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 Meta-matching as a simple framework to translate phenotypic 

predictive models from big to small data 

Supplementary Materials 
This supplemental material is divided into Supplemental Methods, Supplemental Tables and 

Supplemental Figures.  

 

Supplementary Methods 
This section provides additional implementation details of the meta-matching. Section S1 

provides details about meta-matching with DNN. Section S2 provides details about meta-

matching with DNN finetuning. 

 

S1. Details about basic meta-matching (DNN) 

In this section, we provide implementation details of DNN, which we utilized for basic meta-

matching (DNN), as well as both advanced meta-matching algorithms. 

• The DNN we considered is a generic feedforward neural network, which was 

implemented with default libraries (class "nn.Linear") in PyTorch1.  

• The loss function was MSE (mean squared error) loss. The output layer has 33 nodes, 

which is the number of training meta-set non-brain-imaging phenotypes (phenotypes). 

• We used the HORD algorithm2, 3, 4 to automatically tune the hyperparameters using 

the validation set (N = 5370) within the training meta-set. By setting a specific search 

range for multiple hyperparameters, the HORD algorithm was able to tune these 

hyperparameters within these ranges automatically. HORD does not perform well 

when there are too many hyperparameters to tune. Therefore, several hyperparameters 

were set based on our manual tuning using the training meta-set. These 

 
1 Paszke, A., Chanan, G., Lin, Z., Gross, S., Yang, E., Antiga, L., Devito, Z., 2017. Automatic differentiation in 
PyTorch. Adv. Neural Inf. Process. Syst. 30 1–4. 
2 Eriksson, D., Bindel, D., Shoemaker, C.A., 2019. pysot: Surrogate Optimization Toolbox [WWW Document]. 
GitHub. URL https://github.com/dme65/pySOT 
3 Ilievski, I., Akhtar, T., Feng, J., Shoemaker, C.A., 2017. Efficient hyperparameter optimization of deep 
learning algorithms using deterministic RBF surrogates, in: 31st AAAI Conference on Artificial Intelligence, 
AAAI 2017. pp. 822–829. 
4 Regis, R.G., Shoemaker, C.A., 2013. Combining radial basis function surrogates and dynamic coordinate 
search in high-dimensional expensive black-box optimization. Eng. Optim. 45, 529–555. 
https://doi.org/10.1080/0305215X.2012.687731 
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hyperparameters were stochastic gradient descent (SGD) with 0.9 momentum, 128 for 

batch size and Xavier uniform for weight initialization.  

• Table S4 shows the search ranges of hyperparameters tuned by the HORD algorithm. 

We ran 200 HORD evaluation rounds. For each HORD evaluation round, 1000 

epochs were run. DNN was trained on the training set (within the training meta-set) 

and evaluated on the validation set (within the training meta-set) for each epoch. The 

epoch with the best coefficient of determination (COD) on the validation set was 

chosen as the optimal epoch. 

 

Hyperparameter tuned Range 
Number of layers 2 to 5 
Number of nodes for each layer (separately) 2 to 512 
Dropout rate 0 to 0.8 
Starting learning rate 1e-2 to 1e-4 
Epochs to decrease the learning rate 10 to 1000 
Weight decay rate 1e-3 to 1e-7 

 

Table S4. Search ranges of hyperparameters tuned by the HORD algorithm. 
 

• Table S5 shows the final set of hyperparameters estimated by the HORD algorithm. 

The final DNN structure is a 4-layer DNN. The optimal epoch on the validation set is 

118 epochs. After we obtained the best DNN on the training meta-set, we applied the 

trained DNN to the test meta-set. 

 

Hyperparameter Value 
Number of layers 4 
Number of nodes for each layer (separately) 87/386/313/33 
Dropout rate 0.242 
Starting learning rate 3.646e-03 
Epochs to decrease learning rate 312 
Weight decay rate 8.447e-04 

 
Table S5. Final DNN hyperparameters estimated by the HORD algorithm. 
 
S2. Lists of selected and removed UK Biobank non-brain-imaging phenotypes 

We performed phenotype selection using kernel ridge regression (KRR) with 1000 randomly 

selected subjects. Here we include the full list of selected and removed UK Biobank 

phenotype (Data-Field) ID. 
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• 265 phenotypes have been selected: [age5, 3, 31, 46, 47, 48, 49, 50, 77, 78, 93, 94, 95, 

102, 129, 130, 135, 137, 398, 404, 709, 767, 777, 845, 864, 1070, 1090, 1160, 1578, 

1588, 1845, 2946, 3062, 3063, 3064, 3085, 3143, 3144, 3147, 3148, 3659, 4079, 

4080, 4100, 4101, 4104, 4105, 4106, 4119, 4120, 4123, 4124, 4125, 4138, 4143, 

4144, 4145, 4146, 4194, 4230, 4250, 4253, 4255, 4256, 4286, 4288, 4289, 4429, 

4440, 5089, 5100, 5101, 5106, 5109, 5114, 5115, 5157, 5162, 5257, 5262, 5263, 

5306, 5983, 5984, 5986, 6032, 6033, 6333, 6348, 6373, 6374, 6382, 6772, 6773, 

12143, 12144, 12336, 12340, 20007, 20008, 20009, 20015, 20016, 20023, 20075, 

20127, 20133, 20149, 20150, 20151, 20153, 20155, 20156, 20157, 20159, 20161, 

20162, 20195, 20200, 20229, 20230, 21001, 21002, 21003, 21004, 21621, 21631, 

21651, 21663, 21664, 21671, 21811, 21821, 21822, 21825, 21831, 21834, 21842, 

21851, 21861, 21862, 21863, 21864, 21865, 21866, 21871, 22003, 22009, 22022, 

22023, 22670, 22671, 22672, 22673, 22674, 22675, 22676, 22677, 22678, 22679, 

22680, 22681, 22702, 22704, 23098, 23099, 23100, 23101, 23102, 23104, 23105, 

23106, 23107, 23108, 23109, 23110, 23111, 23112, 23113, 23114, 23115, 23116, 

23117, 23118, 23119, 23120, 23121, 23122, 23123, 23124, 23125, 23126, 23127, 

23128, 23129, 23130, 23323, 23324, 24508, 26410, 26414, 30002, 30010, 30012, 

30020, 30022, 30030, 30032, 30040, 30042, 30050, 30052, 30062, 30072, 30080, 

30082, 30090, 30102, 30122, 30132, 30142, 30152, 30162, 30180, 30182, 30192, 

30202, 30212, 30222, 30240, 30242, 30250, 30252, 30262, 30270, 30272, 30280, 

30282, 30290, 30292, 30300, 30302, 30502, 30512, 30522, 30532, 30620, 30630, 

30650, 30670, 30700, 30720, 30730, 30740, 30750, 30760, 30770, 30790, 30800, 

30830, 30840, 30850, 30870, 30880, 40008]  

• 436 phenotypes have been removed: [4, 5, 6, 84, 87, 189, 399, 400, 403, 630, 699, 

757, 796, 874, 884, 894, 904, 914, 1080, 1568, 1598, 1807, 1873, 1883, 2139, 2149, 

2217, 2355, 2405, 2867, 2887, 2897, 2926, 2966, 3083, 3084, 3137, 3526, 3761, 

3786, 3809, 4139, 4140, 4141, 4195, 4196, 4233, 4241, 4244, 4254, 4282, 4283, 

4285, 4290, 4407, 4418, 4609, 4620, 4700, 5057, 5084, 5085, 5086, 5087, 5088, 

5096, 5097, 5098, 5099, 5102, 5103, 5104, 5105, 5107, 5108, 5110, 5111, 5112, 

5113, 5116, 5117, 5118, 5119, 5132, 5133, 5134, 5135, 5156, 5158, 5159, 5160, 

5161, 5163, 5198, 5201, 5208, 5221, 5237, 5251, 5254, 5255, 5256, 5264, 5265, 

 
5 Age was computed by date of attending assessment centre (Data-Field 53) - birth year (Data-Field 34) and 
month (Data-Field 52), since date of birth (Data-Field 33) is restricted. 
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5276, 5292, 5375, 5386, 5993, 6022, 6038, 6039, 6349, 6350, 6351, 6383, 12338, 

12654, 20006, 20019, 20021, 20022, 20074, 20128, 20132, 20134, 20135, 20136, 

20137, 20138, 20154, 20191, 20240, 20247, 20248, 20400, 20420, 20433, 20434, 

20442, 20455, 21021, 21611, 21622, 21625, 21634, 21642, 21661, 21662, 21665, 

21666, 21836, 21838, 22004, 22005, 22024, 22025, 22026, 22033, 22034, 22037, 

22038, 22039, 22040, 22507, 22700, 23321, 23322, 24003, 24004, 24005, 24006, 

24007, 24008, 24010, 24011, 24012, 24016, 24017, 24018, 24019, 24020, 24021, 

24022, 24023, 24024, 24500, 24501, 24502, 24503, 24504, 24505, 24506, 24507, 

26411, 26412, 26413, 26415, 26416, 26417, 26427, 26428, 26429, 26430, 26431, 

26432, 26433, 26434, 30000, 30060, 30070, 30092, 30100, 30110, 30112, 30120, 

30130, 30140, 30150, 30160, 30172, 30190, 30200, 30210, 30220, 30232, 30260, 

30600, 30601, 30610, 30611, 30621, 30631, 30640, 30641, 30651, 30660, 30661, 

30671, 30680, 30681, 30690, 30691, 30701, 30710, 30711, 30721, 30731, 30741, 

30751, 30761, 30771, 30780, 30781, 30791, 30801, 30810, 30811, 30820, 30821, 

30831, 30841, 30851, 30860, 30861, 30871, 30881, 30890, 30891, 30897, 40005, 

40009, 42014, 90010, 90011, 90012, 90013, 90019, 90020, 90021, 90022, 90023, 

90024, 90025, 90027, 90028, 90029, 90030, 90031, 90032, 90033, 90034, 90035, 

90036, 90037, 90038, 90039, 90040, 90041, 90042, 90043, 90044, 90045, 90046, 

90047, 90048, 90049, 90050, 90051, 90052, 90053, 90054, 90055, 90056, 90057, 

90058, 90059, 90060, 90061, 90062, 90063, 90064, 90065, 90066, 90067, 90068, 

90069, 90070, 90071, 90072, 90073, 90074, 90075, 90076, 90077, 90078, 90079, 

90080, 90081, 90082, 90083, 90086, 90087, 90088, 90089, 90091, 90092, 90093, 

90094, 90095, 90096, 90097, 90098, 90099, 90100, 90101, 90102, 90103, 90104, 

90105, 90106, 90107, 90108, 90109, 90110, 90111, 90112, 90113, 90114, 90115, 

90116, 90117, 90118, 90119, 90120, 90121, 90122, 90123, 90124, 90125, 90126, 

90127, 90128, 90129, 90130, 90131, 90132, 90133, 90134, 90135, 90136, 90137, 

90138, 90139, 90140, 90141, 90142, 90143, 90144, 90145, 90146, 90159, 90160, 

90161, 90162, 90163, 90164, 90165, 90166, 90167, 90168, 90169, 90170, 90171, 

90172, 90173, 90174, 90175, 90176, 90177, 90179, 90182, 90183, 90184, 90185, 

90186, 90187, 90188, 90189, 90190, 90191, 90192, 90193, 90194, 90195, 110006] 
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S3. Details about advanced meta-matching (finetune) 

In this section, we provide implementation details of advanced meta-matching (finetune). The 

trained DNN (previous section) was applied to the K participants in the test meta-set. For a 

given test meta-set phenotype,  

• The best DNN output that gave the best prediction for the test phenotype (based on 

the K participants) was selected  

• We took the trained DNN and removed all output nodes except the best DNN output 

node (selected in the previous step). We then performed finetuning on this DNN 

using the K participants. The loss function was MSE (mean squared error) loss. The 

evaluation metric was COD. 

• Finetuning was only performed on the weights of the last two layers. The weights of 

the earlier layers were frozen. We split the K subjects into training and validation sets 

(4:1 ratio). We ran the finetuning for 100 epochs using the training set and checked 

the performance in the validation set every 10 epochs. The DNN from the epoch with 

the best performance in the validation set was used for predicting the phenotype in 

the remaining 10,000 – K participants. If the performance in the validation set was 

worse than the original DNN (without finetuning), then we simply applied the 

original DNN to the remaining 10,000 – K participants. We did not perform cross-

validation like the classical (KRR) baseline, because the runtime would be increased 

multiple folds. 

• Furthermore, because of the small number of participants K, we decided not to 

optimize the hyperparameters of the finetuning procedure for fear of overfitting. 

Optimizing the hyperparameters would also be computationally too expensive. More 

specifically, it took 6 days (on one GPU) to run 34 meta-set phenotypes for 100 

repetition of K-shots across different values of K. Optimizing the hyperparameters 

using HORD would dramatically increase the runtime to 6 x 200 = 1200 days (since 

we utilized 200 HORD rounds).  

• Therefore, we simply set the hyperparameters to the following generic values: 

stochastic gradient descent (SGD) with 0.9 momentum. The learning rate was set to 

be 1e-3. The batch size was set to be the minimum of K and 32. So if K was less than 

32, the batch size was set to be K. Otherwise, the batch size was set to be 32. 
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Supplementary Tables 

Label Description 
ECG C1 ECG measures principal component 1 

Sex sex 
Sex G C2 genotype sex inference principal component 2 
Body C2 anthropometry principal component 2 
Grip C1 hand grip strength principal component 1 
Body C1 anthropometry principal component 1 
Bone C3 bone-densitometry of heel principal component 3 

BP eye C4 blood pressure & eye measures principal component 4 
Matrix C1 matrix pattern completion principal component 1 
#Mem C1 numeric memory principal component 1 
Matrix C2 matrix pattern completion principal component 2 
Fluid Int. fluid intelligence 
Hearing hearing signal-to-noise-ratio (snr) of triplet (left) 

Illness C1 non-cancer illness principal component 1 
#household number of people in household 
Time TV time spent watching television (tv) per day 

BP eye C2 blood pressure & eye measures component 2 
Body C3 anthropometry principal component 3 
ECG C6 ECG measures principal component 6 
ECG C2 ECG measures principal component 2 

Illness C4 non-cancer illness principal component 4 
Smoke C1 smoke principal component 1 
BP eye C3 blood pressure & eye measures principal component 3 
BP eye C6 blood pressure & eye measures principal component 6 
Urine C1 urine assays principal component 1 
Sex G C1 genotype sex inference principal component 1 
Bone C1 bone-densitometry of heel principal component 1 

Matrix C3 matrix pattern completion principal component 3 
Time walk number of days walked 10+ minutes per week 
BP eye C5 blood pressure & eye measures principal component 5 
ECG C3 ecg measures principal component 3 

Genetic C1 genetic principal components and heterozygosity principal component 1 
Sleep sleep duration per day 

 
Table S1. Dictionary of 33 training meta-set non-brain-imaging phenotypes. For UK 
Biobank IDs, please see GITHUB_LINK. 
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Label Description 

Alcohol 3 average weekly beer plus cider intake 
Blood C2 blood assays principal component 2 
Breath C1 spirometry principal component 1 

Age age 
Cancer C1 cancer principal component 1 
Carotid C1 carotid ultrasound principal component 1 
Match-o pairs matching online 
Trail C1 trail making principal component 1 

Digit-o C1 symbol digit substitution online principal component 1 
Digit 1 symbol digit substitution principal component 1 
Match pairs matching 

ProMem C1 prospective memory principal component 1 
RT C1 reaction time principal component 1 

Trail-o C1 trail making online principal component 1 
Tower C1 tower rearranging principal component 1 
Family C1 family history (parent's age) principal component 1 
Blood C5 blood assays principal component 5 
Dur C4 process durations principal component 4 
Dur C2 process durations principal component 2 
Loc C1 location principal component 1 
Dur C1 process durations principal component 1 

Digit-o C6 symbol digit substitution online principal component 6 
Trail-o C4 trail making online principal component 4 
Blood C4 blood assays principal component 4 
Alcohol 2 average weekly champagne plus white wine intake 
Carotid C5 carotid ultrasound principal component 5 
Time drive time spent driving per day 

Travel frequency of travelling from home to job workplace per week 
Work weekly length of working hour for main job 

Age edu age completed full time education 
Deprive C1 multiple deprivation principal component 1 
Blood C3 blood assays principal component 3 
Alcohol 1 average monthly spirits intake 

Neuro neuroticism score 
Table S2. Dictionary of 34 test meta-set non-brain-imaging phenotypes. For UK Biobank 
IDs, please see GITHUB_LINK. 
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Description HCP field 
Visual Episodic Memory PicSeq_Unadj 

Cognitive Flexibility (DCCS) CardSort_Unadj 
Inhibition (Flanker Task) Flanker_Unadj 

Fluid Intelligence (PMAT) PMAT24_A_CR 
Vocabulary (Pronunciation) ReadEng_Unadj 

Vocabulary (Picture Matching) PicVocab_Unadj 
Processing Speed ProcSpeed_Unadj 
Delay Discounting DDic_AUC_40K 
Spatial Orientation VSPLOT_TC 

Sustained Attention – Spec. SCPT_SPEC 
Working Memory (List Sorting) ListSort_Unadj 

Cognitive Status (MMSE) MMSE_Score 
Sleep Quality (PSQI) PSQI_Score 
Walking Endurance Endurance_Unadj 

Walking Speed GaitSpeed_Unadj 
Manual Dexterity Dexterity_Unadj 

Grip Strength Strength_Unadj 
Taste Intensity Taste_Unadj 

Emotional Face Matching Emotion_Task_Face_Acc 
Arithmetic Language_Task_Math_Avg_Difficulty_Level 

Story Comprehension Language_Task_Story_Avg_Difficulty_Level 
Relational Processing Relational_Task_Acc 

Working Memory (N-back) WM_Task_Acc 
Agreeableness (NEO) NEOFAC_A 

Openness (NEO) NEOFAC_O 
Conscientiousness (NEO) NEOFAC_C 

Extraversion (NEO) NEOFAC_E 
Anger – Aggression AngAggr_Unadj 

Fear – Affect FearAffect_Unadj 
Sadness Sadness_Unadj 

Life Satisfaction LifeSatisf_Unadj 
Meaning & Purpose MeanPurp_Unadj 

Loneliness Loneliness_Unadj 
Perceived Stress PercStress_Unadj 

Self-Efficacy SelfEff_Unadj 
Table S3. Dictionary of 35 HCP non-brain-imaging phenotypes and corresponding 
descriptive labels used in the manuscript. 
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Supplementary Figures 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Quantifying low dimensionality of 67 UK Biobank non-brain-imaging 
phenotypes. (A) Top 14 principal components were sufficient to explain 50% of the variance 
among 67 UK Biobank non-brain-imaging phenotypes (N = 36,848). We applied principal 
component analysis to 67 non-brain-imaging phenotypes. Horizontal axis is the number of 
principal components. Vertical axis is the cumulative variance explained. (B) Maximum 
absolute correlation between UK Biobank phenotypes and randomly selected sets of 
phenotypes (N = 36,848). For each of 67 UK Biobank phenotypes, we randomly selected N 
phenotypes from remaining 66 phenotypes. Maximum absolute correlation with the N 
random phenotypes were computed. This procedure was repeated 100 times. Y axis is the 

(A) 

(B) 
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maximum absolute correlation averaged across the 100 repetitions. For each boxplot, the 
horizontal line indicates the median and the black triangle indicates the mean. The bottom 
and top edges of the box indicate the 25th and 75th percentiles respectively. Whiskers 
correspond to 1.5 times the interquartile range. Outliers are defined as data points beyond 1.5 
times the interquartile range. The maximum correlation increased with more phenotypes in 
the random phenotype set, but the improvement tapers off at around 20 phenotypes. The very 
wide quantiles in the boxplots suggest that certain phenotypes were much strong correlated 
with other phenotypes.  
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Figure S2. Absolute Pearson’s correlation among 33 non-brain-imaging phenotypes in 
the training meta-set in the UK Biobank.  
 



He et al. Meta-matching 

12 
 

 
 
Figure S3. Absolute Pearson’s correlation among 34 non-brain-imaging phenotypes in 
the test meta-set in the UK Biobank. 
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Figure S4. Meta-matching outperformed classical kernel ridge regression (KRR) 
baseline in the UK Biobank (N = 10,000 – K). (A) Prediction performance (Pearson's 
correlation) with different number of participants. This plot is the same as Figure 4A, but the 
boxplots now show the bootstrap distribution of each approach based on 1000 bootstrapped 
samples. The triangles show the average performance (Pearson’s correlation) of 34 non-
brain-imaging phenotypes using the original 100 random repeats (Figure 4A). We observe 
that the mean of the bootstrap distributions matches the mean of the original experiments 
(Figure 4A) quite well. Bootstrapping could not be performed for advanced meta-matching 
(finetune) because 1000 bootstrap samples would have required 60 days of compute time. For 
each boxplot, the horizontal line indicates the median and the black triangle indicates the 
mean. The bottom and top edges of the box indicate the 25th and 75th percentiles 
respectively. Whiskers correspond to 1.5 times the interquartile range. Outliers are defined as 
data points beyond 1.5 times the interquartile range. (B) Statistical differences among the 
different algorithms. P values were calculated based on a two-sided bootstrapping procedure 
(see Methods). For rows comparing advanced meta-matching (finetune) and another 
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algorithm X, p values were derived by comparing the mean of advanced meta-matching 
(finetune) with algorithm X’s bootstrap distribution (assuming Gaussanity). For other rows 
comparing algorithms X and Y, bootstrap distributions were available for both X and Y. 
Therefore, one p value was obtained by comparing the original mean of X with Y’s bootstrap 
distribution and another p value was obtained by comparing the original mean of Y with X’s 
bootstrap distribution. The larger of the two p values were reported. Bold indicates statistical 
significance after FDR correction (q < 0.05). 
 

 
 
Figure S5. Meta-matching outperformed classical kernel ridge regression (KRR) 
baseline in the UK Biobank. (A) Prediction performance (coefficient of determination; 
COD) averaged across 34 non-brain-imaging phenotypes in the test meta-set (N = 10,000 – 
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K). The K participants were used to train and tune the models (Figure 3). Boxplots represent 
variability across 100 random repeats of K participants (Figure 2A). For each boxplot, the 
horizontal line indicates the median and the black triangle indicates the mean. The bottom 
and top edges of the box indicate the 25th and 75th percentiles respectively. Whiskers 
correspond to 1.5 times the interquartile range. Outliers are defined as data points beyond 1.5 
times the interquartile range. (B) Statistical difference between the prediction performance 
(COD) of classical (KRR) baseline and meta-matching algorithms. P values were calculated 
based on a two-sided bootstrapping procedure (see Methods). “n.s.” indicates that difference 
was not statistically significant after multiple comparisons correction (FDR q < 0.05). "*" 
indicates p < 0.05 and statistical significance after multiple comparisons correction (FDR q < 
0.05). "**" indicates p < 0.001 and statistical significance after multiple comparisons 
correction (FDR q < 0.05). "***" indicates p < 0.00001 and statistical significance after 
multiple comparisons correction (FDR q < 0.05). Green indicates that meta-matching 
outperforms classical (KRR) baseline. Red indicates that classical (KRR) baseline 
outperforms meta-matching. Observe that all algorithms performed poorly (COD ≤ 0) when 
there were less than 50 participants (K < 50), suggesting chance or worse than chance 
prediction for all algorithms. The actual p values and statistical comparisons among all 
algorithms are found in Figure S5. 
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Figure S6. Meta-matching outperformed classical kernel ridge regression (KRR) 
baseline in the UK Biobank (N = 10,000 – K). (A) Prediction performance (coefficient of 
determination; COD) with different number of participants. This plot is the same as Figure 
S4A, but the boxplots now show the bootstrap distribution of each approach based on 1000 
bootstrapped samples. The triangles show the average performance (COD) of 34 non-brain-
imaging phenotypes using the original 100 random repeats (Figure S4A). We observe that the 
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mean of the bootstrap distributions matches the mean of the original experiments (Figure 
S4A) quite well. Bootstrapping could not be performed for advanced meta-matching 
(finetune) because 1000 bootstrap samples would have required 60 days of compute time. For 
each boxplot, the horizontal line indicates the median and the black triangle indicates the 
mean. The bottom and top edges of the box indicate the 25th and 75th percentiles 
respectively. Whiskers correspond to 1.5 times the interquartile range. Outliers are defined as 
data points beyond 1.5 times the interquartile range. (B) Statistical differences among the 
different algorithms. P values were calculated based on a two-sided bootstrapping procedure 
(see Methods). For rows comparing advanced meta-matching (finetune) and another 
algorithm X, p values were derived by comparing the mean of advanced meta-matching 
(finetune) with algorithm X’s bootstrap distribution (assuming Gaussanity). For other rows 
comparing algorithms X and Y, bootstrap distributions were available for both X and Y. 
Therefore, one p value was obtained by comparing the original mean of X with Y’s bootstrap 
distribution and another p value was obtained by comparing the original mean of Y with X’s 
bootstrap distribution. The larger of the two p values were reported. Bold indicates statistical 
significance after FDR correction (q < 0.05). 
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Figure S7. Examples of non-brain-imaging phenotypic prediction performance in the 
test meta-set in the case of 100-shot learning in the UK Biobank (N = 9,900). Here, 
prediction performance was measured using coefficient of determination (COD). "Alcohol 3" 
(average weekly beer plus cider intake) was most frequently matched to "Bone C3" (bone-
densitometry of heel principal component 3). "Digit-o C1" (symbol digit substitution online 
principal component 1) was most frequently matched to "Matrix C1" (matrix pattern 
completion principal component 1). "Breath C1" (spirometry principal component 1) was 
most frequently matched to "Grip C1" (hand grip strength principal component 1). "Time 
drive" (Time spent driving per day) was most frequently matched to "BP eye C3" (blood 
pressure & eye measures principal component 3). For each boxplot, the horizontal line 
indicates the median and the black triangle indicates the mean. The bottom and top edges of 
the box indicate the 25th and 75th percentiles respectively. Whiskers correspond to 1.5 times 
the interquartile range. Outliers are defined as data points beyond 1.5 times the interquartile 
range. 
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Figure S8. Prediction improvements were driven by correlations between training and 
test meta-set phenotypes in the UK Biobank. Vertical axis shows the prediction 
improvement of advanced meta-matching (stacking) with respect to classical (KRR) baseline 
under the 100-shot scenario. Prediction performance was measured using coefficient of 
determination (COD). Each dot represents a test meta-set phenotype. Horizontal axis shows 
each test phenotype’s top absolute Pearson’s correlation with training phentoypes computed 
using participants from the test meta-set. Test phenotypes with stronger correlations with at 
least one training phenotype led to greater prediction improvement with meta-matching.  
 

 
Figure S9. For most test meta-set phenotypes, basic meta-matching (DNN) was able to 
select training phenotypes most strongly correlated with the test phenotypes. For each 
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test phenotype, we considered the training phenotype most frequently selected by basic meta-
matching (DNN) in the 100-shot scenario. Horizontal axis is the rank of correlation between 
the test phenotype and most frequently selected training phenotype out of all the correlations 
between the test phenotype and all training phenotypes. Here, correlations were computed 
using participants from the test meta-set. Vertical axis shows the number of test phenotypes. 
For example, the figure shows that for 8 test phenotypes, the most frequently selected training 
phenotype (out of 100 repetitions in the 100-shot scenario) was the 2nd most correlated 
training phenotype. 
 
 
 
 
 
 

 
Figure S10. Phenotypes better predicted by classical kernel ridge regression benefited 
more from meta-matching in the UK Biobank. Vertical axis shows the prediction 
improvement of advanced meta-matching (stacking) with respect to classical (KRR) baseline 
under the 100-shot scenario. Prediction performance was measured using Pearson’s 
correlation. Each dot represents a test meta-set phenotype. Horizontal axis shows the 
prediction performance with the classical (KRR) baseline under the 100-shot scenario. 
Similar conclusions were obtained with coefficient of determination (Figure S9).  
 



He et al. Meta-matching 

21 
 

 
Figure S11. Phenotypes better predicted by classical kernel ridge regression benefited 
more from meta-matching in the UK Biobank. Vertical axis shows the prediction 
improvement of advanced meta-matching (stacking) with respect to classical (KRR) baseline 
under the 100-shot scenario. Prediction performance was measured using coefficient of 
determination (COD). Each dot represents a test meta-set phenotype. Horizontal axis shows 
the prediction performance with the classical (KRR) baseline under the 100-shot scenario.  
 



He et al. Meta-matching 

22 
 

 

Figure S12. Meta-matching methods outperforms classical kernel ridge regression 
(KRR) in the HCP dataset (N = 1,019 – K). (A) Prediction performance (Pearson's 
correlation) with different number of participants. This plot is the same as Figure 7A, but the 
boxplots now show the bootstrap distribution of each approach based on 1000 bootstrapped 
samples. The triangles show the average performance (Pearson’s correlation) of 35 non-
brain-imaging phenotypes using the original 100 random repeats (Figure 7A). We observe 
that the mean of the bootstrap distributions matches the mean of the original experiments 
(Figure 7A) quite well. For each boxplot, the horizontal line indicates the median and the 
black triangle indicates the mean. The bottom and top edges of the box indicate the 25th and 
75th percentiles respectively. Whiskers correspond to 1.5 times the interquartile range. 
Outliers are defined as data points beyond 1.5 times the interquartile range. (B) Statistical 
differences among the different algorithms. P values were calculated based on a two-sided 
bootstrapping procedure (see Methods). Bold indicates statistical significance after FDR 
correction (q < 0.05). 
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Figure S13. Meta-matching outperformed classical kernel ridge regression (KRR) 
baseline in the HCP dataset. (A) Prediction performance (coefficient of determination; 
COD) averaged across 35 non-brain-imaging phenotypes in the test meta-set (N = 1,019 – K). 
The K participants were used to train and tune the models (Figure 6B). Boxplots represent 
variability across 100 random repeats of K participants (Figure 6A). For each boxplot, the 
horizontal line indicates the median and the black triangle indicates the mean. The bottom 
and top edges of the box indicate the 25th and 75th percentiles respectively. Whiskers 
correspond to 1.5 times the interquartile range. Outliers are defined as data points beyond 1.5 
times the interquartile range. (B) Statistical difference between the prediction performance 
(COD) of classical (KRR) baseline and meta-matching algorithms. P values were calculated 
based on a two-sided bootstrapping procedure (see Methods). “n.s.” indicates that difference 
was not statistically significant after multiple comparisons correction (FDR q < 0.05). "*" 
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indicates p < 0.05 and statistical significance after multiple comparisons correction (FDR q < 
0.05). "**" indicates p < 0.001 and statistical significance after multiple comparisons 
correction (FDR q < 0.05). "***" indicates p < 0.00001 and statistical significance after 
multiple comparisons correction (FDR q < 0.05). Green indicates that meta-matching 
outperforms classical (KRR) baseline. Red indicates that classical (KRR) baseline 
outperforms meta-matching. The actual p values and statistical comparisons among all 
algorithms are found in Figure S14. 
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Figure S14. Meta-matching outperformed classical kernel ridge regression (KRR) 
baseline in the HCP dataset (N = 1,019 – K). (A) Prediction performance (coefficient of 
determination; COD) with different number of participants. This plot is the same as Figure 
S13A, but the boxplots now show the bootstrap distribution of each approach based on 1000 
bootstrapped samples. The triangles show the average performance (COD) of 34 non-brain-
imaging phenotypes using the original 100 random repeats (Figure S4A). We observe that the 
mean of the bootstrap distributions matches the mean of the original experiments (Figure 
S13A) quite well. For each boxplot, the horizontal line indicates the median and the black 
triangle indicates the mean. The bottom and top edges of the box indicate the 25th and 75th 
percentiles respectively. Whiskers correspond to 1.5 times the interquartile range. Outliers are 
defined as data points beyond 1.5 times the interquartile range. (B) Statistical differences 
among the different algorithms. P values were calculated based on a two-sided bootstrapping 



He et al. Meta-matching 

26 
 

procedure (see Methods). Bold indicates statistical significance after FDR correction (q < 
0.05). 
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