pipeline (which if I understood correctly involves, e.g., 

mutations correction based of trinucleotide mutational signatures). All of this is briefly described as 

supplementary materials, but I still think motivations and impact on results should be discussed. 

 

Moreover, I would also ask the authors to motivate and validate their choice of performing clustering 

based on binary matrix factorization (with many user-defined parameters to tune the final clustering) 

and how this impacts the final data integration of multiple omic data. Also, a rich literature on data 

integration to define clusters subtypes is available but totally ignored by the authors, including to 

name only a few, methods such as Shen, Ronglai, et al. "Integrative subtype discovery in glioblastoma 

using iCluster." PloS one 7.4 (2012): e35236; Ramazzotti, Daniele, et al. "Multi-omic tumor data 

reveal diversity of molecular mechanisms that correlate with survival." Nature communications 9.1 



(2018): 1-14. The authors should comment on this and to frame their approach accordingly. 

 

2) Concerns regarding the significance of translational findings. 

 

The authors limit their analysis to showing statistical significance of survival differences of patients, 

while they should try to validate their results on exsternal datasets; this would be critical in order to 

prove the translational significance of such results. Ideally, they should find at least one cohort of 

patients from a different dataset and perform external validation of their method. Furthermore, an 

additional analysis could be aimed to cross-validate their algorithm by setting aside a random portion 

of unclustered patients, train the model on remaining patients and show that the algorithm is capable 

of robustly clustering these unseen patients into different risk groups. 

 

Finally, the authors should demonstrate that their algorithm outperforms standard clinical 

characteristics in cross-validated survival analysis, to clearly showcase that their expressive model is 

better than standard predictive metrics used in the clinic. 

 

3) Presentation of results. 

 

Overall, I believe the paper would greatly benefit of thoughtful rewriting and improvement of main 

text figures in order to provide a clear description of method and results. 



REVIEWER COMMENTS 

Reviewer #1, expert in MM genomics/transcriptomics (Remarks to the 

Author): 

 

Here Bustoros et al have performed an analysis on a set of 214 SMM patients to identify 

genetic subtypes that are associated with the risk of progression to MM. This is a good 

paper that provides some information on the risk of a SMM patient on the likelihood of 

progression to MM based on their genomics. Some minor comments are below. 

 

Comments: 

 

1. I find the clustering subtypes a little confusing. It is known that the primary events in 

myeloma (and its precursors) are immunoglobulin translocations and hyperdiploidy. 

These primary events are then followed by the addition of copy number changes and 

mutations. Therefore, I find it surprising that some of the subgroups identified mix together 

the hyperdiploid and translocation groups – such as the HMC group that contains 

hyperdiploidy and t(14;20) patients. This doesn’t make any sense. It may be that the 

computational approach puts them together, but etiologically these groups are very 

different and have separate origins. Previous papers doing similar clustering in the MM 

stage, using genomics or gene expression, generally always keep the translocation and 

hyperdiploid groups apart for this very reason. The authors should use some reasoning 

when deciding the groups and not just follow the informatics. 

 

Response 1: We thank the reviewer for their comments. We want to point out that our 

clustering analysis was unsupervised and based on only the DNA alterations detected in 

the 214 samples. We agree with the reviewer that IgH translocations are distinct events 

from hyperdiploidy. However, we and others (Walker et al., Blood 2018; Maura et al., 

Nature Comm 2021) have recently reported similar findings, in which t(14;20) or t(14;16) 

were in the same molecular clusters as Hyperdiploidy. In our cohort, 50% of patients with 

t(14;20) had hyperdiploidy as well, identified by the presence of trisomies of whole 

chromosomes and more than 48 chromosomes in the patients’ tumor samples. 

We clarified this point on pages 6-7 of the updated manuscript, stating, “The presence of 

both hyperdiploidy and t(14;20) in the same cluster could be explained by the co-

occurrence of those events as described in prior studies (Walker et al., Blood 2018). 

Indeed, half of patients in our cohort who had t(14;20) also had hyperdiploidy.” 

 

2. Previous groups looking at MM subgroups have also shown the importance of 11q+ in 

defining 2 subgroups of hyperdiploidy, which are associated with over-expression of 

CCND1 and defining the CCDN1/CCND2 expression groups in hyperdiploid MM. The 

authors do not use this important marker in their classifier. Given the importance of the 

gain of 11q in defining 2 groups at MM, it should also be used in classifying SMM 

patients. 



 

Response 2: We thank the reviewer and agree with their comment. We analyzed the four 

hyperdiploid-like clusters and integrated 11q gain. We found that samples with this copy 

number gain have higher expression of CCND1 compared to those without. Furthermore, 

our analysis showed that CCND2 expression was significantly higher in samples without 

11q gain. However, 11q gain was not a significant feature in any of the hyperdiploid 

clusters, where 74 out of the 101 tumors had 11q gain. Moreover, we couldn’t integrate 

the CCND1 or CCND2 expression data in the disease progression analysis (n=87 

patients) because of the small number of samples with RNA data in this subcohort. We 

updated our text accordingly with these findings on page 8 stating, “Moreover, in the 

four hyperdiploid clusters, we found that CCND1 expression was higher in tumors 

with 11q gain, while CCND2 expression was higher in samples without 11q gain 

(Supp Figure 6D-I)” 

 

We also addressed this in the Discussion on pages 13-14, explaining why we could not 

include CCND1 and CCND2 expression groups in the classifier assessing clinical 

outcomes: “Of note, CCND1 and CCND2 expression was analyzed to distinguish 

between hyperdiploid groups. In our four hyperdiploid groups, we found CCND1 to 

be enriched in tumors with 11q gain, while CCND2 is highly expressed in tumors 

without 11q gain. We were unable to assess the prognostic impact of this 

association due to the small number of patients with both gene expression data 

and clinical follow up for their entire disease course available.” 

 
Supplemental Figure 6: Additional gene expression (log TPM + 1) comparisons. 

A) CCND1 in TL2 tumors vs. non-TL2 tumors; B) CCND2 in TL1 and HL2 tumors 

vs. non-TL1/HL2 tumors; C) MCL1 expression in HL1 tumors vs. non-HL1 tumors. 



D-I) Comparisons within the hyperdiploid subtypes: HL1, HL2, HL3, HL4. D-F) 

CCND1 expression in HL1, HL2, HL3, HL4 subtypes with and without 11q gain, 

hyperdiploidy, and between these subtypes. G-I) CCND2 expression in HL1, HL2, 

HL3, HL4 subtypes with and without 11q gain, hyperdiploidy, and between these 

subtypes. 

 

 

 

3. In addition, the authors have previously shown that MYC rearrangements are highly 

important in the risk stratification of SMM, but MYC is not included in their classifier. 

Again, there is an association with MYC and hyperdiploid subgroups and this may be a 

key factor in determining the subtypes of SMM. The authors should use their MYC data to 

more accurately define the hyperdiploid SMM samples. They have, in part, done this 

using expression data, but it is still not clear if MYC rearrangements are the only 

mechanism of dysregulating MYC expression. 

 

Response 3: We thank the reviewer for their suggestion. Indeed, we and others have 

previously shown that MYC translocations and amplifications are associated with a higher 

risk of progression to overt MM. While our first manuscript draft included only MYC 

amplification (amp 8q24), we repeated the clustering for the study to include MYC 

translocations. This event is now included in Figure 1. MYC translocation is a significant 

feature in one of the hyperdiploid clusters, hyperdiploid-like (HL) 3, described on page 7, 

―Cluster 4 (HL4): this cluster comprises hyperdiploid tumors that are enriched for 

mutations in KRAS or NFKBIA genes, or MYC translocations as the only 

significant features.‖ Furthermore, MYC copy number amplification (8q24) was also 

enriched in the hyperdiploid clusters (FDR <0.0001, Fisher’s exact). Transcriptomic data 

show that MYC expression is significantly higher in the hyperdiploid clusters. All 

alterations in MYC in our cohort were either translocations or copy number amplifications 

as stated on page 8: ―MYC oncogene expression was significantly higher in the four 

hyperdiploid clusters compared to the clusters enriched with IgH translocations (P 

= 0.009, Wilcoxon Test) (Figure 2D).” 

 

4. There are many ways to classify MM and the authors are performing this here on SMM. 

However, I find that the new groupings are probably not that different to the ones found in 

MM, and indeed the authors compare their classification to one of the gene expression 

classifications used in MM. There seems to be a lot of overlap in Fig 2. Is this 

classification and nomenclature really any different to previous ones? Or is it just 

confusing the readers? 

 

Response 4: Previous studies classified MM subtypes based on gene expression profiling 

(Zhan et al., Blood, 2006 & Broyl et al., Blood, 2010). Our classification uses only DNA 

alterations, including translocations, CNAs, and SNVs as the input for binary matrix 

factorization and consensus clustering to identify molecular subtypes based on co-

occurring genetic alterations. Each genetic subtype had significantly enriched genetic 



alterations. We identified six clusters, four of which were enriched for hyperdiploid tumors, 

while two were enriched for known MM IgH translocations. We identified co-occurring 

features and looked deeply into the molecular makeup of each subtype. We found that 

combinations of events create phenotypes beyond the effect of a single DNA alteration. 

For example, hyperdiploidy is generally considered a low-risk feature in MM and SMM; 

however, we show that not all hyperdiploid tumors are equal, with the HL2 and HL3 

clusters having multiple high-risk characteristics in both the transcriptional programs and 

clinical outcomes. We also identified two tumor clusters enriched for 1q gain: TL1 is 

enriched in t(4;14) and is clinically high-risk, while HL4 is clinically intermediate risk. In 

previous expression profile classifications, hyperdiploid (HP) clusters were conflated 

together and other reported RNA subtypes like low bone (LB), proliferative (PR), and the 

protein tyrosine phosphatase PTP4A3 (PRL3) were not mapped to specific cytogenetic or 

genetic alterations. In our analysis we found that the low bone (LB) disease signature, 

was upregulated in the HL2, HL4, and TL1 subgroups, suggesting it could be linked to 1q 

gain, which occurs frequently in these three subgroups, while the PR signature, which is 

found in proliferative tumor cells, was enriched in the HL3 and TL2 subgroups. The PRL3 

signature, which overexpresses the protein tyrosine phosphatase PTP4A3 and 27 

additional genes, was upregulated only in HL4. 

 

We emphasized that our classification is based on the DNA alterations and not the 

transcriptomic data in the beginning of results section on page 6, “To identify these 

patterns, binarized DNA features (42 driver SNVs, CNVs, and translocations) were 

curated for each sample representing the presence or absence of each genomic 

alteration. Chapuy et al successfully subtyped diffuse B-cell lymphoma patients with a 

similar approach, consensus non-negative matrix (NMF) factorization of numeric DNA 

features. We instead applied consensus BMF for this subtyping to accommodate 

binarized DNA features, appropriately model summative features that span multiple 

subtypes (i.e., hyperdiploidy), and handle sparse matrices (Methods).” 

 

In the Discussion section on page 13: “We and others have previously cataloged 

individual driver genetic aberrations in SMM and MM cohorts4,11,12. The present study 

expands on this work and identifies genetic SMM subtypes defined by multiple recurrent 

DNA genetic aberrations, whereas previous classification efforts were based primarily on 

gene expression.” 

 

We edited the ―BMF Clustering Workflow‖ methods section on pages 16 & 17 for 

clarity: 

“We identified patient subgroups using binarized DNA features and performed consensus 
binary matrix factorization24. To select the number of clusters (K) for the consensus 
clustering, we randomly downsampled our input matrix and computed silhouette scores 
using Dice dissimilarity, residuals of factorization fit, variance explained, and K-L 
divergence on binary matrix factorizations over a range of K. We found a decrease in K-L 
divergence with our full dataset from K = 5 to K = 6, which suggested that 6 clusters were 
best suited to ensure a converged factorization for N = 214 (Supp. Fig 2) Additionally, we 
found that variance stabilized when we performed down sampling analyses at N = 75-



100, suggesting we were powered to perform binary matrix factorization for a cohort at 
this minimum size. We concluded that a minimum of 100 samples and 6 clusters were 
suited for this approach. We performed consensus clustering using a binary matrix 
factorization with K of 2 through 10, selecting the final 6 clusters based on hierarchical 
clustering of the consensus matrix with Euclidean distance and Ward linkage. We 
assessed binary feature importance by performing a Fisher’s exact test to count feature 
representation within each cluster and outside of this cluster, testing for an equal 
proportion. The false discovery rate (FDR) was calculated using the Benjamini-Hochberg 
procedure.” 
 
 
5. Given that the authors have performed a classification of SMM and identified high risk 

groups, how does a physician in the clinic use this information? What is the minimal 

information required for a physician to be able to use this and stratify their patients? 

Perhaps high-risk translocations (t(4;14), t(14;16)) and hyperdiploid with MYC 

rearrangements/high expression? 

 

Response 5: We thank the reviewer for their comment and hope to clarify how we 

envision a clinician using these subtypes.  

 

MM genetic alterations do not occur individually but together, and we aimed to detect and 

define the patterns of co-occurrence in MM patients. Each of the six genetic subtypes we 

identified and their significantly enriched features are summarized in Table 1 below and 

Figure 1 in the main manuscript to help readers and clinicians identify the most important 

genetic features and associated clinical risk. 

 

We defined the significant genetic alterations occurring in the high-risk clusters in the 

results section on Page 11 and listed the significant features in the supplementary data: 

―We found that high-risk genetic subtypes were significantly enriched with specific genetic 

alterations, such as, KRAS, TP53, t(4;14), 1q gain, and 16q, 8p, and 1p deletions among 

others (Supp. Table 3).‖ Of note, many of these high-risk genetic events were associated 

with higher risk of progression to MM (Supp. Table 5 & 6). 

 

Moreover, to validate our findings on external cohorts and allow for future classification of 

SMM patients into our subtypes, we trained a Random Forest (RF) classifier on our cohort 

of 214 samples. We applied this classifier to two external cohorts (Fig 3F) and validated 

the survival effect described previously. To interrogate what features were most important 

for the classifier, we considered feature importance for the RF training process (Supp. 

Fig 5C). We determined the most pertinent features for subtype classification are: 

hyperdiploidy, 13q deletion, t(11;14), t(4;14), 16q deletion, 1q Amp, KRAS mutations, 6q 

deletion, and 14q deletion. 



 

 

Supplemental Figure 5:  A) Random forest K-fold cross validation accuracy over 10 

repeats with mean accuracy and standard deviation reported. B) Grid search to optimize 

parameters did not improve over initial random forest parameters. C) The prevalence of 

each feature in the dataset plotted by feature importance in classifying genetic subtypes.  



6. Others have shown that t(14;16) is not high risk in SMM, and indeed this group did not 

find an association with t(14;16) and high risk of progression in their previous JCO paper. 

Is this really a high risk group or is it just because it is clustered with the t(4;14)? Many 

think of the MAF groups as being more stable in the SMM stage and not being high risk at 

SMM. Can the authors more conclusively convince us that the t(14;16) patients in SMM 

should be at high risk? 

 

Response 6: We thank the reviewer for bringing up this point. Thus far, our group and 

others have not seen t(14;16) as a high risk feature in progression to active MM. 

However, the underrepresentation of t(14;16) in our and other cohorts limited the 

statistical power to identify an association with outcome. Here, our combined primary and 

validation cohorts, which increased the total number of patients with available disease 

course data from 87 to 229, had only 6 patients (3%) with the t(14;16) translocation. The 

Kaplan-Meier figure below for time to progression (TTP) showed a signal of higher risk of 

t(14;16) patients, but the difference was not statistically significant. We also found that 

t(14;16) was associated with other high-risk features like TP53 mutations and deletions (p 

= 0.007) and APOBEC mutational signature (p = 0.005). (Bustoros et al. JCO, 2020). 

Although we do not have definitive evidence for its association with increased risk of 

progression, we cannot rule it out. Larger cohorts enriched for t(14;16) may be needed to 

answer this question. 

On page 15, we added, ―We and others have not found them to confer a high risk of 

progression on their own (add reference here for others). However, multiple 

studies have shown that t(14;16) is frequently associated with APOBEC signature 

and genomic instability 4-10. In our study it was found in 5% of patients and with 

similar rates in the validation cohorts, so larger studies with cohorts enriched for 

t(14;16) may be needed to confidently determine their prognostic significance in 

SMM.‖ 

 

 



  



7. Raw data should be submitted for the DNA and RNA sequencing performed on these 

patients to dbGAP, in line with the journals expectations and the groups NIH funding 

obligations. 

 

Reply: We would like to thank the reviewer for pointing this out. We have deposited the 

data underlying this study to dbGaP. We have added a statement to document this in the 

main manuscript on page 18, “The DNA and RNA sequencing data and analyses 

presented in the current publication have been deposited in and are available from the 

dbGaP database under dbGaP accession phs001323.v2 p1.” 

  



Reviewer #2, expert in MM/SM subtypes (Remarks to the Author): 

 

This paper aims to addresses a key clinical question – which patients with smoldering 

myeloma are at risk of progression and what are their biological features. Currently the 

risk scores are based on clinical read-outs such as M component value, BMPC%, SFLC 

value, and occasionally FISH abnormalities. The authors have used up to 214 cases of 

smoldering myeloma and characterized mutations and gene expressions to determine 6 

distinct subgroups. They have then gone on to compare these subgroups with survival 

and the current SMM prognostic score.  

 

Recent data in myeloma has suggested that mutational signatures (e.g., APOBEC, aging, 

etc) and structural variants (e.g., chromothripsis) may be important in prognosis. Is there 

any difference in the frequency of these abnormalities between the subgroups and does 

this link to prognosis in smoldering? 

 

Reply: We thank the reviewer for their comment. To address this, we used mutational 

signatures derived from 72 samples with WES using SignatureAnalyzer 

(https://github.com/broadinstitute/getzlab-SignatureAnalyzer). We found that APOBEC 

mutational signature activity (SBS 2 & SBS13) differed significantly between the six 

subtypes (P = 0.027, Kruskal-Wallis), while AID mutational signatures did not (P = 0.17, 

Kruskal-Wallis) (Supp. Fig. 1F, G). Specifically, we found that APOBEC activity is 

enriched in the HL2 and TL1 (high-risk) clusters vs. the rest (P = 0.006, Wilcoxon test, 

Supp. Fig 1H) confirming that these tumor subtypes harbor multiple high-risk features.  

 
We updated this in the main text on page 9: ―We asked whether these genetic subtypes 

were enriched for specific mutational signatures, and found that the APOBEC mutational 

signature activity (SBS 2,13 COSMIC 3) differed between the genetic subtypes (P = 

0.027, Kruskal-Wallis) while AID mutational signatures did not (P = 0.17) (Supp. Fig. 1F, 

G). Specifically, we found that the APOBEC activity signature was enriched in the HL2 

https://github.com/broadinstitute/getzlab-SignatureAnalyzer


and TL1 clusters compared to the rest of tumors (P = 0.006, Supp. Fig 1H), providing 

further evidence of the high-risk prognostic genetic biomarkers in these two subtypes.”    

 

 

I am unsure what the data concerning the serial clinical features and clusters adds to the 

story? Is the fall in Hb or rise in M component just a feature of the disease progression 

and therefore it is no surprise this is more common in the high-risk genetic groups? Or am 

I missing something? 

 

Reply: We thank and agree with the reviewer. Hb or M component dynamic changes and 

trajectories are important measures to assess patient risk of progression. We wanted to 

illustrate that the genetic subtypes are predictive of these serial changes regardless of 

progression status. However, to avoid confusion, we have removed this data from the 

current manuscript as this data requires additional discussion and context. 

 

Please be consistent with the cluster labeling. Sometimes it is C1-6 other times by their 

initials e.g. FMD, especially in the supplementary data. 

 

Reply: We thank the reviewer for their comment. We have simplified the cluster/subtype 

names to hyperdiploid-like (1-4) and translocation-like (1-2) to include the subtype name 

throughout the manuscript and supplemental data. Additionally, we provide a table with 

significant features for each subtype (Fig 1C) for ease of reference. 

 

All the data should be deposited in dbgap. 

Reply: We have now deposited the appropriate data in dbGaP. We also added a 

statement to document this in the methods section: “The DNA and RNA sequencing data 

and analyses presented in the current publication have been deposited in and are 

available from the dbGaP database under dbGaP accession phs001323.v2.p1.” 

 

  



Reviewer #3, expert in bioinformatics for subtype classification 

(Remarks to the Author): 

 

Smoldering multiple myeloma is a precursor condition of multiple myeloma which the 

authors observe to be characterized by significant heterogeneity in terms of disease 

progression, which is not fully captured by current clinical models; this is the motivation for 

the need of a more expressive clinical model capable of better characterizing such 

heterogeneity in disease progression. The authors perform such task by unsupervised 

binary matrix factorization considering 42 genetic alterations and discover 6 genetic 

subtypes associated with different clinical features including increased risk of progression 

to multiple myeloma.  

 

My major worry with this manuscript is the lack of motivation of the algorithm used to 

perform the analysis and of a comprehensive validation of the results on unseen data. I 

believe this severely limits any real clinical application of such results.  

 

1) Concerns regarding the methods.  

 

Currently the paper is mostly focused on the description of the translational results. But, I 

would ask the authors to motivate their computational framework used to determine the 6 

clusters. Currently, most of the details are provided as supplementary materials and I 

failed to fully understand what are all the performed steps (of notice, the link to the Github 

provided as supplementary material wasn't working) in the analysis.  

 

The authors process different data types (i.e., mutations, copy numbers, etc.) derived 

from different technologies and settings (i.e., whole exome sequencing with or without 

matched normal, targeted sequencing, etc.), by means of an elaborate pipeline (which if I 

understood correctly involves, e.g., mutations correction based of trinucleotide mutational 

signatures). All of this is briefly described as supplementary materials, but I still think 

motivations and impact on results should be discussed.  

 

Moreover, I would also ask the authors to motivate and validate their choice of performing 

clustering based on binary matrix factorization (with many user-defined parameters to 

tune the final clustering) and how this impacts the final data integration of multiple omic 

data. Also, a rich literature on data integration to define clusters subtypes is available but 

totally ignored by the authors, including to name only a few, methods such as Shen, 

Ronglai, et al. "Integrative subtype discovery in glioblastoma using iCluster." PloS one 7.4 

(2012): e35236; Ramazzotti, Daniele, et al. "Multi-omic tumor data reveal diversity of 

molecular mechanisms that correlate with survival." Nature communications 9.1 (2018): 1-

14. The authors should comment on this and to frame their approach accordingly.  

 

We thank the reviewer for this comment. First, the Github link 

(https://github.com/getzlab/SMM_clustering_2020) is now public and provides every 

https://github.com/getzlab/SMM_clustering_2020


computational analysis performed in annotated Jupyter notebooks. This is now referenced 

in the Methods on page 18, under Code Availability. 

 

Our computational workflow for subtyping was first motivated by the available input 

patient data. The genomic data for our primary cohort consists of tumor-normal sample 

pairs with whole-exome sequencing (WES) or tumor-only samples with targeted 

sequencing to identify SNVs and CNVs. FISH was used to identify translocations. 

Additional information about data processing can be found in our previous publication1. 

We added this reference to the Methods section as well. 

 

Previous studies have carefully outlined the importance of driver mutations, CNVs, and 

translocations in the progression of myeloma. However, many of these measurements are 

coarsely described as the presence or absence of a modifying event thresholded by 

statistical significance (e.g., the presence of a KRAS driver mutation in a patient). Many 

clinical data similarly report the presence or absence of important genomic events (i.e., 

FISH for translocations) that are useful for guiding clinical decisions. We decided to 

subtype patients using binarized SNVs, CNVs, and translocations easily standardized in 

different clinical contexts. Recently, Chapuy et al successfully used numerically encoded 

DNA genomic data to identify clinically relevant subtypes of diffuse large B-cell lymphoma 

with consensus non-negative matrix factorization (NMF) of concatenated, multi-omic 

features.2 NMF is widely used as a robust clustering method for sparse data34 We take a 

similar approach but constrain matrix factorization to Bernoulli distributed features (binary 

matrix factorization, BMF) for the binarized nature of this dataset. 

 

We thank the reviewer for the comment about user-defined hyperparameters. We 

performed a downsampling analysis to 1) identify the requisite number of samples for 

stable clustering (i.e., power analysis) and 2) identify the number of clusters patients 

stably group into. As discussed in the original methods, we use variance explained and K-

L divergence when downsampling our primary cohort (n = 214) 100 times for binary 

matrix factorization set to a range of hyperparameter K=2 to 10 (Supp Fig 2A-E). These 

results suggest that 100 samples are necessary for stable clustering and to derive 6 

groups or clusters of samples. We performed consensus clustering using a binary matrix 

factorization with K of 2 through 10, selecting the final 6 clusters based on hierarchical 

clustering of the consensus matrix with Euclidean distance and Ward linkage. We 

assessed binary feature importance by performing a Fisher’s exact test to count feature 

representation within each cluster and outside of this cluster, testing for an equal 

                                                 
1
 Bustoros, Mark, et al. "Genomic profiling of smoldering multiple myeloma identifies patients at a high risk of disease progression." 

Journal of Clinical Oncology 38.21 (2020): 2380. 
2
 Chapuy, Bjoern, et al. "Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms 

and outcomes." Nature medicine 24.5 (2018): 679-690. 
3
 Alexandrov, L. B., Kim, J., Haradhvala, N. J., Huang, M. N., Ng, A. W. T., Wu, Y., ... & Islam, S. A. (2020). The repertoire of 

mutational signatures in human cancer. Nature, 578(7793), 94-101. 
4
 Zavidij, Oksana, et al. "Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of 

multiple myeloma." Nature cancer 1.5 (2020): 493-506. 



proportion. The false discovery rate (FDR) was calculated using the Benjamini-Hochberg 

procedure. 

Many multi-omic and multi-view clustering approaches, including the two sources 

provided by the reviewer, rely on heuristics to select an appropriate number of subtypes. 

 

There are, indeed, a vast number of approaches used for clustering of multi-omic data. 

Rappoport et al5 consider an approach like ours an ―early integration‖ approach, whereby 

we concatenate separate ―omic‖ features and perform clustering on combined feature 

space. ―Late integration‖ approaches cluster data separately for each data type and then 

integrate these results, such as COCA6 and PINS7. These are useful for unifying 

independent clustering done on assays with different distributional assumptions to 

cohesively subtype patients. However, our featurization binarizes genomic events for all 

three modalities (SNVs, CNVs, translocations), and allows us to use a similar clustering 

approach for each these ―omic‖ datasets. Further, we have <=6 translocations available 

due to limitations in clinical FISH measurements, which renders a ―late integration‖ 

approach difficult due to an insufficient number of features. Dimensionality reduction 

algorithms like jointNMF8 and multiNMF9 that perform reduction on each data type 

separately are similarly difficult to apply to our translocation feature space (m=6). Thus, 

identifying an algorithm that can account for translocations, an important alteration in the 

pathogenesis of multiple myeloma, is crucial. 

 

The reviewer points out a probabilistic approach, iCluster10, that computes a low 

dimensionality composition of each data modality with noise modeled explicitly. It uses an 

EM-like algorithm and then K-means on the lower dimension to suggest likely sample 

cluster groupings. iCluster is designed to fit Gaussian distributed data. While we could z-

score CNVs per chromosomal arm using the number of copies, this is not possible for 

FISH translocation data because these assays detect the presence or absence of an 

event. Additionally, methods like iCluster are particularly equipped to handle feature 

selection for high dimensionality ―omic‖ data, such as gene expression. For this study, we 

only had RNA expression data for a subset of patients, which is why transcriptomics is not 

included in clustering of the primary cohort. Finally, the reviewer commented on the use of 

hyperparameters: iCluster is parameterized by the number of subtypes expected, K, and 

its authors suggest using a cluster reproducibility index (RI) as a heuristic for selecting 

this value while partitioning samples into learning and test sets. We uses K-L divergence 

                                                 
5
 Rappoport, Nimrod, and Ron Shamir. "Multi-omic and multi-view clustering algorithms: review and cancer benchmark." Nucleic 

acids research 46.20 (2018): 10546-10562. 
6
 Hoadley  K.A., Yau  C., Wolf  D.M., Cherniack  A.D., Tamborero  D., Ng  S., Leiserson  M.D., NiuB., McLellan M.D., Uzunangelov  

V.et al.  Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 2014; 
158:929–944. 
7
 Nguyen  T., Tagett  R., Diaz  D., Draghici  S. A novel approach for data integration and disease subtyping. Genome Res. 2017; 

27:2025–2039. 
8
 Zhang  S., Liu  C.-C., Li  W., Shen  H., Laird  P.W., Zhou  X.J. Discovery of multi-dimensional modules by integrative analysis of 

cancer genomic data. Nucleic Acids Res. 2012; 40:9379–9391. 
9
 Liu  J., Wang  C., Gao  J., Han  J. Multi-View Clustering via Joint Nonnegative Matrix Factorization. Proc. ICDM ’13. 2013; 

Philadelphia, PASociety for Industrial and Applied Mathematics 252–260. 
10

 Shen, Ronglai, et al. "Integrative subtype discovery in glioblastoma using iCluster." PloS one 7.4 (2012): e35236. 



and explained variance in random downsampling to ensure the robustness of the 

results—both methods require heuristic approaches to select K. Bayesian non-parametric 

models (e.g., the Chinese Restaurant Process11) could potentially be used in future 

analyses to avoid the pitfalls of these approaches for multi-omic data. 

 

Patient similarity-based approaches for clustering, such as similarity network fusion 

(SNF)12,13, have recently shown promise in large-scale multiple myeloma cohorts14. SNF 

constructs similarity networks for each omic separately and proceeds to fuse modalities 

based on an iterative approach. The reviewer points to newer a approach by Ramazzotti 

et al., Cancer Integration via Multi Kernel Learning (CIMLR)15, to perform integrated 

analysis of multi-omic data. CIMLR learns pairwise similarity metrics by combining 

gaussian kernels per ―omic.‖ This results in a similarity matrix that is used for 

dimensionality reduction and k-means clustering. Thus, CIMLR additionally has a cluster 

selection step that requires iterating over a list of values of K based on separation cost to 

multi-omics. Ramazzotti et al use mutation data (binarized) as its input and subsequently 

normalize data so that values range between 0 and 1 for data types, including 

transcription, CNVs, and DNA methylation. For this cohort, such an approach was not 

needed to integrate different data types since all features were binarized. A future 

formulation of CIMLR that does not require fitting Gaussian kernels for data types but 

rather is formulated around Bernoulli distributed data would potentially better fit the need 

of this SMM dataset. Our NMF approach is suited for sparse, non-negative, binarized data 

and cluster stability is described with accompanying downsampling analysis. This 

approach is well suited for the data, disease biology, and potential applications of the 

present study. 

 

This is one of the largest cohorts with genomic data of Smoldering Multiple Myeloma 

patients clinically defined at this precursor stage. As more patient cohorts are gathered 

with additional sequencing assays (e.g., transcriptomics, miRNA, proteomics, chromatin 

accessibility), alternative approaches for multi-omics/multi-view clustering with continuous 

valued data would be a natural next step to understanding the risk of these patients.  

 

 

2) Concerns regarding the significance of translational findings.  

 

The authors limit their analysis to showing statistical significance of survival differences of 

patients, while they should try to validate their results on external datasets; this would be 

                                                 
11

 Blei, David M., Thomas L. Griffiths, and Michael I. Jordan. "The nested chinese restaurant process and bayesian nonparametric 

inference of topic hierarchies." Journal of the ACM (JACM) 57.2 (2010): 1-30. 
12

 Bo  Wang, Jiayan  Jiang, Wei  Wang, Zhi-Hua  Zhou, Zhuowen  Tu Unsupervised metric fusion by cross diffusion. 2012 IEEE 

Conference on Computer Vision and Pattern Recognition. 2012; IEEE2997–3004. 
13

 Wang, Bo, et al. "Similarity network fusion for aggregating data types on a genomic scale." Nature methods 11.3 (2014): 333-

337. 
14

 Bhalla, Sherry, et al. "Patient Similarity Network of Newly Diagnosed Multiple Myeloma Identifies Patient Sub-groups with Distinct 

Genetic Features and Clinical Implications." (2020). 
15

 Ramazzotti, Daniele, et al. "Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival." Nature 

communications 9.1 (2018): 1-14. 



critical in order to prove the translational significance of such results. Ideally, they should 

find at least one cohort of patients from a different dataset and perform external validation 

of their method. Furthermore, an additional analysis could be aimed to cross-validate their 

algorithm by setting aside a random portion of unclustered patients, train the model on 

remaining patients and show that the algorithm is capable of robustly clustering these 

unseen patients into different risk groups.  

 

We thank the Reviewer for their comment and agree completely. To address this, we 

have included two independent validation cohorts. First, we trained a Random Forest 

Classifier and obtained a mean, 5-fold CV training accuracy of 86.7% (+/- 5%) using our 

214 samples and 36 binary features. We then applied this classifier to two cohorts and 

validate the survival effect. We used an external cohort of 75 SMM patients to validate the 

classifier and investigate whether the genetic subtypes were predictive of progression11. 

The patients in this cohort were enriched in the low-risk clinical group and had a median 

time to progression (TTP) of 5 years. Like the primary cohort, patients in the intermediate 

and high-risk genetic subtypes had increased risk of progression to active MM in 

multivariate analysis accounting for the clinical risk group (HR: 4.5 and 9, P = 0.039 and 

0.002, respectively) (Fig A). We found that adding the genetic risk groups improved the 

prediction of progression compared to the clinical-only model (C-index: 0.76 vs 0.65). We 

use an independent, smaller cohort of 67 patients with targeted capture data, including 

common MM translocations, CNAs, and SNVs, to extend our validation cohort. In the 

combined validation cohort of 142 patients, being assigned to the TL1, HL2, HL3, or HL4 

subtypes were independent predictors of progression to active myeloma (Fig B). The 

high-risk genetic subtypes (HL2, HL3, TL1) were associated with increased risk of 

progression in multivariate analysis (HR: 3.4, 95% CI :1.68-6.7). We then asked whether 

combining the three cohorts would provide more power to test the clinical significance of 

our genetic classification. Furthermore, to increase the power of our analysis, we 

combined the three cohorts and found the same effect with greater significance compared 

to our initial findings. The low, intermediate, and high genomic risk groups had a different 

TTP (Fig C), and the high-risk genetic subtypes had significantly shorter TTP compared 

to the low or the intermediate risk groups (Fig D). We also found that both the individual 

genetic subtypes and the genetic risk groups were independent predictors of progression 

in the combined cohort multivariate analysis, validating our initial findings (Fig E and F). 
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Figure legends  

A) Multivariate cox regression analysis of the clinical risk stages and the genetic in the first 

validation cohorts of 75 patients (B) Multivariate cox regression analysis of the clinical risk 

stages and the genetic risk groups according to the IMWG 20/2/20 model in the two validation 

cohorts of 75 patients and 67 patients. C) Kaplan-Meier curves for analysis of TTP in patients 

belonging to the three genetic risk groups of the combined cohort. D) Kaplan-Meier curves for 

analysis of TTP in patients from the 6 genetic subtypes in the combined cohort of 229 patients 

E) Multivariate cox regression analysis of the low, intermediate, and high-risk genetic subtypes 

and clinical risk stages according to the IMWG 20/2/20 model in the primary cohort. F) 

Multivariate cox regression analysis of the low, intermediate, and high-risk genetic subtypes and 

clinical risk stages according to the IMWG 20/2/20 model in the combined cohorts. 

 

 

The new added   paragraph of the results of the validation cohorts are written in the 

results section on page 11 &12: 

“Validation of the molecular subtypes in external cohorts 

To validate our findings on the clinical significance of the genetic subtypes, we developed a 

classifier based on the features of the clusters we identified in our primary cohort. We used an 

external cohort of 75 SMM patients to validate the classifier and investigate whether the genetic 

subtypes are predictive for progression11. The patients in this cohort were enriched in the low-

risk clinical stage and had a median TTP of 5 years. Like the primary cohort, patients in the 

intermediate and high-risk genetic subtypes had increased risk of progression to active MM in 

multivariate analysis accounting for the clinical risk stage (HR: 4.5 and 9, P = 0.039 and 0.002, 

respectively) (Figure 3D). We found that adding the genetic risk groups improved the prediction 

of progression compared to the clinical model only (C-index: 0.76 vs 0.65, respectively). We 

also obtained another smaller cohort of 67 patients with targeted capture data, including 

common MM translocations, CNAs and SNVs, and added it to the previous cohort (cite). In 

those 142 patients, HL2, HL3, HL4, and TL1 subtypes were independent predictors of 

progression to active myeloma (Figure 3E) and the high-risk genetic subtypes were associated 

with increased risk of progression in multivariate analysis (HR: 3.4, 95% CI :1.68-6.7) (Supp. 

Figure 10). We then asked whether combining all the three cohorts would provide more power 

to test the clinical significance of our genetic classification. The combined cohort contained 229 

SMM patients with median follow-up and TTP of 7 and 5 years, respectively. Indeed, the genetic 

subtypes had a different TTP (Figure 3F), and the high-risk genetic subtypes had significantly 

shorter TTP compared to the low or the intermediate risk groups (Figure 3G). We also found 

that both the individual genetic subtypes and the genetic risk groups were independent 

predictors of progression in the combined cohort multivariate analysis, validating our initial 

findings (Figure 3H & Supp. Figure 11).” 

 



Finally, the authors should demonstrate that their algorithm outperforms standard clinical 

characteristics in cross-validated survival analysis, to clearly showcase that their 

expressive model is better than standard predictive metrics used in the clinic.  

 

We thank the reviewer for their comment. As described above, when validating our 

classifier’s results on the two independent validation cohorts, we also stratified patients 

using the current standard-of-care IMWG clinical risk model. We used the C-index statistic 

to assess the performance of the clinical vs the clinical and genetic models in predicting 

progression in both the primary, validation, and the combined cohorts and updated the 

text accordingly. This is described in the Results, under the subheading Validation of the 

molecular subtypes in external cohorts, on page 11-12 (quoted above). 

 

3) Presentation of results.  

 

Overall, I believe the paper would greatly benefit of thoughtful rewriting and improvement 

of main text figures in order to provide a clear description of method and results.  

 

We thank the reviewer for their comment. We have rewritten the main text figures and 

methods section of the paper. Of note, when introducing the methodology used for patient 

subtyping, we provide the rationale for the approach taken in Results on page 6, ―To 

identify these patterns, binarized DNA features (42 driver SNVs, CNVs, and 

translocations) were curated for each sample representing the presence or absence of 

each genomic alteration. Chapuy et al successfully subtyped diffuse B-cell lymphoma 

patients with consensus non-negative matrix (NMF) factorization of numeric DNA 

features. We instead apply consensus BMF for this multi-omics subtyping to 

accommodate these binarized DNA features, appropriately model summative features 

that span multiple subtypes (i.e., hyperdiploidy), and handle sparse matrices (Methods).”  

 

The precise steps taken for subtyping were clarified in Methods on page 17, “We performed 

consensus clustering using a binary matrix factorization with K of 2 through 10, selecting the 

final 6 clusters based on hierarchical clustering of the consensus matrix with Euclidean distance 

and Ward linkage. We assessed binary feature importance by performing a Fisher’s exact test 

to count feature representation within each cluster and outside of this cluster, testing for an 

equal proportion. The false discovery rate (FDR) was calculated using the Benjamini-Hochberg 

procedure.” 

 



Reviewers' Comments: 

 

Reviewer #3: 

Remarks to the Author: 

I believe this revised version of the manuscript to be greatly improved. In particular, I appreciate that 

the authors have now included a validation in external cohort section, which in my opinion provides 

much better support to the results. 

 

Overall, I think they provide reasonable justification for their methodology in the answer to reviewers. 

However, I would ask the authors to also include a short description of such motivations in the main 

text (in the methods section or where they think it best fits) and cite/comment other possible 

approaches (such as iCluster and CIMLR) for subtyping as they have already done answering my 

concern #1. 

 

 

 

Reviewer #4: 

Remarks to the Author: 

Reviewer ‘1B’ comments on revised manuscript and authors’ response to Reviewer 1 

 

Overall: 

I agree this is a good paper, with the extensive revisions showing the predictive benefits of the DNA 

alteration-based clusters in smouldering myeloma, now also in validation cohorts. Their relationship 

with well-known gene expression profile-defined myeloma subgroups is interesting. 

It would benefit from improved figure referencing as per comments below. 

 

Responses to authors’ rebuttals to reviewer 1 comments: 

 

1. I have no problem with this, and agree there are cases with HRD and t(14;20). However please 

note that the extra sentence now added in the manuscript page 6: 

‘The presence of both hyperdiploidy and t(14;20) in the same cluster could be explained by either the 

small number of samples with these alterations as seen in other studies as well, or that in few cases 

they co-occur together. Indeed, half of patients with t(14;20) in our cohort had hyperdiploidy.’ 

Is a little clumsy and not the same as the sentence quoted in your rebuttal 

“The presence of both hyperdiploidy and t(14;20) in the same cluster could be explained by the co-

occurrence of those events as described in prior studies (Walker et al., Blood 2018). Indeed, half of 

patients in our cohort who had t(14;20) also had hyperdiploidy.” 

Which is clearer. 

 

2. No additional comments - thoroughly discussed in revised manuscript. 

Note: Supp Figure S6 is not referenced at all in the main text. 

 

3. Although I can’t really read the genetic event y-axis labels in Fig 1B, the number of MYC 

translocations identified in the whole dataset as per Fig 1B is underwhelming (looks like n=2 in HL3 

and n=2 in TL1)? While MYC TLs are reported in text to be 'significant' in cluster 4/HL3 (note I cannot 

see any evidence for this significance, cannot find in supplements), do 2 cases really convince as 

enrichment in HL3 as suggested? May some MYC complexity be missed by WES/TRS approaches used? 

4/214 is much fewer cases of MYC TL that would be expected in a symptomatic myeloma dataset, and 

although this is a smouldering dataset, this low number should be discussed. I note that when you 

report total MYC aberrations (which presumably includes CNAs), you report incidence of 7/87 9% in 

primary dataset, which increases to 21% on combination with your validation cohorts, highlighting the 

unusual lack of MYC aberrations in your dataset but presence in validation cohorts. For comparison: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923575/ - 24% SMM had MYC SVs on targeted 

sequencing. 



https://www.nature.com/articles/s41467-020-20524-2 - (validation dataset used here) 35% SMM had 

MYC rearrangements on targeted sequencing. 

https://www.nature.com/articles/s41467-018-05058-y - WGS - 5/11 cases showed translocations of 

MYC 

 

4. I agree with reviewer 1 that biologically, findings are compatible with previous work identifying high 

risk in myeloma, rather than identifying novel prognostic biology, and generally support others’ 

findings that SMM is really genetically very similar to symptomatic MM. 

However, I agree with authors that a DNA-only based classifier is helpful as this is more accessible to 

most clinicians than RNASeq. Nonetheless it could still be clearer for the non-expert reader, where 

BMF approach is described early in results, that the transcriptomic data does not contribute to the 

clustering of the primary cohort, particularly as it is referred to as ‘multi-omics’ subtyping: “We 

instead apply consensus BMF for this multi-omics subtyping” - this is a bit misleading. 

 

5. As above, I find the concept that clustering was done using DNA panel-detected genomic events 

helpful, as this is more accessible to most clinicians than RNASeq, in contrast to previously-published 

gene-expression-based clustering, as authors point out. Fig 1C is helpful to this end, as is the 

determination of the minimum classifiers required. 

Supp Fig 5 not referenced in the text? 

 

6. I am happy with this answer and agree the t(14;16) cohort is too small for conclusive association 

analysis. 

 

7. Fine 

 

------------ 

Extra small comments 

 

1. Where clusters are described on page 7, the sentence ‘We named this cluster Translocation-like1 

(TL1).’ Is used in reference to cluster 3 AND cluster 5 - typo. 

2. Gene names Fig 1B are poorly legible 

3. There seems to be an error where Fig. 2 has been updated but the text referring to it has not been? 

2A-E references in the main text do not match and the quoted p values do not match the figure? Also 

confusion between ‘HP’ and ‘HL’ label in legend. 2F/G called ‘FMD’ and ‘CND’ in legend but ‘TL1’ and 

‘TL2’ on the figure is confusing. There are 2 ‘G’s. 

4. Even enlarging 500% on my screen I cannot read the gene names in 2F and G! 

5. Newly added sentence about supp table 4 (mis-referenced as 3) - this table suddenly introduces 

extra validation cohorts before the appropriate text section explaining them, which is confusing 

6. Several of the supp figures are not referenced in the text / not ordered as per reference in text. 

 

 

 

Reviewer #5: 

Remarks to the Author: 

The concerns were addressed satisfactorily. However, it is unclear whether the P values provided for 

the significance of the APOBEC activity signature were adjusted for multiple testing. If not, the authors 

should include the adjusted data. 



Responses to the second round of reviewers’ comments 

Reviewer #3 (Remarks to the Author): 

 

I believe this revised version of the manuscript to be greatly improved. In particular, I 

appreciate that the authors have now included a validation in external cohort section, 

which in my opinion provides much better support to the results. 

 

Overall, I think they provide reasonable justification for their methodology in the answer 

to reviewers. However, I would ask the authors to also include a short description of such 

motivations in the main text (in the methods section or where they think it best fits) and 

cite/comment other possible approaches (such as iCluster and CIMLR) for subtyping as 

they have already done answering my concern #1. 

 

We thank the reviewer for their comment. We added a whole paragraph in the Methods 

section (page 19) where we discussed the clustering approaches for different data types 

and what we used in our current studies as follows: 

“Clustering Approach. A vast number of approaches have been applied to clustering 

multi-omic sequencing data. Late integration algorithms that cluster data types separately 

and then integrate them to a final result, such as COCA and PINS were previously 

described40-42. Dimensionality reduction algorithms such as jointNMF and multiNMF 

similarly factorize each data type separately before final integration43,44. iCluster is a 

probabilistic approach that computes a low dimensionality composition of each data 

modality designed to fit Gaussian distributed data45. However, our translocation 

measurement includes 6 sparse events, rendering any approaches requiring clustering 

of this data type separately or with Gaussian data assumptions difficult to apply. 

Furthermore, our choice of using binarized features (SNVs, CNVs, and translocations) 

allows us to use a simpler, “early integration” approach, where the feature space is 

combined before the algorithm is applied. Future work using patient similarity-based 

approaches, such as similarity network fusion (SNF) or Cancer Integration via Multi 



Kernel Learning (CIMLR) are promising future directions46,47. Formulating these to 

account for Bernoulli distributed translocation data would be ideal for including these 

important drivers of MM pathogenesis. As more SMM patient cohorts are gathered and 

sequenced with transcriptomic, proteomic, and chromatin accessibility data, applying 

patient similarity approaches and algorithms with more appropriate distributional 

assumptions is key. However, our BMF approach is appropriate for sparse, non-negative, 

binarized data curated in this initial cohort.” 

Reviewer #4 

assessed responses to Reviewer's #1 previous requests (Remarks to the Author): 

 

Reviewer ‘1B’ comments on revised manuscript and authors’ response to Reviewer 1 

 

Overall: 

I agree this is a good paper, with the extensive revisions showing the predictive benefits 

of the DNA alteration-based clusters in smouldering myeloma, now also in validation 

cohorts. Their relationship with well-known gene expression profile-defined myeloma 

subgroups is interesting. It would benefit from improved figure referencing as per 

comments below. 

 

Responses to authors’ rebuttals to reviewer 1 comments: 

 

1. I have no problem with this, and agree there are cases with HRD and t(14;20). However 

please note that the extra sentence now added in the manuscript page 6: 

‘The presence of both hyperdiploidy and t(14;20) in the same cluster could be explained 

by either the small number of samples with these alterations as seen in other studies as 

well, or that in few cases they co-occur together. Indeed, half of patients with t(14;20) in 

our cohort had hyperdiploidy.’ 

 

Is a little clumsy and not the same as the sentence quoted in your rebuttal  

 



“The presence of both hyperdiploidy and t(14;20) in the same cluster could be explained 

by the co-occurrence of those events as described in prior studies (Walker et al., Blood 

2018). Indeed, half of patients in our cohort who had t(14;20) also had hyperdiploidy.” 

Which is clearer. 

- We thank the reviewer for their feedback, and we agree with their comments. We 

updated the text as highlighted by the reviewer. 

 

2. No additional comments - thoroughly discussed in revised manuscript.  

Note: Supp Figure S6 is not referenced at all in the main text. 

- We added the reference for Supp Fig 6 in the main text. We changed the order of the 

supplementary figures, so it is now cited in page 8, as Supplementary Figure 2. 

 

3. Although I can’t really read the genetic event y-axis labels in Fig 1B, the number of 

MYC translocations identified in the whole dataset as per Fig 1B is underwhelming (looks 

like n=2 in HL3 and n=2 in TL1)? While MYC TLs are reported in text to be 'significant' in 

cluster 4/HL3 (note I cannot see any evidence for this significance, cannot find in 

supplements), do 2 cases really convince as enrichment in HL3 as suggested? May some 

MYC complexity be missed by WES/TRS approaches used? 4/214 is much fewer cases 

of MYC TL that would be expected in a symptomatic myeloma dataset, and although this 

is a smouldering dataset, this low number should be discussed. I note that when you 

report total MYC aberrations (which presumably includes CNAs), you report incidence of 

7/87 9% in primary dataset, which increases to 21% on combination with your validation 

cohorts, highlighting the unusual lack of MYC aberrations in your dataset but presence in 

validation cohorts. For comparison: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923575/ - 24% SMM had MYC SVs on 

targeted sequencing. 

https://www.nature.com/articles/s41467-020-20524-2 - (validation dataset used here) 

35% SMM had MYC rearrangements on targeted sequencing. 

https://www.nature.com/articles/s41467-018-05058-y - WGS - 5/11 cases showed 

translocations of MYC 

 



- We thank the reviewer for their comment and feedback. We agree with the reviewer that 

we were limited in the detection of MYC translocations as FISH was the method to detect 

in the primary cohort. For MYC CNAs, we were able to detect these aberrations 

confidently as we performed WES in the majority of samples and were also able to call 

the CNAs in the target panels. After performing the binary matrix factorization and 

consensus clustering on the 214 samples, MYC translocation was found to be enriched 

in the HL3 cluster (p = 0.0037, adjusted p = 0.060). As requested, we have provided a 

table of the significantly enriched genetic alterations in each cluster in the new added 

Supplementary table 1B. We agree and acknowledge that although this feature was 

statistically significant based on our preassigned cutoffs for p and q values outlined in the 

methods section, the small number prevents a definitive conclusion. To address this 

limitation, we added the following paragraph in the discussion section highlighting the 

limitations of the study (page 15). “Another limitation is that we depended on FISH studies 

in assessing MYC translocations in the primary cohort. FISH studies are less sensitive in 

detecting MYC translocations compared to novel targeted sequencing panels. Indeed, 

the validation cohorts, which used a targeted NGS panel in detecting MYC alterations, 

had more events compared to ours, suggesting that further studies that detect MYC with 

next generation sequencing panels in SMM are needed to delineate the characteristics 

of tumors harboring this important feature. However, MYC alterations was a prognostic 

factor for progression in the primary and second validation cohorts, as well as the 

combined cohort.” 

 

 

4. I agree with reviewer 1 that biologically, findings are compatible with previous work 

identifying high risk in myeloma, rather than identifying novel prognostic biology, and 

generally support others’ findings that SMM is really genetically very similar to 

symptomatic MM.  

However, I agree with authors that a DNA-only based classifier is helpful as this is more 

accessible to most clinicians than RNASeq. Nonetheless it could still be clearer for the 

non-expert reader, where BMF approach is described early in results, that the 

transcriptomic data does not contribute to the clustering of the primary cohort, particularly 



as it is referred to as ‘multi-omics’ subtyping: “We instead apply consensus BMF for this 

multi-omics subtyping” - this is a bit misleading. 

- We thank the reviewer for their note and we updated the text and remove multiomics 

subtyping to avoid confusion. We also previously provided Figure 1A as a scheme for our 

approach. 

 

5. As above, I find the concept that clustering was done using DNA panel-detected 

genomic events helpful, as this is more accessible to most clinicians than RNASeq, in 

contrast to previously-published gene-expression-based clustering, as authors point out. 

Fig 1C is helpful to this end, as is the determination of the minimum classifiers required.  

Supp Fig 5 not referenced in the text? 

- We are glad we addressed the reviewer’s comments and we also now updated the text 

to reference Supp Fig 5. We changed the order of the supplementary figures, so it is now 

cited in page 11, as Supplementary Figure 4. 

 

6. I am happy with this answer and agree the t(14;16) cohort is too small for conclusive 

association analysis. 

 

7. Fine 

 

------------ 

Extra small comments  

 

1. Where clusters are described on page 7, the sentence ‘We named this cluster 

Translocation-like1 (TL1).’ Is used in reference to cluster 3 AND cluster 5 - typo. 

- We fixed this typo and updated the text accordingly. 

 

2. Gene names Fig 1B are poorly legible 

- We have uploaded high resolution files for all the main figures, and they will be available 

with the revised manuscript. 

 



3. There seems to be an error where Fig. 2 has been updated but the text referring to it 

has not been? 2A-E references in the main text do not match and the quoted p values do 

not match the figure? Also confusion between ‘HP’ and ‘HL’ label in legend. 2F/G called 

‘FMD’ and ‘CND’ in legend but ‘TL1’ and ‘TL2’ on the figure is confusing. There are 2 ‘G’s. 

- We thank the reviewer for this note. We now corrected all the mentioned typos.  

 

4. Even enlarging 500% on my screen I cannot read the gene names in 2F and G! 

- We have uploaded high resolution file for all the main figures, and they will be available 

with the revised manuscript. 

 

5. Newly added sentence about supp table 4 (mis-referenced as 3) - this table suddenly 

introduces extra validation cohorts before the appropriate text section explaining them, 

which is confusing 

- We thank the reviewer for noting this issue. We fixed the order and numbering of the 

supplementary tables and figures.  We removed this referenced table from the above-

mentioned paragraph and it is now referenced as supplementary table 4 when we 

introduced the validation cohorts in page 12.  

 

6. Several of the supp figures are not referenced in the text / not ordered as per reference 

in text. 

- We changed the order of the supplementary figures and tables, and they are all now 

referenced in the updated manuscript and methods section.  

Reviewer #5 

assessed responses to Reviewer's #2 previous requests (Remarks to the Author): 

 

The concerns were addressed satisfactorily. However, it is unclear whether the P values 

provided for the significance of the APOBEC activity signature were adjusted for multiple 

testing. If not, the authors should include the adjusted data. 



- We are glad we satisfactorily addressed the reviewer’s comments and thank them for 

feedback. We provide both the naive and adjusted p values to the updated text in page 

9. 

 


