Supporting Information

Communicating Confidence of Per- and Polyfluoroalkyl Substance (PFAS) Identification via High Resolution Mass Spectrometry

Joseph A. Charbonnet^{ab}, Carrie A. McDonough^c, Feng Xiao^d, Trever Schwichtenberg^e, Dunping Cao^e, Sarit Kaserzon^f Kevin V. Thomas^f, Pradeep Dewapriya^f, Benjamin J. Place^g, Emma L. Schymanski^h, Jennifer A. Fieldⁱ, Damian E. Helbling^j, and Christopher P. Higgins^{af*}

^aDepartment of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA

^bDepartment of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, United States

^cDepartment of Civil Engineering, Stony Brook University, Stony Brook, NY, USA

^dDepartment of Civil Engineering, University of North Dakota, Grand Forks, ND, USA

^eDepartment of Chemistry, Oregon State University, Corvallis, Oregon, USA

^fQueensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, Australia

^gNational Institute of Standards and Technology, Gaithersburg, MD, USA

^hLuxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg

ⁱDepartment of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA

^jSchool of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA

*Corresponding Author. Civil and Environmental Engineering, 1500 Illinois Street, Golden, CO 80401; phone: 720-984-2116; email: chiggins@mines.edu

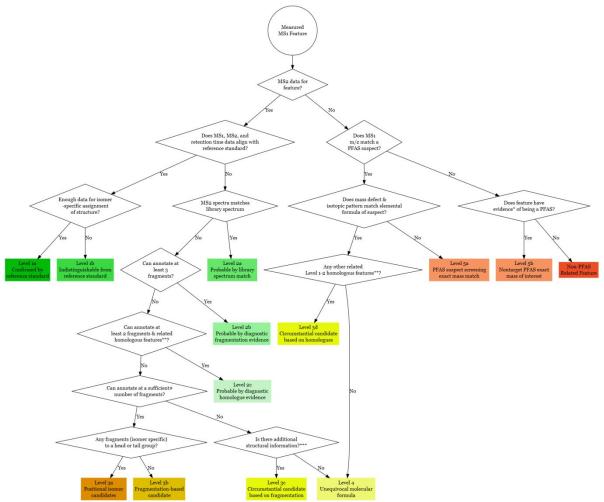
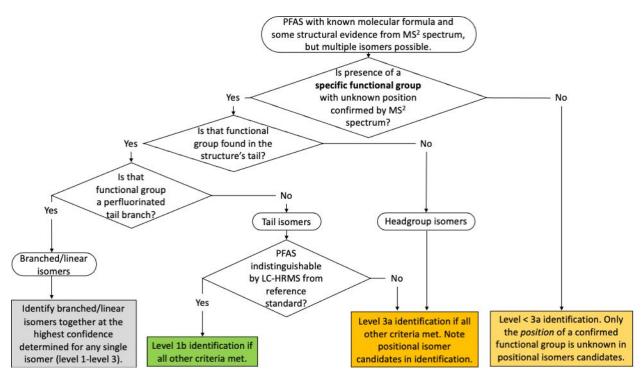


Figure S1. Confidence of PFAS identification example workflow.


Footnotes:

*Evidence of being a PFAS described in Level 5b text

Related homologous features are \pm m/z 50 or 100 and expected retention time interval from a level 1-2 feature *Including:

- Observation of sufficient number of fragments to exclude other structural isomers, based on *in silico* predicted MS/MS fragments for the proposed structure.
- Fractionation of species by positive or negative charge through anion or cation exchange solid-phase extraction.
- Detection of possible zwitterionic PFASs in both positive and negative ionization modes.
- Chromatography indicative of electrochemical fluorination. In such cases, often a branched isomer peak (or peaks) is followed by a linear isomer peak.
- The abundance of homologues that are separated by -(CF2CF2)- (i.e., 99.9936 Da). Elevated concentrations of only even- or odd-length homologues are indicative of fluorotelomerization. The lengths of homologues are more uniformly distributed in typical electrochemical fluorination-based mixtures.
- A positive mass defect for candidate PFASs, which may indicate the presence of non-fluorinated functional groups in the structure.

[#]Sufficient defined as the number of fragments needed to align a structure with a particular PFAS subclass (see section titled "High-Resolution MS/MS Spectra" for more information)'

Figure S2. Guidance for classification and identification of PFASs with some evidence of structure from MS/MS spectrum, but multiple isomers possible. Isomer candidates may be determined entirely from structural evidence or from structural evidence and PFAS suspect lists.