Supporting Information:

Investigating the $A_{n+1}B_nX_{3n+1}$ Homologous Series: A New Platform for Studying Magnetic Praseodymium Based Intermetallics

Trent M. Kyrk,¹ Moises Bravo,¹ Gregory T. McCandless,¹ Saul H. Lapidus,² and Julia Y Chan^{1*} ¹ Department of Chemistry & Biochemistry, Baylor University, Waco, Texas 76798, United States ² X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States

Disorder Model for Pr₄Co_{3+x}Ge_{10-y}Sn_y and Pr₅Co_{4+x}Ge_{13-y}Sn_y

The disorder of the Pr2 local environment in $Pr_4Co_{3+x}Ge_{10-y}Sn_y$ and Pr1/Pr3 environment in $Pr_5Co_{4+x}Ge_{13-y}Sn_y$ were modelled as a mixture of Sn and Co-Ge dimers with Co vacancies. The total occupancy of all configurations was constrained to unity, since without this constraint total occupancy remained approximately 98%. Additionally, without either the Co-Ge dimer or Sn atom a void of approximately 10 x 4 x 4 Å³ would remain, which without distortions occurring elsewhere in the structure is chemically unreasonable in an intermetallic system. Additionally, the atomic displacement parameters of Co, Ge, and Sn were set equal to prevent unrealistic features, such as overlapping atomic positions. Mixing of Ge and Sn was considered on the Sn sites of both structures but did not result in significant improvement in the refinement quality.

Empirical formula	$Pr_4Co_{3.25(3)}Ge_{9.50(1)}Sn_{0.469(4)}$	$Pr_5Co_{4.22(2)}Ge_{12.48(1)}Sn_{0.519(7)}$		
Space group	<i>Cmcm</i> (no. 63)	<i>Cmmm</i> (no. 65)		
Lattice parameters				
$a(\text{\AA})$	4.3091(12)	4.2899(9)		
$b(\text{\AA})$	35.750(9)	45.487(8)		
$c(\text{\AA})$	4.2807(11)	4.3115(7)		
Volume [Å ³]	659.4(3)	841.3(3)		
Z	2	2		
Density [g/cm ³]	7.575	7.583		
Absorption coefficient [mm ⁻¹]	40.59	40.82		
<i>F</i> (000)	1306	1669		

 Table S1. Crystallographic Data, Data Collection, and Refinement Parameters

Crystal size [mm ³]	0.01 x 0.01 x 0.02	0.02 x 0.12 x 0.14		
θ range [°]	2.3 - 30.4	2.7 - 30.5		
Index range				
h	$-6 \rightarrow 6$	$-6 \rightarrow 6$		
k	$-50 \rightarrow 50$	$-64 \rightarrow 64$		
1	$-6 \rightarrow 6$	$-6 \rightarrow 6$		
Number of reflections	10797	16553		
Unique reflections	630	817		
parameters/restraints	42/2	55/2		
R _{int}	0.052	0.072		
$\Delta \rho_{\text{max/min}} (e^{-/\text{Å}^3})$	1.81/-2.41	3.21/-3.40		
GoF	1.13	1.16		
$R\left[F^2 > 2\sigma(F^2)\right]$	0.033	0.033		
$WR_2(F^2)$	0.068	0.094		
$R = \sum F_o - F_c / \sum F_o \text{ and } wR_2 = \left\{ \sum w \left[(F_o)^2 - (F_c)^2 \right]^2 / \sum w \left[(F_o)^2 \right]^2 \right\}^{1/2}$				

Site Label	Wyckoff	X	У	Ζ	$U_{\rm eq}({\rm \AA}^2)$	Occupancy
Eu ₄ Ni _{2.98(2)} Sn ₁₀ ¹						
Eu1	4 <i>c</i>	0	0.81769(1)	1/4	0.0123(1)	1
Eu2	4 <i>c</i>	0	0.54802(1)	1/4	0.0129(1)	1
Ni2	4 <i>c</i>	0	0.91216(3)	1/4	0.0111(3)	1
Sn1	4 <i>c</i>	0	0.97762(2)	1/4	0.0138(2)	1
Sn2	4 <i>c</i>	0	0.25017(3)	1/4	0.0258(2)	1
Sn3	4 <i>c</i>	0	0.38403(2)	1/4	0.0137(2)	1
Sn4	4 <i>c</i>	0	0.115188(2)	1/4	0.0135(2)	1
Ni1	4 <i>c</i>	0	0.72828(7)	1/4	0.0185(15)	0.482(7)
Sn5A	4 <i>c</i>	0	0.66797(5)	1/4	0.0143(2)	0.528(2)
Sn5B	4 <i>c</i>	0	0.68132(5)	1/4	0.0143(2)	0.472(2)
Pr ₄ Co _{3.25(3)} G	e9.50(1)Sn0.469(4	4)				
Pr1	4 <i>c</i>	0	0.81937(2)	1/4	0.01133(18)	1
Pr2	4 <i>c</i>	0	0.54728(2)	1/4	0.00817(17)	1
Co2	4 <i>c</i>	0	0.91305(5)	1/4	0.0076(3)	1
Gel	4 <i>c</i>	0	0.97881(4)	1/4	0.0084(3)	1
Ge2	4 <i>c</i>	0	0.25012(4)	1/4	0.0124(3)	1
Ge3	4 <i>c</i>	0	0.38576(4)	1/4	0.0096(3)	1
Ge4	4 <i>c</i>	0	0.11415(4)	1/4	0.0095(3)	1
ColA	4 <i>c</i>	0	0.72387(11)	1/4	0.0139(4)	0.577(7)
Ge5A	4 <i>c</i>	0	0.66098(9)	1/4	0.0139(4)	0.667(3)
Co1B	4 <i>c</i>	0	0.6386(8)	1/4	0.0139(4)	0.050(6)
Ge5B	4 <i>c</i>	0	0.7010(6)	1/4	0.0139(4)	0.084(3)
Sn1	4 <i>c</i>	0	0.68013(16)	1/4	0.0139(4)	0.248(2)

Table S2. Atomic Coordinates and Displacement Parameters for $Pr_4Co_{3+x}Ge_{10-y}Sn_y$ Compared to <u>Eu₄Ni_{4-x}Sn₁₀</u>

$Ce_5Co_{4+x}Ge_1$	3-ySny						
Site Label	Wyckoff	X	У	Ζ	$U_{\rm eq}({\rm \AA}^2)$	Occupancy	
Ce ₅ Co _{4.44} Ge _{12.44} Sn _{0.56} ²							
Cel	4 <i>j</i>	0	0.39185(2)	1/2	0.00763(19)	1	
Ce2	4 <i>i</i>	0	0.21286(2)	0	0.00650(18)	1	
Ce3	2 <i>a</i>	0	0	0	0.0098(2)	1	
Col	4 <i>j</i>	0	0.31873(3)	1/2	0.0055(3)	1	
Gel	4 <i>j</i>	0	0.05303(3)	1/2	0.0098(2)	1	
Ge2	4 <i>j</i>	0	0.16017(2)	1/2	0.0074(2)	1	
Ge3	4 <i>j</i>	0	0.26676(2)	1/2	0.0061(2)	1	
Ge5	4 <i>i</i>	0	0.33979(2)	0	0.0071(2)	1	
Ge6	4 <i>i</i>	0	0.44698(3)	0	0.0100(3)	1	
Co2	4 <i>i</i>	0	0.07341(4)	0	0.0107(4)	0.866(6)	
Ge4	4 <i>i</i>	0	0.12335(5)	0	0.0099(3)	0.866(6)	
Sn1	4 <i>i</i>	0	0.1081(3)	0	0.020(2)	0.134(6)	
Co3	4 <i>j</i>	1/2	0.03342(10)	1/2	0.0139(5)	0.3560(16)	
Ge7	4 <i>j</i>	1/2	-0.01576(8)	1/2	0.0139(5)	0.3560(16)	
Sn2	2 <i>c</i>	1/2	0	1/2	0.0139(5)	0.288(3)	
Pr ₅ Co _{4.22(2)} G	Ge _{12.48(1)} Sn _{0.519}	(7)					
Pr1	4 <i>j</i>	0	0.39170(2)	1/2	0.00680(19)	1	
Pr2	4 <i>i</i>	0	0.21302(2)	0	0.00550(18)	1	
Pr3	2 <i>a</i>	0	0	0	0.0087(2)	1	
Col	4 <i>j</i>	0	0.31849(3)	1/2	0.0047(3)	1	
Gel	4 <i>j</i>	0	0.05311(3)	1/2	0.0094(3)	1	
Ge2	4 <i>j</i>	0	0.16042(2)	1/2	0.0064(2)	1	
Ge3	4 <i>j</i>	0	0.26668(2)	1/2	0.0055(2)	1	
Ge5	4 <i>i</i>	0	0.33959(2)	0	0.0060(2)	1	
Ge6	4 <i>i</i>	0	0.44685(2)	0	0.0096(3)	1	

Table S3. Atomic Coordinates and Displacement Parameters for $Pr_5Co_{4+x}Ge_{13-y}Sn_y$ Compared to <u>Ce₅Co_{4+x}Ge_{13-y}Sn_y</u>

Co2	4 <i>i</i>	0	0.07342(4)	0	0.0090(3)	0.829(5)
Ge4	4 <i>i</i>	0	0.12331(3)	0	0.0090(3)	0.8756(17)
Sn1	4 <i>i</i>	0	0.10813(13)	0	0.0090(3)	0.1244(17)
Co3	4 <i>j</i>	1/2	0.03376(13)	1/2	0.0132(5)	0.282(5)
Ge7	4 <i>j</i>	1/2	-0.01560(8)	1/2	0.0132(5)	0.3651(11)
Sn2	2 <i>c</i>	1/2	0	1/2	0.0132(5)	0.270(2)

References

- Harmening, T.; Eul, M.; Pöttgen, R., Nickel-deficient Stannides Eu₂Ni_{2-x}Sn₅ Structure, Magnetic Properties, and Mössbauer Spectroscopic Characterization. *Z. Naturforsch. B: Chem. Sci.* 2009, *64*, 1107-1114.
- 2. Weiland, A.; Wei, K.; McCandless, G. T.; Baumbach, R. E.; Chan, J. Y., Fantastic n = 4: Ce₅Co_{4+x}Ge_{13-y}Sn_y of the A_{n+1}M_nX_{3n+1} Homologous Series. *J. Chem. Phys.* **2021**, *154*, 114707.