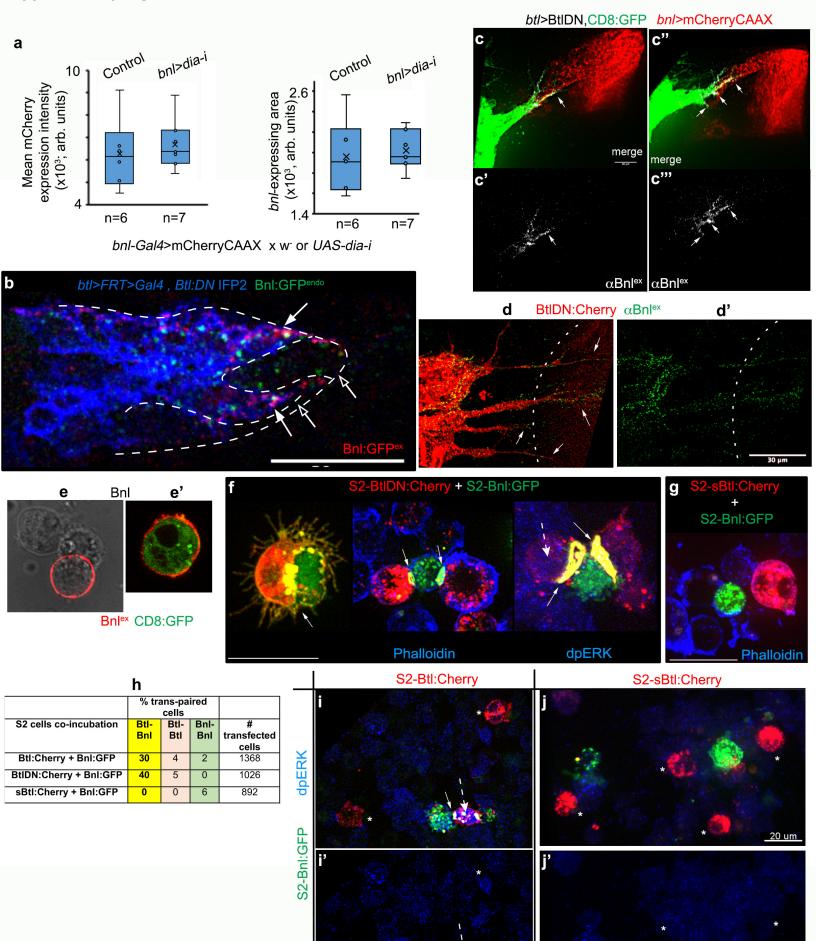
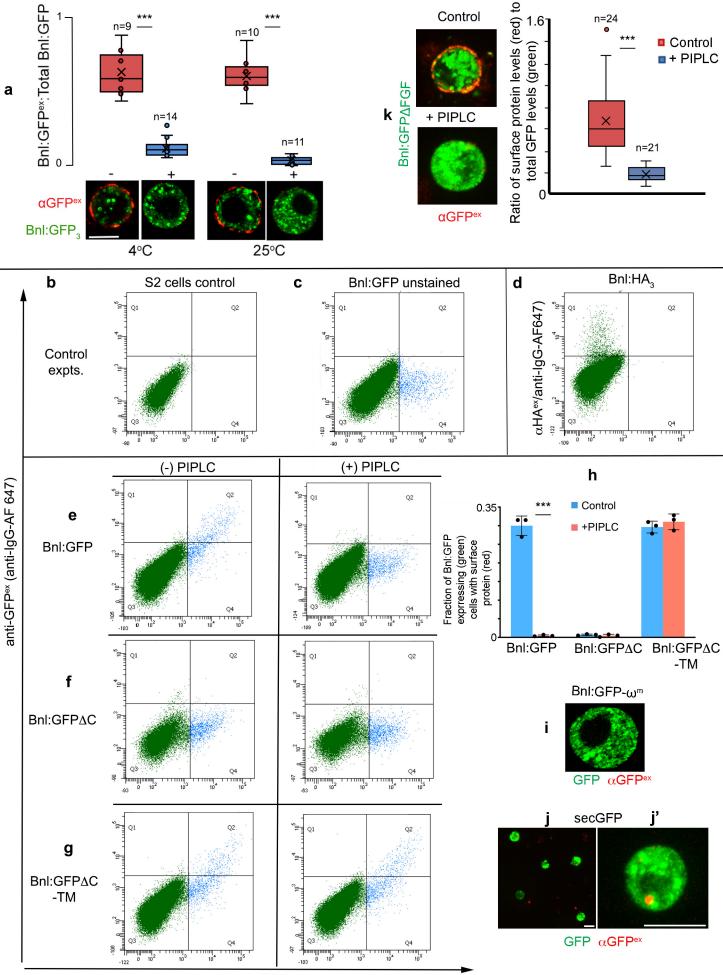

GPI-anchored FGF directs cytoneme-mediated bidirectional contacts to regulate its tissue-specific dispersion.


Lijuan Du, Alex Sohr, Yujia Li, Sougata Roy*

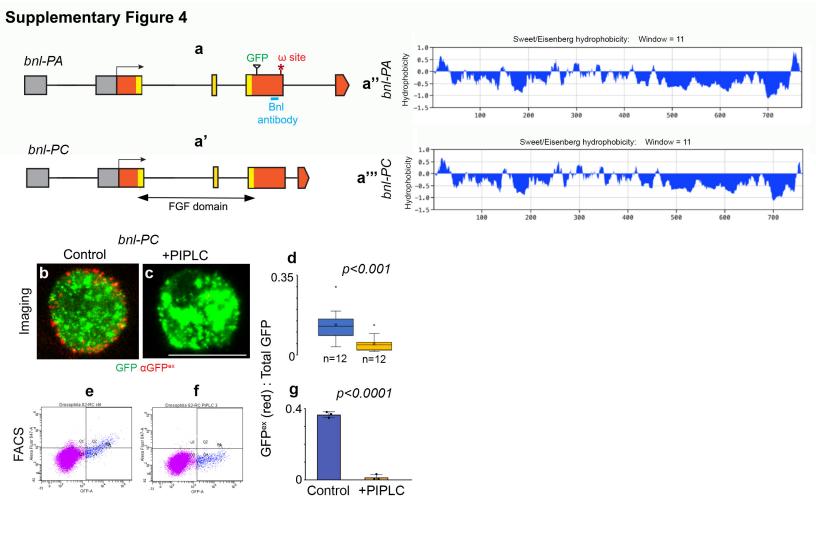
Contents

- 1. Supplementary Figures with Figure Legends (Suppl. Fig.1-Suppl. Fig.7)
- 2. Supplementary Tables 1-4.
- 3. Supplementary Notes:
 - A. Expression analyses of bnl splice variants
 - B. Bioinformatic analyses of physico-chemical properties of various constructs
 - C. Comparison of *bnl-gal4*-driven expression of transgenic constructs
 - D. Examples of gating strategy for FACS analyses
- 4. Supplementary References
- 5. R plot code

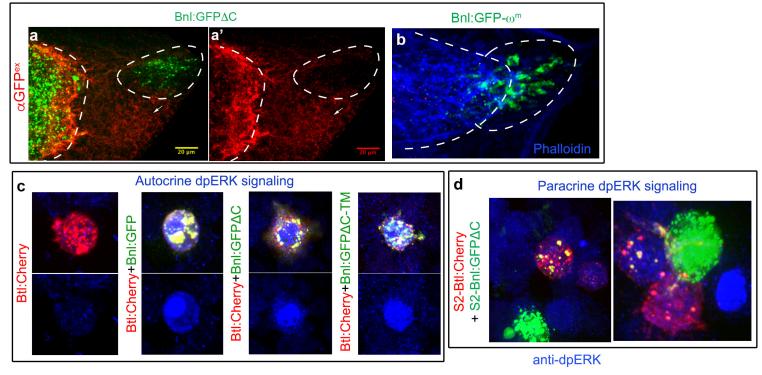


Supplementary Figure 1. Bnl sending and receiving cytonemes reciprocally guide each other. a-b Live images of mCherryCAAX-marked wing disc *bnl* source (red) expressing either Bnl:GFP by *bnl-Gal4* (a,a'; *UAS-mCherryCAAX; bnl-Gal4* X *UAS-Bnl:GFP*) or endogenous Bnl:GFP^{endo} (b; *bnl:gfp^{endo}/bnl>mCherryCAAX;* spinning disc confocal), showing ASP (dashed line)-specific polarity of Bnl:GFP presentation through cytonemes (arrows). **c** A comparison of cytoneme numbers (average ± S.D.) from the ASP and wing disc source under live and fixed imaging conditions, showing that the source cytonemes are detected mostly in live imaging. **d** Table showing the number of source cytonemes emanating from CD8:GFP-marked clones within the *bnl*-source (see Methods and Fig. 1h-h''). **e-h** Time-lapse images, showing repeated cycles of extension and retraction of source (red) and recipient (green) cytonemes for reciprocal contacts; g,h, Line plots showing interacting source and recipient cytoneme dynamics (also see Supplementary Table 1); the same color in g and h represents a pair of interacting source and ASP cytonemes. **i-l''** Maintenance of a convergently polarized cytoneme-forming niche at the ASP:source interface throughout the larval development. **e-l''** genotype - *btl-Gal4,UAS-CD8:GFP/*+; *bnl-LexA,lexO-mCherryCAAX/*+. Scale bars, 20 µm. Source data are provided as a Source Data file.

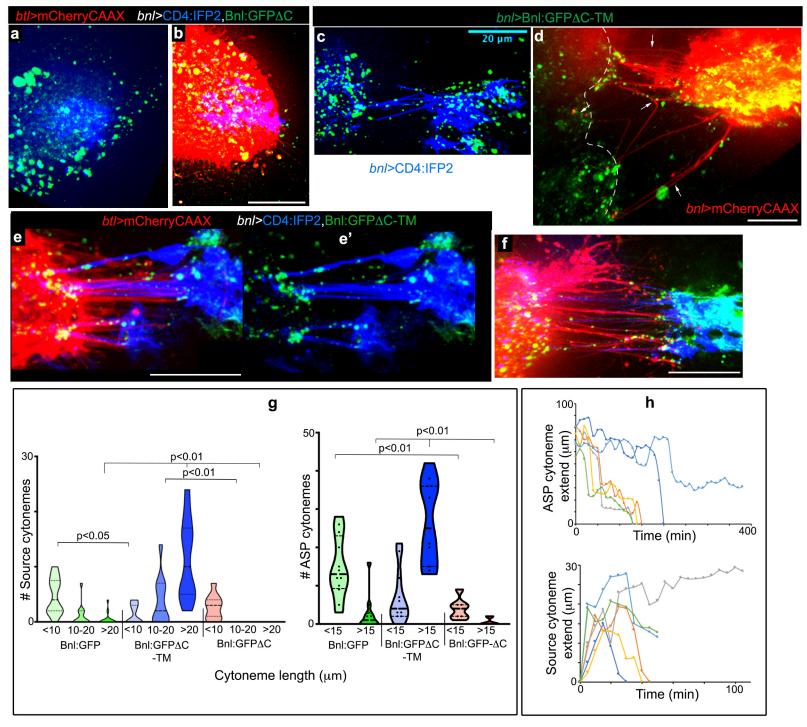
Supplementary Figure 2. CAM-like Btl-Bnl binding mediates reciprocal contact formation.


a dia-i expression under the bnl-Gal4 control did not change bnl expression area or levels as detected by the mCherryCAAX expression (bnl-Ga4, UAS-mCherryCAAX x UAS-dia-i (for control, w- was crossed to *bnl-Ga4, UAS-mCherryCAAX*); in box plots, box shows the median as well as 1st quartile and 3rd quartile, and whiskers are minimum and maximum; n - biologically independent sample number; p values - unpaired two-tailed t-test; p=0.59 for mean mCherry expression intensity and p=0.72 for *bnl*-expressing area. **b** A mosaic ASP with BtI:DN-expressing IFP2-marked clones in the bnl:GFPendo knock-in background (see Methods); Btl:DN-expressing surface areas on the ASP showed increased Bnl:GFP^{endo} reception from the wing disc (arrow; probed by α GFP^{ex}) compared to the WT areas (unmarked) of the same ASP tip (open arrow). **c-c'''** Bnl^{ex} (grey, α Bnl^{ex}) is asymmetrically enriched (arrow) at the contact sites between source and Btl:DN-expressing ASP projections or cytonemes; c"/c", 3D projection of c/c'. d,d' Btl-DN:Cherry-containing cytonemes (arrow) emanating from a rudimentary ASP localized Bnlex (green, aBnlex) puncta on their surfaces; dashed line, source area. e,e' aBnlex-stained S2 cells expressing either Bnl (e) or Bnl and CD8:GFP (e'; act-Gal4, UAS-Bnl, UAS-CD8:GFP), showing surface localized Bnlex, exclusively on the producing cell. f Different trans-paired forms of S2-BnI:GFP and S2-BtI:DN:Cherry; arrow, trans-synaptic receptor-ligand co-clusters; dashed arrow, absence of nuclear dpERK in trans-paired S2-Btl:DN:Cherry. g Absence of trans-paring between S2-sBtl:Cherry and S2-Bnl:GFP. h Relatively high frequency of heterotypic Btl-Bnl trans-pairing in comparison to homotypic Btl-Btl or Bnl-Bnl trans-pairing in S2-Btl:Cherry variants/S2-BnI:GFP co-incubation assays. i-i' Representative examples of α dpERK-stained (blue) image frames, comparing trans-pairing experiments between S2-BnI:GFP/S2-BtI:Cherry (i,i') and S2-BnI:GFP/S2sBtl:Cherry (j,j'); arrow, trans-synaptic Btl-Bnl co-cluster; dashed arrow, nucleus in trans-adhered Btlexpressing cells; *, receptor-expressing cells lacking dpERK. Scale bars, 20 μm, 30 μm (b,d,d'). Source data are provided as a Source Data file.

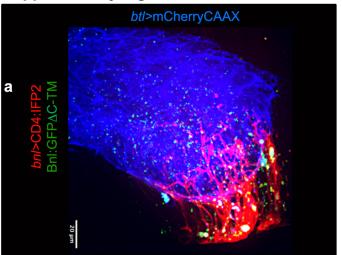
GFP

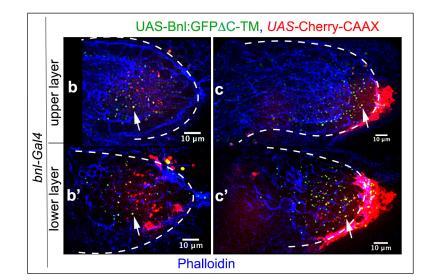

Supplementary Figure 3. A GPI anchor tethers BnI to the source cell surface.

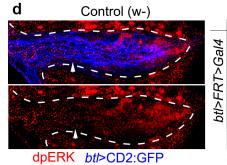
a-h S2 cells co-transfected with *actin-Gal4* and UAS-X; (X = Bnl:HA₃, Bnl:GFP₃, BnlHA₁:GFP₃ (Bnl:GFP), Bnl:HA₁:GFP₃ Δ C (Bnl:GFP Δ C), or Bnl:HA₁:GFP₃ Δ C-TM (Bnl:GFP Δ C-TM) as indicated; cells were surface immune-stained either with HA or GFP antibodies as indicated. a, Box plots depicting the ratio of surface localized BnI:GFP₃ (red, α GFP^{ex} immunostaining) to total BnI:GFP₃ (green) in S2 cells before (-) after (+) the PIPLC treatment at various temperatures; lower panels, representative images of S2 cells as indicated; box shows the median as well as 1st guartile and 3rd guartile, and whiskers are minimum and maximum; n represents # cells examined; p values were calculated using unpaired two-tailed t-test; ***, p<0.001. b-g Representative flow cytometry profiles of S2 cells (b, control) or S2 cells expressing various constructs as indicated; b,c,d, FACS control; d, surface αHA^{ex} staining for BnI:HA₃ as a control profile for GFP-positive cells. h Bar graphs comparing mean values (± SD) obtained by flow cytometry analyses of cells from three independent transfection experiments similar to e, f, g; ***, p<0.001 (unpaired two-tailed t-test); total number of GFP+ cells: 3670 (BnI:GFP, control), 3095 (BnI:GFP, +PIPLC), 3240 (BnI:GFP∆C, control), 3044 (Bnl:GFPAC, +PIPLC), 3000 (Bnl:GFPAC-TM, control), 3000 (Bnl:GFPAC-TM, +PIPLC). i Lack of surfacelocalized protein (red, probed with α GFP^{ex}) of BnI:GFP- ω^m expressed in S2 cells. **i,i** α GFP^{ex} immunostained S2 cells expressing secGFP construct showing the lack of surface distribution of the proteins due to its immediate secretion ¹. This is a control for bGFP-GPI, which is the same secGFP with Bnl's C-terminal signal sequence, leading to its GPI-anchoring to the producing cell surface (see Figure 4d'-f). **k** α GFP^{ex} immunostained S2 cells (left panels) expressing BnI:GFP Δ FGF construct showing PIPLC-sensitive surface distribution of the protein; right panel, box plots comparing the fraction of expressed protein on cell surface with and without PIPLC treatment; box shows the median as well as 1st guartile and 3rd guartile, and whiskers are minimum and maximum; n = number of cells as indicated; ***, p<0.001; p values were calculated using unpaired two-tailed t-test. Scale bars, 10 µm. Source data are provided as a Source Data file.


Supplementary Figure 4. Characterization of GPI-anchored BnI-PC isoform.

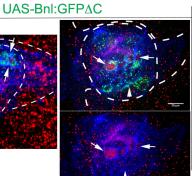
a-a" Comparison of PA and PC splice variants of bnl: a,a' Schematic maps of PA and PC loci highlighting identical FGF signaling domain, Bnl antibody binding site used for probing Bnlex, GFP tag (for probing BnI:GFP^{endo}), putative ω -site; Grey box, non-coding exons, colored box, coding exons. However, due to the alternative splicing of the last coding exons, bnl-PC isoform is 11 amino acid shorter at its C-terminal end than the *bnl-PA*. Subsequent to the common sequence between PA and PC, PC isoform has only 7 amino acids at its C-terminus, which is replaced by 18 amino acids sequences in PA. a",a" Comparative hydrophobicity plots of PA and PC variants showing a reduced hydrophobic stretch of C-terminal region of PC. **b-g** Extracellular α GFP^{ex}immunostaining of S2 cells expressing BnI:GFP₃-PC showed surface-localized BnI:GFP₃-PC^{ex} (red), which is removed by PIPLC assay; d box plots showing surface localized fractions (red, probed with α GFP^{ex}) of total BnI:GFP₃-PC expressed in S2 cells before and after PIPLC treatment; box shows the median as well as 1st guartile and 3rd guartile, and whiskers are minimum and maximum; n represents # cells examined by imaging as shown in b,c; p value was calculated using unpaired two-tailed t-test; p=0.000649. e,f flow cytometric analyses of the same; g bar graphs showing quantitative values obtained from flow cytometry experiments depicting the average fraction of BnI:GFP₃-PC-expressing cells (GFP positive) containing surface localized BnI:GFP₃- PC^{ex} (αGFP^{ex} immunostained (red)) before and after the PIPLC treatment; values represent the mean ± SD from 3 independent experiments; p value was calculated using unpaired two-tailed ttest; total GFP+ events examined over 3 repeats: 3134 (control) and 2784 (+PIPLC);. Scale bars, 10 µm. Source data are provided as a Source Data file.

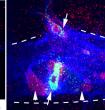

Supplementary Figure 5. Autocrine and paracrine activity of Bnl variants.


a-b Extracellular distribution of BnI:GFP Δ C (a,a') and BnI:GFP- ω^m (b), when expressed under *bnl-Gal4* in the wing disc source; α GFP^{ex} immunostaining (red) showing that BnI:GFP Δ C is poorly retained on the source cell surface area (green punctate demarcated by dashed line), but are spread on the extracellular plane of the non-expressing disc cells (only red). ASP had both BnI:GFP Δ C^{ex} and internalized BnI:GFP Δ C (probed only by GFP), showing non-autonomous signal dispersal. In contrast, BnI:GFP- ω^m (b) is poorly externalized from the source and not received by the ASP (Phalloidin-stained). **c** Efficient autonomous MAPK signaling (nuclear dpERK, blue) of different BnI:GFP variants when co-expressed with BtI:Cherry in S2 cells. **d** Inefficient non-autonomous MAPK signaling of BnI:GFP Δ C when S2-BnI:GFP Δ C cells were co-incubated with S2-BtI:Cherry cells.



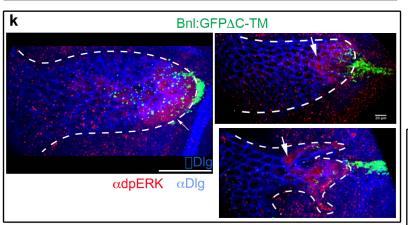
Supplementary Figure 6. GPI-anchored BnI induces cytoneme-mediated bidirectional matchmaking for contacts.


a Split channels of Figure 6g, showing the random spread of BnI:GFP Δ C from its source (blue, bnl>CD4:IFP2). b An example showing the loss of ASP cytonemes (red), when Bnl:GFPAC was overexpressed from CD4:IFP2-marked source cells (blue). c Split green and blue channels of Figure 6j showing BnI:GFPAC-TM-containing source cytonemes contacting the ASP. d-f Examples showing CAM-like activity of BnI:GFP Δ C-TM when expressed from the source: (d) Long polarized BnI:GFP Δ C-TM-expressing source cvtonemes (arrows) (red, *bnl>mCherryCAAX*) connected to the ASP and disc-associated transverse connective (dashed outline). (e-f) Bundles of ASP and source cytonemes interacting through Bnl:GFPAC-TM-enriched lateral contact sites; e', split blue and green channels of (e). g Violin plots showing a comparison of the number and length distribution of ASP and source cytonemes (from Fig. 6f-I) induced by Bnl:GFP, Bnl:GFP Δ C, or Bnl:GFP Δ C-TM, when overexpressed from the disc source; in violin plots, black dotted lines show the median as well as 25th and 75th percentiles; n=13 (BnI:GFP, source), 11 (TM, source), 11 (Δ C, source), 12 (Bnl:GFP, ASP), 11 (TM, ASP), 7 (Δ C, ASP) biologically independent samples; p values were calculated using one way-ANOVA followed by Tukey's honestly significant different test. h Line plots showing dynamics of the source and recipient cytonemes as indicated when BnI:GFPAC-TM was expressed in bnl source using bnl-Gal4 (see Supplementary Table 1); the same color represents the interacting Bnlreceiving and -sending cytonemes from the same sample. All panels, live imaging. Scale bars, 20 µm. Source data are provided as a Source Data file.

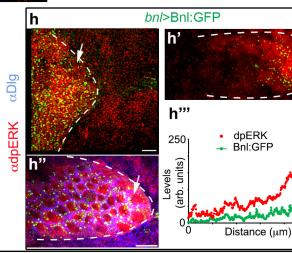


е

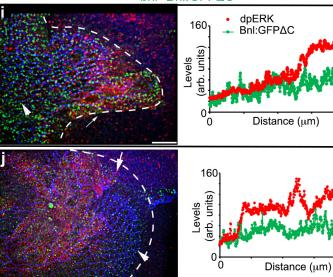
f UAS-Bnl:GFPΔC-TM



120


250

250


g % signal % clones Genotype Sample Dispersal % hsflp/+; range receiving ASP induced # clones btlenh>FRT>Gal4, (# cells) cells with induced branching btlenh-RFPmoe/UAS-"X" nuclear growth dpERK Bnl:GFP 24 83 25 99.2±2.3 2.8±0.7 33 Bnl:GFP-TM 82.9±19.9 2.3±0.8 76 36 Bnl:GFP-AGPI 21 4.2±0.9 36.9±27.4 81 0

Proximal (P) Ventral (V)					
Genotype	Sample #	Av. longest Do-V axis length	Av. longest D-P axis length	Ratio Do-V/D-P	
bnl:GFP ^{endo} *	9	33±4	119±10	0.28±0.04	
bnlGal4>Bnl:GFP	7	95±24	120±14	0.82±0.3	
bnlGal4>Bnl:GFP-TM	15	56±11	137±10	0.41±0.07	
<i>bnlGal4</i> >Bnl:GFP∆GPI	8	146±11	104±24	1.50±0.47	

bnl>Bnl:GFP∆C

Supplementary Figure 7. GPI anchoring is required for BnI release and morphogen-like signaling. a Strong affinity and adhesion of BnI:GFPAC-TM-expressing source cytonemes (red, *bnI>CD4:IFP2*) with the ASP surface (blue, bt/>mCherryCAAX). b-c' Images of two wing discs expressing Bnl:GFPAC-TM and mCherryCAAX from the *bnl* source (red), showing endocytosed Bnl:GFPAC-TM puncta colocalized with the source membrane in upper and lower layer cells of the tubular ASP epithelium; Phalloidin-Alexa Fluor 647 (blue) marked cell outlines. d Control (w-) ASP showing the lack of nuclear dpERK in the ASP stalk and TC region, where the GOF clones were scored (see Fig. 9a-d). **e-g** Examples of ASPs with ΔC or TM GOF clones (1-2 cell size) (arrows) and their non-autonomous signaling (arrowhead; red, dpERK). g Table showing non-autonomous effects of BnI:GFP, TM, and ΔC GOF clones in the ASP stalk; sample # (n) represents the number of clones examined over >10 biologically independent samples; values represent the mean \pm SD; p values for % signal receiving ASP cells with nuclear dpERK: p <0.01, for BnI:GFP- Δ C vs. Bnl:GFP or Bnl:GFP Δ C-TM; p <0.05, for Bnl:GFP vs. Bnl:GFP Δ C-TM; p values were calculated using one way-ANOVA followed by Tukey's honestly significant different test. h-I Comparative analyses of the activity of BnI:GFP, BnI:GFP Δ C-TM (TM), and BnI:GFP Δ C (Δ C), expressed from wing disc source under *bnI-Gal4* (bnl-Gal4 X UAS-X): (h-h") Wing discs expressing Bnl:GFP, showing a spatial coordination of signal distribution (green puncta), signaling patterns (dpERK, red), and ASP growth. (i-k) The coordination between signal distribution, signaling, and growth was uncoupled by ΔC expression and was regained with TM. However, TM distribution was restricted in range in comparison to Bnl:GFP. (I) Comparison of ASP shapes in conditions as indicated; *, homozygous *bnl:gfp^{endo}* larvae used as the control for overexpressed Bnl:GFP variants; top panel, illustration showing the measurement of the longest Do-V and D-P axes (µm) from extended Z-projected ASP images; sample # (n) represents the number of biologically independent samples; values represent the mean \pm SD; p values: Do-V/D-P axes: p <0.01, *bnl:gfp^{endo}* vs. Bnl:GFP or ΔC and BnI:GFP vs. TM or ΔC ; p values were calculated using one way-ANOVA followed by Tukey's honestly significant different test. h-k, arrows, recipient cells with signaling; arrowhead, recipient cells without signaling; α Dlg (blue), cell outlines. All panels, dashed line shows ASP outline or ectopic tracheal outgrowth. Scale bars, 20 μ m; 10 μ m (b-c'). Source data are provided as a Source Data file.

Supplementary Tables

	FGF-receiving cells			FGF-sending cells		
	WT	bnl>Bnl:GFP	bnl>Bnl:GFP	WT	bnl>Bnl:GFP	bnl>Bnl:GFP
			⊿C-TM			⊿C-TM
Lifetime (min)	19.55	17.5±5*	180±101.39	7.73±	ND	46.67±30.11
	±6.1			4.67		
# Fluctuating	1±0	1±0	4.33±2.66	1±0	ND	2.33±1.37
peaks/lifetime						
Maximum	19.36	15.8±3.8	76.67±8.98	8.35±4.04	ND	26.52±7.3
extension (µm)	±7.4					
Average	1.28	0.85±0.32	0.47±0.15	1.13±0.57	ND	0.70±0.23
extension rate	±0.79					
(µm/min)						
Average retraction	1.37	0.93±0.19	0.88±0.22	1.32±0.56	ND	0.79±0.26
rate (μm/min)	±0.75					

Supplementary Table 1. Quantification of the dynamics of the interacting cytonemes from Bnl-receiving and -sending cells.

Note: Maximum extension - the maximum length of a cytoneme during its lifetime. Peak - Each extension and retraction cycle within the lifetime of a cytoneme. Number of fluctuating peaks/lifetime - the number of extension and retraction cycles of a cytoneme. Average extension and retraction rates - measured by the net cytoneme length change/time during its extension or retraction.

*, For this condition, 4 long cytonemes were used. Most cytonemes (N=25) were short in length and had lifetime <10 min and was not counted in 10 min interval time-lapse movies.

Values represent mean \pm SD. N=11 cytonemes for WT; 6 cytonemes for *bnl>Bnl:GFP* Δ *C-TM* receiving and sending cytonemes; 4 cytonemes for *bnl>Bnl:GFP* receiving cytonemes. p values (WT vs *bnl>Bnl:GFP* Δ *C-TM*) for receiving cytoneme dynamics: lifetime, p <0.0001; # fluctuating peaks/lifetime, p <0.001; maximum extension, p <0.0001; average extension rate, p =0.025; average retraction rate, no significant difference. p values for sending cytoneme dynamics: lifetime, p <0.001; # fluctuating peaks/lifetime, p =0.026; maximum extension, p <0.001; average extension rate, p <0.001; # fluctuating peaks/lifetime, p =0.0046; maximum extension, p <0.001; average extension rate, no significant difference; average retraction rate, p =0.047. p values were calculated using unpaired two-tailed t test. p < 0.05 is considered significant. Source data are provided as a Source Data file.

Genotypes: WT: btlGal4,UAS-CD8:GFP/+;bnlLexA,LexO-mCherryCAAX/+.

bnl>Bnl:GFP: btlLexA,LexO-mCherryCAAX/UAS-CD4:mIFP; bnlGal4/UAS-Bnl:GFP.

bnl>Bnl:GFP Δ *C-TM*: *UAS-Bnl:GFP* Δ *C-TM/UAS-CD4:mIFP; bnlGal4/btlLexA,LexO-mCherryCAAX* for FGF-receiving cytonemes, and *UAS-mCherryCAAX/UAS-Bnl:GFP* Δ *C-TM; bnlGal4/*+ for FGF-sending cytonemes.

Supplementary Table 2. Comparison of the ASP and source cytoneme numbers when *diaRNAi* was expressed in the ASP.

-		# ASP	# ASP	# FGF source
		cytonemes <	cytonemes > 15 μm	cytonemes
		15 μm		
Control (N=11)	Average	11.55	17	9.45
	SD	±4.57	±4.96	±3.30
btlGal4>diaRNAi	Average	10	1	0
(N=8)	SD	±7.66	±1.06	±0.35
p (unpaired t-test)		0.559367458	5.87525E-08	4.27454E-07

Note: Values represent mean ± SD. N represents the number of biologically independent samples. p values were calculated using unpaired two-tailed t test. Source data are provided as a Source Data file. Genotypes: Control: *btlGal4,UAS-CD8GFP/+;bnlLexA,LexO-mCherryCAAX/+. btl-Gal4>diaRNAi*: *btlGal4,UAS-CD8GFP/tub-Gal80*^{ts};*bnl-LexA,LexO-mCherryCAAX/UAS-diaRNAi*.

Supplementary Table 3: Autocrine and paracrine MAPK signaling activity of BnI:GFP variants in S2 cells

a. Autocrine activity: S2-Bt	tl:Cherry co-expressed	with BnI:GFP variants
------------------------------	------------------------	-----------------------

S2 cell co-expression	# total Btl	# Btl cells with	% Btl cells with
	cells	nuclear dpERK	nuclear dpERK
Bnl:GFP+Btl:Cherry	15	14	93
Bnl:GFP∆GPI+Btl:Cherry	22	21	95
Bnl:GFP∆GPI-TM	16	15	94
+Btl:Cherry			

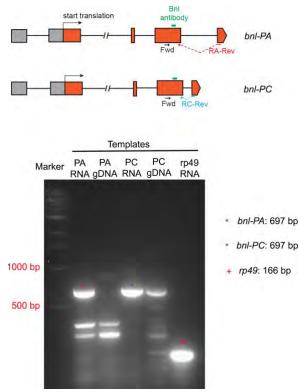
b. Paracrine activity: S2-BnI:GFP variants co-incubated with S2-BtI:Cherry

S2-Btl:Cherry cells	Bnl:GFP	Bnl:GFP∆GPI	Bnl:GFP∆GPI-
(# or %)	+Btl:Cherry	+Btl:Cherry	ТМ
			+Btl:Cherry
# of total cells (A)	169	188	123
# of (A) with dpERK	76	65	60
% of (A) with dpERK	44.9	34.6*	48.8
# of trans-paired cells with S2-BnI:GFP/TM or adjacent to S2-∆C (B)	78	33	87
# of (B) with dpERK	71	5	58
% of (B) with dpERK	91	15**	67
# of uncoupled Btl +ve cells (C)	91	188	36
# of (C) with dpERK	5	60	2
% of (C) with dpERK	5	32 **	6

Note: data represents results from three independent transfection repeats.

Supplementary Table 4: Resources and reagents used in this study

REAGENT or RESOURCE	DESCRIPTION	SOURCE
Antibodies		
Mouse monoclonal anti-Discs large (Dlg)	1:100	DSHB, Cat# 4F3 anti-discs large; RRID: AB_528203
Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) rabbit monoclonal antibody (dpERK)	1:250 in tissue and 1:1000 in S2 cells	Cell signaling Technology; Cat# 4370; RRID: AB_2315112
Rat monoclonal anti-HA (3F10)	1:1000 for standard and 1:500 for EIF	Roche; Cat#1186742300 1; RRID: AB_390918
Rabbit polyclonal anti-Bnl	1:500 for EIF ¹	N/A
Rabbit anti-GFP antibody	1:3000 for EIF	Abcam; Cat# ab6556; RRID: AB_305564
Goat anti-Mouse IgG (H+L), Alexa Fluor 555	1:1000	Thermo Fisher Scientific; A21434
Goat anti-Mouse IgG (H+L), Alexa Fluor 647	1:1000	Thermo Fisher Scientific; A28181
Goat anti-Rat IgG (H+L), Alexa Fluor 647	1:1000	Thermo Fisher Scientific; A21247
Goat anti-Rabbit IgG (H+L), Alexa Fluor 555	1:1000	Thermo Fisher Scientific; A21428
Goat anti-Rabbit IgG (H+L), Alexa Fluor 647	1:1000	Thermo Fisher Scientific; A21244
Bacterial and Virus Strains		
DH5 Alpha		
Chemicals, Peptides, and Recombinant Proteins		
Alexa Fluor 647 Phalloidin	Thermo Fisher Scientific	Cat# A22287, RRID: AB_2620155
Furin Inhibitor I - Calbiochem	Sigma-Aldrich	Cat# 344930
Furin Inhibitor II - Calbiochem	Sigma-Aldrich	Cat# 344931
Phospholipase C, Phosphatidylinositol-specific from <i>Bacillus</i> cereus	Invitrogen	Cat# P6466
Critical Commercial Assays		
Lipofectamine 3000 Transfection Reagent	Thermo Fisher Scientific	Cat# L3000008
Mirus TransIT [®] -Insect Transfection Reagent	Mirus Bio	
TRI Reagent	Sigma-Aldrich	Cat# T9424
One <i>Taq</i> [®] One-Step RT-PCR Kit	NEB	Cat# E5315S
Deposited Data		
Raw data from all the figures	This paper	
Experimental Models: Cell Lines		
D. melanogaster. Cell line S2: S2-DRSC	Laboratory of Thomas B. Kornberg	FlyBase: FBtc0000181
Experimental Models: Organisms/Strains		
D. melanogaster. UAS-Bnl:GFP∆C	This paper	N/A
D. melanogaster. UAS-Bnl:GFP∆C-TM	This paper	N/A

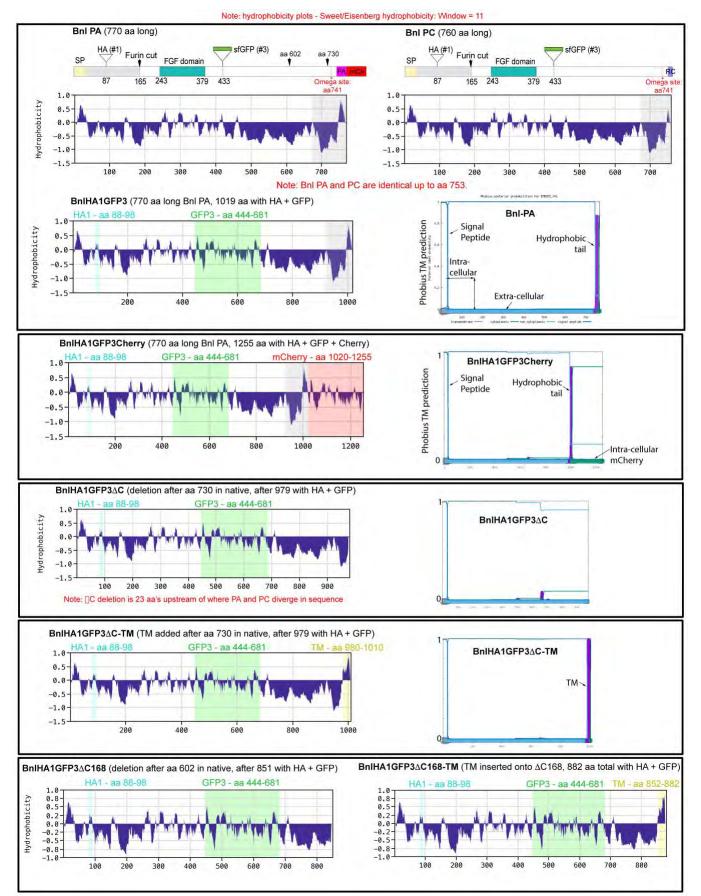

D. melanogaster. UAS-Bnl:GFP∆C ₁₆₈ -TM	This paper	N/A
D. melanogaster. UAS-Bnl:GFP ^Δ C ₁₆₈	This paper	N/A
D. melanogaster. LexO-BtlDN:Cherry	This paper	N/A
D. melanogaster. UAS-Bnl:GFP $-\omega^m$	This paper	N/A
D. melanogaster. bnl:gfp ^{endo}	1	N/A
D. melanogaster. btl:cherry ^{endo}	1	N/A
D. melanogaster. UAS-Bnl:GFP	2	N/A
D. melanogaster. UAS-CD8:GFP	BDSC	5137
D. melanogaster. UAS-nlsGFP	BDSC	4776
D. melanogaster. UAS-mCherryCAAX	BDSC	59021
D. melanogaster. UAS-CD4:mIFP	BDSC	64182
D. melanogaster. lexO-mCherryCAAX	3	N/A
D. melanogaster. UAS-Btl ^{DN}	4	N/A
D. melanogaster. UAS-Bnl	BDSC	64232
D. melanogaster. UAS-diaRNAi	BDSC	33424
D. melanogaster. UAS-Dia-GFP	3	N/A
D. melanogaster. UAS-∆DAD-Dia-GFP	3	N/A
D. melanogaster. bnl-LexA	1	N/A
D. melanogaster. bnl-Gal4	BDSC	112825
D. melanogaster. btl-Gal4	5	N/A
D. melanogaster. btl-LHG	3	N/A
D. melanogaster. hs-FLP; btl>y+>Gal4,	6	N/A
btl-mRFP1moe		
D. melanogaster. hs-mFlp	BDSC	N/A
D. melanogaster. FlyBow FB2.0	BDSC	N/A
D. melanogaster. btl:GFP fTRG	VDRC	318302
D. melanogaster. hs-Flp	BDSC	6
D. melanogaster. tub-Gal80 ^{ts}	BDSC	7108
D. melanogaster. act>CD2>Gal4	BDSC	4780
D. melanogaster. w ¹¹¹⁸	BDSC	3605
Oligonucleotides		
Primer for cloning UAS-Bnl:GFP∆C: GCCAAGCTTGCATGCCGGTACCTTAGTAGCTCGCATCTT CTAGGGATCC	This paper	N/A
Primer for cloning UAS-Bnl:GFP_AC-TM:	This paper	N/A
CCCTAGAAGATGCGAGCTACGACTTCGCCTGTGATATTT ACATCTGG		
Primer for cloning UAS-Bnl:GFP∆C-TM: GATGTAAATATCACAGGCGAAGTCGTAGCTCGCATCTTC TAGGGATCC	This paper	N/A
Primer for cloning UAS-Bnl:GFP∆C-TM: GCCAAGCTTGCATGCCGGTACCTTAGTGGTAGCAGATG AGAGTGATGATC	This paper	N/A
Primer for cloning UAS-Bnl:GFP∆C168: GCCAAGCTTGCATGCCATATATTCTAGATTACTTCTTCTT	This paper	N/A
GCCTCCGTGCTG Primer for cloning UAS-Bnl:GFP∆C168-TM: CAGCACGGAGGCAAGAAGAAGgacttcgcctgtgatatttacatctgg	This paper	N/A
Primer for cloning UAS-Bnl:GFP∆C ₁₆₈ -TM: ccagatgtaaatatcacaggcgaagtcCTTCTTCTTGCCTCCGTGCT G	This paper	N/A
Primer for cloning UAS-Bnl:HA1GFP3Cherryc: GTTTTGCTCCGAAAAAGAGCCATCCTGATGGTGAGCAAG GGCGAGGAG	This paper	N/A
Primer for cloning UAS-Bnl:HA1GFP3Cherryc: GCTGCTGGTACCTTACTTGTACAGCTCGTCCATGCCG	This paper	N/A

	This was an	N1/A
Primer for cloning UAS-Bnl:GFP- ω^m :	This paper	N/A
CGAGGCCCAAGGACGCCCCCACCAGGCGGCGACGAT TCG		
Primer for cloning UAS-Bnl:GFP- ω^m :	This paper	N/A
	This paper	IN/A
TCG		
Primer for cloning UAS-bGFP-GPI:	This paper	N/A
CAACAACTTGACAATGTCCAAGGGCGAGGAG		
Primer for cloning UAS-bGFP-GPI:	This paper	N/A
GCCCTTGGACATTGTCAAGTTGTTGTCCATGGCC		
Primer for cloning UAS-bGFP-GPI:	This paper	N/A
TGGATGAGCTGTACAAGACCGAGGGCGACGGTG		
Primer for cloning UAS-bGFP-GPI:	This paper	N/A
TCGGTCTTGTĂCAGCTCATCCATGCCC		
Primer for cloning UAS-Bnl:GFP_FGF:	This paper	N/A
CCCTTGGACATGGACTGTGGCACCGTGG		
Primer for cloning UAS-Bnl:GFP / FGF:	This paper	N/A
TGCCACAGTCCATGTCCAAGGGCGAGGAGC		
Primer for cloning UAS-Bnl:GFP_FGF:	This paper	N/A
CACCGTCTTGTACAGCTCATCCATGCCC		
Primer for cloning UAS-Bnl:GFP∆FGF:	This paper	N/A
ATGAGCTGTACAAGACGGTGCCGCAGGAG		
Forward primer for cloning all the constructs above:	This paper	N/A
AATTCGAGCTCGGTACAGATCTATGCGAAGAAACCTGCG	- 1- 1	
С		
Primer for cloning UAS-sBtl:Cherry.	This paper	N/A
AATTCGAGCTCGGTACCTCGAGATGGCAAAAGTGCCGAT		
CACG		
Primer for cloning UAS-sBtl:Cherry:	This paper	N/A
GCCGCCTTGCCCCTCGACAGGATGGGCGTGCAGCAG		
Primer for cloning UAS-sBtl:Cherry.	This paper	N/A
GTCGAGGGGCAAGGCGGCatggtgagcaagggcgag		
Primer for cloning UAS-sBtl:Cherry.	This paper	N/A
GCCAAGCTTGCATGCCTCTAGAttacttgtacagctcgtccatgcc		
Forward primer for <i>bnl</i> RT-PCR:	This paper	N/A
		N1/A
Reverse primer for <i>bnl-RA</i> RT-PCR:	This paper	N/A
GCTGCAGACACAGGAAATCG Reverse primer for <i>bnl-PC</i> RT-PCR:	This paper	N/A
	This paper	IN/A
GGGACAACAGTCCGAAATCG Primer for cloning UAS-Bnl ^{PC} :GFP:	This paper	N/A
GCCAAGCTTGCATGCCATATATTCTAGATCATCGCCGGG		IN/A
GGGACAACAGTCCGAAATCGTAGTAGAGCGAATCGTCG		
Recombinant DNA		
	2	NI/A
pUAST-Bnl:GFP	_	N/A
pUAST-Bnl:HA	2	
pUAST-Bnl:HA1GFP3 (UAS-HA1Bnl:GFP3)	2	
pUAST-GFP-GPI	7	N/A
•	8	N/A N/A
pUAST-cSpi:GFP		
pUAST-Bnl:GFP Δ C ₄₀ (Δ C) & -Bnl:GFP Δ C ₁₆₈	UAS-Bnl:HA₁GFP₃ by	N/A
	deleting the last 40 (after	
	Y ₇₃₀ of Bnl) and 168 (after	
	K ₆₀₂ of BnI) amino acid	
	regions, respectively, prior to	
	a stop codon.	N1/A
pUAST-Bnl:GFP _A C-TM & -Bnl:GFP _A C-TM ₁₆₈	a 31 amino acid long	N/A
	transmembrane domain of the mammalian CD8a	
	protein fused to the C-	
	terminus of UAS-Bnl:GFP ΔC	
	and UAS-Bnl:GFPAC	
	respectively.	

pUAST-Bnl:GFP ₃ Cherry _c	UAS-Bnl:HA ₁ GFP ₃ with a C-	N/A
porst-blil.GFF3chenyc	terminal mCherry tag with a	IN/A
	linker (VEGQGG) placed in	
	between.	
pUAST-Bnl _{PC} :GFP	The PC-specific C-terminal	N/A
	24 bp sequence (7 amino	1.07.
	acids+stop) was added to	
	the C-terminus of the 1-2259	
	bp region of <i>bnl-PA</i> CDS	
	using PCR	
pUAST-Bnl:GFP-ω ^m	UAS-Bnl:HA ₁ GFP ₃ with	N/A
	mutated ω , ω +1, and ω +2	
	sites (S/P ⁷⁴¹ G/P ⁷⁴² A/P ⁷⁴³)	
pUAST-bGFP-GPI	secGFP ¹ (superfolder GFP	N/A
	with N-terminal Bnl signal	
	peptide) added with the last	
	53 amino acids of BnI (from	
	T ₇₁₈) at the C-terminus.	
pUAST-sBtl:Cherry	mCherry sequence was	N/A
	added in-frame after P ⁶⁰⁷ of	
	Btl, replacing the TM and	
	intracellular portions.	
pUAST-BtIDN:Cherry and pLot-BtIDN:Cherry	mCherry sequence was	N/A
	added in-frame after L625 of	
	Btl, replacing the	
	intracellular C-terminal	
	portions.	
pUAST-Bnl:GFP ^{∆FGF}	Conserved FGF domain of	N//A
	Bnl was replaced with a	
	sfGFP sequence	
Software and Algorithms		
Fiji	ImageJ	https://fiji.sc
Prism 8.0	GraphPad	https://www.graphp
		ad.com/
Adobe Photoshop	Adobe	https://www.adobe.
		com
Adobe Illustrator	Adobe	https://www.adobe.
		com
Microsoft Excel	Microsoft	https://www.office.c
		om
SnapGene	SnapGene	https://www.snapge
		ne.com
MacVector	MacVector	https://macvector.c
		om
PredGPI predictor		http://gpcr.biocomp.
		unibo.it/predgpi/pre
		d.htm
VassarStats		vassarstats.net
R x64 3.3.1	R	r-project.org
Imaris 9.5.0	Imaris	https://imaris.oxinst
		.com

A. Expression analyses of bnl splice variants using RT-PCR

The bnl gene has two different splice variants encoding proteins with different C-terminal



hydrophobic sequences. To check the expression of different *bnl* isoforms, total RNA was extracted from 20 w^{1118} larval wing discs and RT-PCR was performed on the total RNA. For both isoforms, we used a common forward primer that binds to exon 3

(5'-CAGGAGGACACTCACAATTGCCAG-3'). However, the reverse primers were either PA- (5'-<u>GCTGCAGACACAGG</u>AAATCG-3') and PC- (5'-<u>GGGACAACAGTCCG</u>AAATCG-3') -specific. The reverse primer for each isoform was designed to span the junction between exon 3 and the isoformspecific last exon as illustrated below. The expected amplicon size was 697bp. As a negative control, RT-PCR was carried out on the genomic DNA (gDNA)

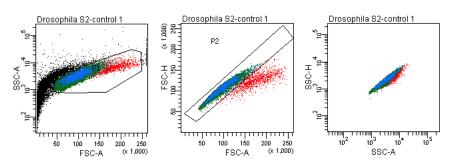
template obtained from *w*¹¹¹⁸ flies. As a positive control we performed RT-PCR for constitutive *rp49* gene. Unsurprisingly, RT-PCR results showed strong amplification of *bnl-PA*, exclusively from the RNA template. Although we detected strong *bnl-PC* amplification from the RNA template, we also detected a low level amplification of the same sized RT-PCR product from gDNA. These results confirmed *bnl-PA* expression in the wing disc. These results, although not conclusive, also suggested that the wing disc expresses *bnl-PC*. Moreover, a Bnl antibody, which detects both isoforms, showed that the native Bnl^{ex} is asymmetrically localized on the wing disc producing cell surface and the Bnl^{ex} was reduced with the PIPLC treatment. Secondly, S2 cells expressing a chimeric Bnl^{PC}:GFP construct showed the PIPLC-sensitive surface distribution of the protein. Based on these results, we suggest that irrespective of the tissue-specific expression levels, Bnl isoforms are GPI-anchored on the cell surface. Consistent RT-PCR results were obtained from three independent experiments, confirming the expression profile.

B. Bioinformatic analyses of hydropathy and secondary topology of various Bnl constructs

Transgenic Constructs	Fly line	Chromosomal Insertion	Expression levels *	externalized by source?	ASP uptake?
	2_2	3	+++	Yes	Yes
	3_1	3	ND	n/a	n/a
UAS-Bnl:GFP∆C ₄₀	3_2	2	++	Yes	Yes
	1_2	3	+++	Yes	Yes (R)
	2_2	2	+++	Yes	Yes (R)
	3_1	3	++	Yes	Yes (R)
	3_2	2	++	Yes	Yes (R)
	4_1	2	++	Yes	Yes (R)
	6_1	3	ND	n/a	n/a
	7_1	3	+	Yes	Yes (R)
UAS-Bnl:GFP∆C₄₀-TM	9_2	3	+++	Yes	Yes (R)
	1_2	2	++	Yes	Yes
UAS-Bnl:GFP∆C ₁₆₈	4_1	3	+++	Yes	Yes
	1_1	3	++	Yes	Yes (R)
UAS-Bnl:GFP∆C ₁₆₈ -TM	2_1	3	+++	Yes	Yes (R)
	1_1	3	+++	L	L
UAS-Bnl:GFP-ω ^m	4_1	2	+++	L	L

C. Comparison of bnl-GAL4-driven expression levels of transgenic constructs

* Expression levels were verified by *bnl-Gal4* driven expression of the *UAS* constructs in the wing disc *bnl* source (see Methods). Bnl:GFP lines used in this study was published earlier in Du et al. and Sohr et al.^{1,2}. ND: Not detected. Red: Lines with comparable expression levels used in this study. R: Restricted range. L: Very low level.


+++ >++>+ : High>medium>low levels of expression relative to each other.

An example of comparison of levels of expression of BnI:GFP variants under *bnI-Gal4* in the wing disc

	Bnl:GFP	Bnl:GFP∆C₄₀ (2_2)	Bnl:GFP∆C40-TM (2_2)
Mean GFP	1137.40	867.5	1495.3
intensity in the bnl-source	1142.2	1106.3	899.7
(derived from	1870.1	2400.1	620.6
extended Z-stack of 50 μm tissue)	747.7	909.8	1372.5
(7 wing discs from	1190.05	782.9	610.1
7 animals used)	972.8	985.5	1868.6
	527.6	484.3	1126.298
Average	1083.98*	1076.63*	1141.87*

*, Comparable levels of expression of different constructs used in this study.

Supplementary References

1. Du, L., Sohr, A., Yan, G. & Roy, S. Feedback regulation of cytoneme-mediated transport shapes a tissue-specific FGF morphogen gradient. (2018).

2. Sohr, A., Du, L., Wang, R., Lin, L. & Roy, S. Drosophila FGF cleavage is required for efficient intracellular sorting and intercellular dispersal. *J Cell Biol* 218, 1653–1669 (2019).

3. Roy, S., Huang, H., Liu, S. & Kornberg, T. B. Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein. *Science (New York, N.Y.)* 343, 1244624 (2014).

4. Reichman-Fried, M. & Shilo, B.-Z. Breathless, a Drosophila FGF receptor homolog, is required for the onset of tracheal cell migration and tracheole formation. *Mech Develop* 52, 265–273 (1995).

5. Sato, M. & Kornberg, T. B. FGF Is an Essential Mitogen and Chemoattractant for the Air Sacs of the Drosophila Tracheal System. *Dev Cell* 3, 195–207 (2002).

6. Cabernard, C. & Affolter, M. Distinct Roles for Two Receptor Tyrosine Kinases in Epithelial Branching Morphogenesis in Drosophila. *Dev Cell* 9, 831–842 (2005).

7. Greco, V., Hannus, M. & Eaton, S. Argosomes: a potential vehicle for the spread of morphogens through epithelia. *Cell* 106, 633–645 (2001).

8. Miura, G. I. *et al.* Palmitoylation of the EGFR ligand Spitz by Rasp increases Spitz activity by restricting its diffusion. *Developmental Cell* 10, 167–176 (2006).

9. Greco, V., Hannus, M. & Eaton, S. Argosomes: a potential vehicle for the spread of morphogens through epithelia. *Cell* 106, 633–645 (2001).

R plot code

```
library(ggplot2)
filename="Control Source"
file t= "data\\"
file<-paste(file_t,filename,".csv",sep="")</pre>
#data<-read.csv("FinalData\\Control Source.csv",head=TRUE,sep=",")</pre>
data<-read.csv(file,head=TRUE,sep=",")</pre>
cols<-c("#619cff","#f8766d","#00ba38")
#cols<-c("red","blue","green")</pre>
p<-ggplot(data, aes(x=data$Range,y=data$Counts,fill=data$Length)) +</pre>
 #theme_bw()+
 #theme_minimal() +
 geom bar(width = 30, colour="black", stat="identity") +
 #geom_hline(yintercept = 2.5) +
 #geom_vline(xintercept = c(0,90,180,270)) +
 scale_fill_manual(values = cols) +
 #scale_y_discrete(drop = FALSE) +
 theme(legend.box.just = "top",legend.position = "bottom") +
 theme(panel.grid.major = element_line(colour = "gray"),
         panel.grid.minor = element_line(colour = "blue"),
         panel.background = element_blank(),
         axis.line = element_line(colour = "black"))+
 labs(title = filename,
         fill = "Length range(um)",
        y = "Cytoneme number", limits = c(0, 100), colour =
"Cylinders") +
 coord_polar(theta = "x", start=pi/2, direction=-1) +
 scale_x_discrete("", limits = c(0,90,180,270), labels =
c(0,90,180,270)) +
 scale y continuous(limits=c(0,5), breaks= c(1:5))
```

р