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Dear Clint, 
 
Your Article entitled "Cell-specific chromatin landscape of human coronary artery resolves regulatory 
mechanisms of disease risk" has now been seen by 3 referees, whose comments are attached. While 
they find your work of potential interest, they have raised serious concerns which in our view are 
sufficiently important that they preclude publication of the work in Nature Genetics, at least in its 
present form. 
 
While the referees find your work of some interest, they raise concerns about the strength of the novel 
conclusions that can be drawn at this stage. 
 
In brief, two referees are supportive of your study, but the other has raised an important issue. 
 
Reviewer #1's report regards the number of cells analysed as much too low. They think that this 
means that the downstream analyses will be underpowered. 
 
Reviewers #2 and #3, on the other hand, are supportive, saying this is an important dataset for the 
CAD field. Reviewer #2's comments seem largely minor. Reviewer #3, however, thinks that the final 
part of the study - on PRDM16 and TBX2 - is preliminary and should be expanded. 
 
In our reading of these reports, we find Reviewer #1's comments on cell number to be particularly 
concerning, and would have to be fully addressed in a revision. We also noted that some of Reviewer 
#1's specific comments on how your dataset is underpowered (e.g. the caQTL analysis, cross-disease 
stage comparisons) may not apply to all of the results presented. The ideal solution would be to 
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analyse more cells, but we acknowledge that patient samples are difficult to collect. In that case, we 
believe that a detailed description of your analysis, including power calculations, may be sufficient to 
assuage this concern. 
 
We also thought that Reviewer #1's comments for an integrative analysis with your past RNAseq 
dataset, and Reviewer #2's request for further work on PRDM16 and TBX2, are important and would 
also greatly improve the impact of your work. 
 
Should further experimental data allow you to fully address these criticisms we would be willing to 
consider an appeal of our decision (unless, of course, something similar has by then been accepted at 
Nature Genetics or appeared elsewhere). This includes submission or publication of a portion of this 
work someplace else. 
 
The required new experiments and data include, but are not limited to those detailed here. We hope 
you understand that until we have read the revised manuscript in its entirety we cannot promise that 
it will be sent back for peer review. 
 
If you are interested in attempting to revise this manuscript for submission to Nature Genetics in the 
future, please contact me to discuss a potential appeal. Otherwise, we hope that you find our referees' 
comments helpful when preparing your manuscript for resubmission elsewhere. 
 
Sincerely, 
 
Michael Fletcher, PhD 
Associate Editor, Nature Genetics 
 
ORCID: 0000-0003-1589-7087 
 
 
Referee expertise: 
 
Referee #1: single-cell genomics, including scATAC. 
 
Referee #2: cardiovascular disease, genetics. 
 
Referee #3: cardiovascular disease, gene regulation. 
 
 
Reviewers' Comments: 
 
Reviewer #1: 
Remarks to the Author: 
In this article, the authors have applied single-cell ATAC-seq (scATAC-seq) to profile 28,316 cells 
across coronary artery segments from 41 patients with varying stages of Coronary artery disease 
(CAD). They identified 14 distinct cellular clusters and mapped ~320,000 accessible sites across these 
cells. The authors also identified cell type-specific elements, few transcription factors, and attempted 
to do chromatin accessibility quantitative trait locus (caQTL) mapping. They also used cis-regulatory 
elements (CREs) to link genes to disease-associated transcription factors such as PRDM16 and TBX2. 
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The authors claim to provide a single cell atlas for coronary artery and help interpreting cis-regulatory 
mechanisms in CAD. 
 
A) It's technically a single-nucleus ATAC-seq as they cannot isolate cells from frozen samples to begin 
with. In the manuscript it should be relabeled as snATAC-seq 
 
 
B) The most critical aspect of the paper is the number of nuclei obtained after snATAC-seq - 28,316 
cells. While superficially it may look like a decent number of nuclei for all the analysis, the fact that 
those cells are coming from 41 samples underscores the fact that the dataset is underpowered to 
dissect out inter-sample group-level differences and more importantly caQTLs. A closer look at the 
supplementary data (Supplementary Figure 3b-c) reveals that 50% of samples (about 19 samples) 
had less than 500 captured cells , with at least 8 samples less than 250 cells. More striking is the fact 
that only 8 samples (out of 41 samples -- 19%) had more than 1000 captured cells, and none over 
1500 cells. The difference between different biological groups is even more striking with 87% of 
category 3 (atherosclerotic) samples having less than 500 cells while significantly more cells were 
obtained from category 1 samples (controls). As such the group differences become confounded with 
huge cell-type capture-rate differences and it is bound to affect data analysis downstream. 
 
 
C) The inherent noise in snTAC-seq data, compounded by the fact that the authors only captured less 
than 750 cells from majority of samples which are now sub-clustered into 14 clusters suggest that 
even cluster differences for small-to -medium sized clusters is grossly underpowered. Case-in-point is 
subclustering of smooth muscle clusters 6 and 7 which are less than 2000 cells each. While the 
authors do not provide how many cells from each sample contribute to clusters 6 and 7, the average 
number of cells for cluster 6 and 7 from each sample will be less than 50 cells/sample 
(2000cell/41samples = 48 cells/sample). With that low resolution of cells, I will be hard-pressed to 
find any meaningful analysis for these clusters. 
 
The situation is not that different in the 2 largest clusters (Smooth muscle cells, cluster 4 and 5) with 
about 6000 cells in each cluster and average contribution from each samples will be 150 cells/sample 
 
 
D) Can the authors integrate their data with their own snRNAseq data, now in bioRxiv ( 
https://doi.org/10.1101/2020.10.27.357715) ? More specifically, do the CREs line up caQTLs and 
eQTLS from the snRNAseq data? What is the overlap of open chromatin accessibility at the promoter 
of the first exon of a gene (snATAC-seq) compared to its expression (from snRNA-seq)? 
 
E) The authors should read this paper (https://doi.org/10.1038/s41467-020-19365-w) on effective 
design of single-cell sequencing experiments for cell-type-specific QTL analysis, applicable for both 
eQTLs and caQTLs. The number of cells captured is far more critical than the number of samples used 
or read-depth of each cell. 
 
 
 
Reviewer #2: 
Remarks to the Author: 
This manuscript describes a tour de force employing single-cell ATAC-seq to 28,316 cells in 3 
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epicardial coronary artery segments from patients with and without coronary atherosclerosis to 
identify cis-regulatory mechanisms in VSMC transition states. They further extend the findings of 
recent GWAS using an integrative approach to identify plausible molecular mechanisms whereby a risk 
locus confers an effect in a cell specific manner. Further they identify PRDM16 and TBX2 as 
transcriptional regulators in SMCs. 
 
The unique value of this work stands as the first single-cell atlas of human coronary artery chromatin 
accessibility that is a unique resource of value to the scientific community. 
 
Comments. 
Figure 1 a. Are the reasons for transplant rejection of donor hearts known? Were calcified samples 
excluded? Of note, SMC can also differentiate towards osteoblastic cells, again a unique SMC 
phenotype. 
 
Figure 1 e. Although 3 arterial segments were harvested from 41 individuals, data are shown for 44 
samples. Is this because of less than optimal sample quality or processing? Might the unknown cells 
represent adipocytes? 
It is of interest that the atherosclerosis samples with or without adventitia are generally similar in cell 
type. 
 
Figure 3. These are very nice data that define at a single cell level, marker genes, TF enrichment and 
differential promoter peaks that extend our understanding of differentiated vs fibromyocytic SMCs. 
Apropos of sample calcification, in Fig 3f – Does RUNX include RUNX2, a marker of osteogenic 
differentiation? 
 
Figure 4. It is of interest and perhaps not unexpected that the majority of recently reported CAD 
GWAS variants demonstrate functionality in vascular SMCs. 4d. Given the ongoing interest in immune 
function and CAD, the authors may wish to highlight the variants with strong macrophage peaks. 
 
Figure 6. Relevant to the PRDM16 findings, beige (not brown) adipocytes are known to express SMC 
markers and can be derived from VSMCs under the direction of PRDM16. If present they could be 
identified by UCP1 expression. Here the authors should review the work of Spiegelman (2014). 
 
 
 
Reviewer #3: 
Remarks to the Author: 
This manuscript by Turner et al utilizes single cell ATAC-seq (scATAC-seq) data from coronary arteries 
from 41 patients to characterize cis-regulatory regions that are linked to CAD loci. This analysis 
reveals cell-specific accessible chromatin and potential binding sites at CAD risk loci and elucidates 
potential mechanisms for smooth muscle cell phenotypic. scATAC-seq studies were published recently 
on human carotid endarterectomy samples by Depuydt et al (Circ Res, 2020) and Ord et al (Circ Res, 
2021), which removes some novelty of the study by Turner. However, the Ord study had data from 
only 3 patients (all with advanced disease) and ~7000 cells total. The currently manuscript reports 
data on human right coronary arteries, LAD arteries and left circumflex arteries from 41 patients with 
various stages of disease and >28,000 individual cells. Because of the inclusion of multiple patients, 
Turner et al were able to perform chromatin accessibility QTL analyses, which greatly adds to the 
study. This is also the first scATAC-seq dataset from coronary arteries. Overall, this is an excellent 
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study and will provide an important resource for the community. The data and analysis are of high 
quality. There are several questions that remain. 
 
Major comments: 
 
1) The introduction section does not mention the other scATAC-seq datasets on human carotid artery 
atherosclerotic plaque, but instead refers to studies on cultured cells. The Ord study does not appear 
to be cited. The omission of these references in the introduction oversells the novelty somewhat. 
2) It isn’t clear whether the staging of atherosclerosis severity is according to the Stary criteria with 
four stages (Circulation, 1995). This is standard for the field and would provide more detailed 
information about patient plaque characteristics. Was pathology performed on plaque samples? While 
scATAC-seq was performed on various stages of disease, it seems that all of the data is combined 
rather than analyzed according to disease stage. Is the accessibility of CAD loci altered by disease 
stage? 
3) Are the gene score differences between cell clusters in Fig. 3B statistically significant? 
4) Would analysis of ‘super enhancers’ or clustered ATAC-seq peaks provide any additional information 
regarding potential functional regulatory regions? 
5) Further functional information on PRDM16 and TBX2 in atherosclerosis would be helpful. For the 
immunofluorescence in Fig. 6E, it would be helpful to include healthy tissue and advanced lesions for 
comparison to better understand the expression of PRDM16 in atherosclerosis. The methods indicate 
that healthy and sub-clinical atherosclerosis samples were used, but the healthy controls are not 
included in the manuscript. Is there eQTL or caQTL data for PRDM16 or TBX2? The data presented for 
PRDM16 and TBX2 are not entirely convincing and appear to be preliminary. 
 
Minor comments: 
1) The heatmap in Fig. 3D could use additional annotation to indicate where the trajectory begins and 
ends. 
2) The legend for the heatmap in Fig. 4D is confusing. Are ‘zero’ peaks white? It seems that ‘zero’ 
peaks are black on the legend, but this doesn’t seem to be correct. 
 

Author Rebuttal to Initial comments   
 
  



Point-by-point response to Nature Genetics, 2021, Turner and Hu et al. 
  
We first thank all of the reviewers for their helpful comments and constructive feedback and the 
opportunity to consider this work for publication in Nature Genetics. We have provided extensive 
new  material and revisions to the text that we feel has markedly improved the quality of the 
manuscript. We have added power calculations and generated new bulk ATAC-seq caQTL 
results to support our primary results. Importantly, the caQTLs we highlight (for example 
rs13324341 (MRAS) in smooth muscle cells) were replicated in bulk coronary artery ATAC-seq 
libraries (50,000 nuclei per individual). We have also included histology characterization of 
these coronary artery samples in healthy and atherosclerotic contexts and more comprehensive 
immunostaining of PRDM16 in the vessel wall. Below we provide point-by-point responses (in 
blue) to each comment/remark from the three reviewers. At the end we also detail specific 
additions/changes we made to the manuscript. Specific changes to the enclosed manuscript 
text are also highlighted in blue for clarity.  
 
Reviewer Comments: 
 
Reviewer #1:  
Remarks to the Author:  
In this article, the authors have applied single-cell ATAC-seq (scATAC-seq) to profile 28,316 
cells across coronary artery segments from 41 patients with varying stages of Coronary artery 
disease (CAD). They identified 14 distinct cellular clusters and mapped ~320,000 accessible 
sites across these cells. The authors also identified cell type-specific elements, few transcription 
factors, and attempted to do chromatin accessibility quantitative trait locus (caQTL) mapping. 
They also used cis-regulatory elements (CREs) to link genes to disease-associated transcription 
factors such as PRDM16 and TBX2. The authors claim to provide a single cell atlas for coronary 
artery and help interpreting cis-regulatory mechanisms in CAD.  
  
A) It's technically a single-nucleus ATAC-seq as they cannot isolate cells from frozen samples to 
begin with. In the manuscript it should be relabeled as snATAC-seq  
  

Thank you, we agree with this comment and we have now changed “scATAC-seq” to 
“snATAC-seq” throughout the manuscript to more accurately reflect our single nuclei 
isolations from the frozen samples.  

  
B) The most critical aspect of the paper is the number of nuclei obtained after snATAC-seq - 
28,316 cells. While superficially it may look like a decent number of nuclei for all the analysis, 
the fact that those cells are coming from 41 samples underscores the fact that the dataset is 
underpowered to dissect out inter-sample group-level differences and more importantly caQTLs. 
A closer look at the supplementary data (Supplementary Figure 3b-c) reveals that 50% of 
samples (about 19 samples) had less than 500 captured cells , with at least 8 samples less than 
250 cells. More striking is the fact that only 8 samples (out of 41 samples -- 19%) had more than 
1000 captured cells, and none over 1500 cells. The difference between different biological 
groups is even more striking with 87% of category 3 (atherosclerotic) samples having less than 



500 cells while significantly more cells were obtained from category 1 samples (controls). As 
such the group differences become confounded with huge cell-type capture-rate differences and 
it is bound to affect data analysis downstream.   
  

We appreciate Reviewer 1’s comment in this regard. Here, we respond with a few points 
to clarify our rationale and support our results: 
 
First, we actually conducted two steps of quality control (QC) for nuclei that were 
captured and sequenced in the snATAC-seq experiments. We captured and sequenced 
94,432 total nuclei (ranging from 113 (minimum) and 20,050 (maximum) with an average 
of 2,146 nuclei/sample and 17,433 unique fragments/nuclei) using the default QC 
thresholds from the 10x Genomics Cell Ranger ATAC pipeline (Supplementary Table 
2!"#$%#&'%(#)*+,%-&%.#&'%)%#(*-/%0#&1#213%#)&30(4%(&#56#&'3%)'1/.)#7&38()-309&01(#)&83&#

)0&%#7:;;!#%(30-'2%(&#<=#8(.#<>?@???#*(0A*%#B3842%(&)#9%3#(*-/%0!#7Supplementary 
Table 2). As expected, the high number of unique fragments per cell dictates how 
informative each individual cell is for downstream analyses and also contributes towards 
the power to detect cis-regulatory elements (Mandric et al., 2020). Although we did not 
obtain high nuclei numbers in some individuals, this is not unexpected based on the 
more stringent QC thresholds and the atherosclerotic disease nature of many of the 
samples profiled. By pooling all individuals together and obtaining 28,316 high quality 
nuclei, we were able to overcome the fact that we had fewer post-QC nuclei per 
individual. Importantly, cells belonging to the various clusters were evenly distributed 
across all of the individuals (Rebuttal Figure 1). Thus, when we are comparing clusters 
and cell types, the differences are unlikely to be driven by a select few individuals.  

  
Second, we feel our study is adequately powered to dissect out differences between cell 
types and subtypes (for example, differentiated smooth muscle cells vs. fibromyocytes in 
Figure 3). Recently developed power calculators for single-cell RNA-seq analysis (e.g. 
SCOPIT (Davis et al., 2019) ) demonstrate that we are able to detect cell type 
differences (assuming a cluster of at least 50 cells) for our rarest cell type (mast cells at 
0.7% frequency) by sequencing > 9,129 cells. Given that we focused our analysis on the 
main cell types in the vessel wall, we are well above this threshold to identify cell type 
differences in chromatin accessibility. To support this we also developed a script to 
perform a per gene differential accessibility power analysis (Supplementary Data 9). 
Based on these results we had more than enough cells to detect differential accessibility 
between SMC and fibromyocytes for all of the significant loci. Reviewer 1 makes a valid 
point that we have fewer cells per sample in category 3 (advanced atherosclerosis) 
compared to category 1 (healthy controls). This may contribute to the limited number of 
differentially accessible genes/peaks identified between healthy and diseased individuals 
(Rebuttal Figure 2). However this may also be driven by the continuous rather than 
dichotomous nature of atherosclerotic plaques, which have a high degree of 
heterogeneity and plasticity of cell types (van Kuijk et al., 2019). In fact, we have 
observed consistent results in group level differences in bulk ATAC-seq profiled samples 



from this set of patients (unpublished observations). Nonetheless, we acknowledge this 
as a known limitation in the Discussion and mention the benefit of performing more 
single nuclei profiling of advanced disease (category 3) samples to better address this 
question in future studies. Given the difficulty in procuring these precious samples from 
heart transplants (especially during the pandemic), we have been unable to obtain more 
unique individual samples for this study.  

 
Third, we believe we suitably capture differences between individuals with respect to the 
caQTL analysis. To begin to estimate our power for caQTL analyses, we used the 
powerEQTL package for single-cell RNA-seq based eQTL studies, which assumes a 
standard linear regression model. Assuming an average of 500 cells captured per 
individual across 41 individuals, we have 80% power to detect SNP associations for 
common variants (MAF=0.1) with moderate effect size (beta = 0.3). However, these 
calculations grossly underestimate the improved power derived from an allele-specific 
based method such as RASQUAL (Kumasaka et al., 2016), which is designed to detect 
molecular trait associations from small sample sizes. In fact, we previously 
demonstrated a 7-fold increase in significant eQTLs discovered with this approach 
compared to FastQTL in a cohort of 52 human coronary artery SMC (Liu et al., 2018). 
We used RASQUAL for our caQTL mapping and also limited these analyses to the two 
major cell types present in each of the samples (SMC and macrophages). Using a more 
stringent inclusion criteria for the individual samples, we re-ran RASQUAL for these cell 
types, and discovered 1,984 and 1,210 cis-caQTLs in SMC and macrophages, 
respectively, at 5% FDR. This is similar to our original results and we have now updated 
Figure 5 and Supplementary Data 6. 
 
To strengthen our single cell caQTL findings, we attempted bulk ATAC-seq on the 
remaining frozen coronary arteries for all 41 of these matched patients. 35 of these bulk 
ATAC libraries were of sufficient quality and used for downstream bulk caQTL analysis. 
We added methods on the bulk ATAC-seq to the manuscript and added results in 
Supplementary Data 7. Since we did not need to perform single cell capture for these 
bulk reactions, each bulk ATAC-seq library contained ~50,000 nuclei per individual. Our 
results show many of our smooth muscle and macrophage single cell caQTLs are also 
detected as significant bulk caQTLs, with the direction of effects primarily consistent 
(Rebuttal Figure 3 and Supplementary Figure 11). Most importantly, the single cell 
caQTLs that we highlight in the manuscript (such as MRAS, MEF2D, FCHO1, SMAD3) 
were also significant bulk caQTLs with consistent direction of effects. For instance, for 
rs13324341 at the MRAS locus, the peak containing this variant is accessible in smooth 
muscle cells. The T allele associates with greater accessibility in both our smooth 
muscle caQTL dataset as well as in the bulk coronary caQTL dataset. Furthermore, as 
we show in Figure 5B and Figure 5C, many of these caQTLs are significant eQTLs (5% 
FDR) in GTEx arterial tissues. We acknowledge in the Discussion that certain caQTLs 
are likely cell-type/state specific whereas other caQTLs are likely to be shared across 
several cell types and tissues. Also, we acknowledge that larger cohorts are likely 
needed to fully address this question.  



 
Lastly, to compensate for the reduced power to detect cell type caQTLs (especially for 
less abundant cell types), we performed machine learning based prediction of CAD 
regulatory variant function using three different methods (Methods). Using the gapped 
k-mer support vector machine (gkm-SVM), gkm-Explain, and deltaSVM trained on 
accessible peaks from SMC, macrophages, fibroblasts, endothelial cells, pericytes, T/NK 
or Mast cells we identified single nucleotide variants predicted to alter chromatin 
accessibility and potentially transcription factor binding from the reference sequence 
(Supplementary Data 8). We identified a number of top candidate regulatory variants at 
CAD loci (e.g. LIPA and SMAD3) that are predicted to function through cell-specific 
regulatory mechanisms. This powerful and complementary approach could be extended 
to deep learning based models to enable more exhaustive prediction of variants that 
may be difficult to prioritize from QTL based methods alone. 

  
It is worth noting that despite following the Omni-ATAC protocol (Corces et al., 2017) 
that is optimized for frozen tissue and careful optimization, we were unable to capture 
high numbers of nuclei from these advanced coronary artery plaques. These advanced, 
category 3 samples had high amounts of extracellular matrix, calcification, and necrosis, 
and our group in addition to others have had difficulty capturing high numbers of 
cells/nuclei per sample from fibrous/calcified human tissues, especially atherosclerotic 
plaques. For example, a recent study from Depuydt et al. in Circulation Research 
(Depuydt et al., 2020) performed single cell RNA-seq from 18 patients, all of which were 
human carotid artery atherosclerotic plaques. Across all 18 patients, this study obtained 
a total of 3,282 cells, which is approximately 234 cells per individual. This study also 
performed snATAC-seq for 6 individuals (fibro-atheromatous carotid artery plaques) but 
only obtained a few hundred suitable nuclei per individual. As is the case for many other 
human atherosclerosis single-cell datasets, only 3-4 individual samples are typically 
available (refer to our data portal at PlaqView.com), further demonstrating the difficulty in 
obtaining and analyzing these samples.  

 
Overall, we acknowledge the reviewer’s important comments. However, given that this is 
the first study to perform snATAC-seq of both healthy and diseased human coronary 
arteries, which are extremely difficult to procure, we feel that 28,316 analyzed high-
quality nuclei, post-QC still represents a very valuable resource for the community. More 
importantly, based on the detailed explanations above, we feel that analyzing more 
nuclei per individual would not affect the major conclusions of this manuscript.  
  

C) The inherent noise in snATAC-seq data, compounded by the fact that the authors only 
captured less than 750 cells from majority of samples which are now sub-clustered into 14 
clusters suggest that even cluster differences for small-to -medium sized clusters is grossly 
underpowered. Case-in-point is subclustering of smooth muscle clusters 6 and 7 which are less 
than 2000 cells each. While the authors do not provide how many cells from each sample 
contribute to clusters 6 and 7, the average number of cells for cluster 6 and 7 from each sample 



will be less than 50 cells/sample (2000cell/41samples = 48 cells/sample). With that low 
resolution of cells, I will be hard-pressed to find any meaningful analysis for these clusters.   
  
The situation is not that different in the 2 largest clusters (Smooth muscle cells, cluster 4 and 5) 
with about 6000 cells in each cluster and average contribution from each samples will be 150 
cells/sample  
  

We acknowledge the reviewer’s concern. Overall, we believe our snATAC data can 
identify biologically meaningful differences between main clusters and in the case of 
clusters 4-7 (smooth muscle cells), differences between cell sub-clusters (as shown in 
Figure 3). To further clarify this first point, we now provide individual UMAPs separated 
by each sample to visualize the number of cells contributing to each main cluster and 
sub-cluster (Rebuttal Figure 1). We also include the numbers of cells analyzed per 
cluster per sample in Supplementary Table 3.  
 
Secondly, to address the reviewer’s concern for power, we performed a power 
calculation of detecting differentially expressed genes between main clusters and sub-
clusters using the recently developed Hierarchicell R package (Zimmerman and 
Langefeld, 2021). As noted by the authors of this package, in order to identify at least 
1.2 fold changes as statistically significant (power > 0.80), “researchers will need a 
minimum of 40 samples..and 100 cells per sample.” This is assuming a traditional 
case/control study design. Given that atherosclerosis is a continuous trait, we already 
achieve maximal power with 100 cells/sample. There are actually only minor differences 
in power when sampling 100, 250, 500, or 1,000 cells per sample. In fact, the authors 
demonstrate that as the overall sample size increases (e.g. 20 to 100) there is a drop in 
power gains by sampling more cells/sample. This is consistent with the per gene sample 
size power calculation for our differential analysis of the integrated data, as described 
above (Supplementary Data 9). 
 
We did recognize the intrinsic noise in snATAC when performing these sub-cluster 
differential analyses as shown in Figure 3. Instead of comparing cluster 6 vs. cluster 7 
from the snATAC data alone, we actually compared cells labelled as ‘smooth muscle 
cells’ (SMCs) against cells labelled as ‘fibromyocytes’ upon integrating human coronary 
artery (HCA) scRNA-seq data from Wirka et al., Nature Medicine 2019 (Wirka et al., 
2019). Integration of scRNA-seq data into snATAC-data has been shown to enhance 
clustering resolution and enable identification of cell subpopulations not possible with 
snATAC-seq data alone. Using the integrated data, we were able to annotate 6,518 
contractile SMCs and 2,512 fibromyocytes for the downstream differential accessibility 
analysis. We believe the integration of the snATAC-seq with coronary artery scRNA-seq 
data strengthens the cell type annotations and overcomes the inherent noise in the gene 
activity scores derived from snATAC accessibility data. As mentioned above, each 
individual in the study contains cells belonging to each cluster with nearly equivalent cell 
compositions across individuals. Further, the lower numbers of captured cells in certain 
individuals is further mitigated since we pooled all cells together for the smooth muscle 



cell vs. fibromyocyte analyses. We think this is a valid approach since the main goal of 
this differential analysis was to compare contractile and modulated SMCs as opposed to 
disease vs non-disease status. Thus it remains unlikely that specific individuals are 
driving the observed differences between clusters. 
 
Nonetheless, we agree that increased sample sizes and/or nuclei/sample may still be 
necessary to perform sub-cluster comparisons between smaller clusters representing 
less abundant cell types (e.g. T cells) and more context-specific mechanisms. Since we 
did not focus on these less abundant cells in this manuscript, this would be an 
opportunity for follow-up studies. We have added this note in the revised Discussion.   

 
D) Can the authors integrate their data with their own snRNAseq data, now in bioRxiv ( 
https://doi.org/10.1101/2020.10.27.357715) ? More specifically, do the CREs line up caQTLs 
and eQTLS from the snRNAseq data? What is the overlap of open chromatin accessibility at the 
promoter of the first exon of a gene (snATAC-seq) compared to its expression (from snRNA-
seq)?  
  

We apologize for any confusion. The coronary artery scRNA-seq data analyzed in the 
bioRxiv paper by Ma et al. was from GSE131778 (Wirka et al., Nature Medicine 2019), 
which is the same published scRNA-seq dataset used in this manuscript for integration 
with snATAC-seq. We are co-authors on this original paper and it is currently the only 
publicly available human coronary artery scRNA-seq/snRNA-seq dataset. We have 
highlighted the agreement between our snATACseq and scRNAseq from the integration 
analysis with geneScore (snATACseq) vs. expression (scRNAseq) in Figure 1D.  
  
Regarding the alignment of caQTLs and eQTLs through similar CREs, this question is 
not yet possible as single-cell eQTLs have not yet been mapped. This will be an 
interesting question to pursue in future multimodal (snATAC/snRNA) analyses of these 
tissues. We did perform pseudo-bulk level comparisons between snATACseq and 
scRNAseq by comparing ATAC-seq peak occupancy at the promoters (e.g., 3 kb of 
TSS) of expressed genes (detected by scRNAseq pseudo-bulk level, e.g., RPKM >=1) 
for the same cell type. The results of these analyses are now reported in 
Supplementary Figure 6C, with an overall good correlation (Pearson r~0.55). The 
“gene score” model implemented in ArchR (Granja et al., 2021) that accounts for 
enhancer activities provides higher performance for estimation of gene expression. 
 

E) The authors should read this paper (https://doi.org/10.1038/s41467-020-19365-w) on 
effective design of single-cell sequencing experiments for cell-type-specific QTL analysis, 
applicable for both eQTLs and caQTLs. The number of cells captured is far more critical than 
the number of samples used or read-depth of each cell.  
  

We thank Reviewer 1 for sharing this paper (Mandric et al., 2020) and agree that this 
paper provides very good advice for planning experiments for cost. We agree that a high 
number of cells captured is important for identification of cell type QTLs, but believe this 



paper also emphasizes that a high number of individuals is very important. Both of these 
factors seem to be more important than the read depth per cell. Thus, we feel that the 
number of nuclei we captured is largely offset by increasing the number of individual 
samples, as described in the above responses. We have now expanded our Discussion 
section to emphasize the need for both increased numbers of captured cells and/or 
numbers of samples for improved cell type QTL discovery and cited the referenced 
paper. 
 
For the snATAC experiments we aimed for both a high number of individuals and a high 
number of nuclei/sample. We had sufficient nuclei concentrations for most samples and 
aimed to capture ~5,000 nuclei/per sample. However, our capture rate from the 10x 
Chromium Controller was lower than we anticipated. As we previously mentioned we 
obtained 94,432 total nuclei from Cell Ranger ATAC but filtered more stringently for 
downstream analyses. 

  
One key difference between our study and this paper is that we used RASQUAL 
(Kumasaka et al., 2016) to detect cell-type QTLs whereas this paper used Matrix eQTL. 
Matrix eQTL (Shabalin, 2012) uses linear regression to compare read counts between 
individuals across genotypes. Typical power calculators for single cell QTL studies (e.g. 
powerEQTL described above) rely on similar linear models. However, RASQUAL 
maximizes association detection by combining both between-individual and within-
individual allelic effects. Thus RASQUAL is much better equipped to discover QTLs in 
smaller sample sizes compared to Matrix eQTL. Although the samples analyzed in the 
RASQUAL paper were from bulk ATAC libraries, RASQUAL was able to detect 
thousands of caQTLs from only 24 individuals. 

  
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Reviewer #2:  
Remarks to the Author:  
This manuscript describes a tour de force employing single-cell ATAC-seq to 28,316 cells in 3 
epicardial coronary artery segments from patients with and without coronary atherosclerosis to 
identify cis-regulatory mechanisms in VSMC transition states. They further extend the findings 
of recent GWAS using an integrative approach to identify plausible molecular mechanisms 
whereby a risk locus confers an effect in a cell specific manner. Further they identify PRDM16 
and TBX2 as transcriptional regulators in SMCs.  
  
The unique value of this work stands as the first single-cell atlas of human coronary artery 
chromatin accessibility that is a unique resource of value to the scientific community.   
  
Comments.  
Figure 1 a. Are the reasons for transplant rejection of donor hearts known? Were calcified 
samples excluded? Of note, SMC can also differentiate towards osteoblastic cells, again a 
unique SMC phenotype.  
  

We should clarify that these are not “rejected” hearts in the typical nomenclature (e.g. 
rejected organs after transplantation). These “rejected” donor hearts are actually 
candidate donor hearts that were turned down by the transplant surgical team prior to 
being transplanted. We have now modified the terminology in the text to prevent any 
confusion. Regardless, while we have detailed information on the individual donor hearts 
from the United Network for Organ Sharing (UNOS), we do not usually have a specific 
reason for “rejection” beyond the surgical teams’ discretion. Some common reasons 
include: donor-recipient incompatibility such as size mismatches between donor and 
recipient, cerebrovascular incidents, and drug use. 

  
We included calcified coronary artery samples (all in category 3 (Figure 1)), yet these 
samples provided poorer capture rates and lower number of nuclei that passed our 
quality control thresholds. While the Omni-ATAC protocol generally worked well for 
frozen coronary samples, nuclei isolation was substantially more difficult for the highly 
calcified samples. The highly calcified/advanced plaque samples were difficult to break 
into small pieces and resulted in more debris in the nuclear preparations. As a result, we 
did not capture as many bona fide osteoblastic cells that are present in advanced 
atherosclerotic lesions. We suspect that this snATAC dataset does include 
osteochondrogenic cells that are at earlier stages of SMC transdifferentiation towards 
this cell type. This is based on preliminary integrative analyses with lineage-traced 
mouse scRNA-seq data, where we identified integrated expression of the chondrocyte 
Sox9 marker in SMC-derived cells. Nonetheless, this would be an interesting follow-up 
study to identify other regulators of osteoblast differentiation by integrating mouse SMC 
lineage traced scRNA-seq datasets.  

  



Figure 1 e. Although 3 arterial segments were harvested from 41 individuals, data are shown for 
44 samples. Is this because of less than optimal sample quality or processing? Might the 
unknown cells represent adipocytes?   
It is of interest that the atherosclerosis samples with or without adventitia are generally similar in 
cell type.   
  

We have 44 samples from 41 individuals due to less than optimal sample processing 
from some extremely diseased/highly calcified samples for 3 individuals on the first 
attempt. For these samples we obtained a low number of nuclei that passed the ArchR 
QC thresholds, but still kept the high-quality nuclei for downstream analyses. We then 
repeated snATAC-seq library preparation and analyses for adjacent segments from 
these same 3 individuals. 

  
This is an interesting question regarding the potential assignment of the unknown cluster 
as adipocytes. While perivascular adipocytes and adipocyte signaling play important 
roles in inflammation and atherosclerosis, we do not think this unknown cluster (cluster 
9) represents adipocytes. Prior to sample freezing we carefully dissected the 
perivascular fat from the outer layer of the coronary arteries. From our experience, other 
studies do not trim the fat before profiling arterial tissue, which was done here to enrich 
vascular wall cell types. When we looked up snATAC gene scores for traditional 
adipocyte marker genes (e.g. UCP1, CITED1, and ZIC1) there was no noticeable 
enrichment for these genes compared to other cell clusters (Rebuttal Figure 4). Lastly, 
based on the snATAC marker gene scores, snRNA-seq integrated expression and the 
confusion matrix shown in Figure 1D, the ‘unknown’ cells closely resemble the 
‘Macrophage’ and ‘Mast’ labels from scRNA-seq. Top marker genes for this cluster 
include CD163 (reported to be an M2 macrophage marker) and CD300LB (expressed on 
myeloid cells). Nonetheless, we acknowledge that there is considerable heterogeneity in 
myeloid/immune cells in atherosclerosis (Lin et al., 2019, Fernandez et al., 2019). 

 
Figure 3. These are very nice data that define at a single cell level, marker genes, TF 
enrichment and differential promoter peaks that extend our understanding of differentiated vs 
fibromyocytic SMCs. Apropos of sample calcification, in Fig 3f – Does RUNX include RUNX2, a 
marker of osteogenic differentiation?  
  

Thank you, this is an interesting question. For the position weight matrices displayed in 
Figure 3f, the RUNX motif includes RUNX2 (smooth muscle cell calcification marker (Lin 
et al., 2015, 2016) in addition to the very similar RUNX1 and RUNX3 motifs. We have 
now added a sentence in the main text in this regard. This would potentially suggest the 
fibromyocyte SMCs also encompass some osteochondrogenic cells and agree with 
recent single cell studies highlighting that SMCs can transition to osteogenic or 
chondrocytic phenotypes. This also agrees with the identification of TNFRSF11B 
(Osteoprotegerin) and POSTN (periostin) as top marker genes in fibromyocytes. 
   



Figure 4. It is of interest and perhaps not unexpected that the majority of recently reported CAD 
GWAS variants demonstrate functionality in vascular SMCs. 4d. Given the ongoing interest in 
immune function and CAD, the authors may wish to highlight the variants with strong 
macrophage peaks.  
  

We agree that macrophages and other immune cells play key roles in atherosclerosis 
and these cell types have been intensely studied in the CAD field. After smooth muscle 
cells, macrophages represented the second most abundant cell type in our snATAC 
dataset. We have now highlighted additional CAD associated variants residing in strong 
macrophage peaks (e.g. rs7296737 at SCARB1 and rs17680741 at TSPAN14) in the 
main text. We also highlighted a top regulatory variant in LIPA in Figure 5, which is 
predicted to alter macrophage-specific TF binding sites, as identified through our 
machine learning analysis.    

  
Figure 6. Relevant to the PRDM16 findings, beige (not brown) adipocytes are known to express 
SMC markers and can be derived from VSMCs under the direction of PRDM16. If present they 
could be identified by UCP1 expression. Here the authors should review the work of 
Spiegelman (2014).  
  

We thank Reviewer 2 for sharing this important paper from Spiegelman’s lab (Long et 
al., 2014). As mentioned, ectopic expression of PRDM16 in vitro can convert VSMCs to 
beige adipocytes (UCP1 being a thermogenic beige adipocyte marker). Additionally, this 
study emphasizes how VSMC-like cells display similarities to beige adipocytes rather 
than traditional brown adipocytes. We did attempt to correlate PRDM16 and UCP1 
based on imputed gene scores in SMCs, however these were modestly negatively 
correlated (Pearson r = -0.28).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Reviewer #3:  
Remarks to the Author:  
This manuscript by Turner et al utilizes single cell ATAC-seq (scATAC-seq) data from coronary 
arteries from 41 patients to characterize cis-regulatory regions that are linked to CAD loci. This 
analysis reveals cell-specific accessible chromatin and potential binding sites at CAD risk loci 
and elucidates potential mechanisms for smooth muscle cell phenotypic. scATAC-seq studies 
were published recently on human carotid endarterectomy samples by Depuydt et al (Circ Res, 
2020) and Ord et al (Circ Res, 2021), which removes some novelty of the study by Turner. 
However, the Ord study had data from only 3 patients (all with advanced disease) and ~7000 
cells total. The current manuscript reports data on human right coronary arteries, LAD arteries 
and left circumflex arteries from 41 patients with various stages of disease and >28,000 
individual cells. Because of the inclusion of multiple patients, Turner et al were able to perform 
chromatin accessibility QTL analyses, which greatly  
adds to the study. This is also the first scATAC-seq dataset from coronary arteries. Overall, this 
is an excellent study and will provide an important resource for the community. The data and 
analysis are of high quality. There are several questions that remain.  
  
Major comments:  
  
1) The introduction section does not mention the other scATAC-seq datasets on human carotid 
artery atherosclerotic plaque, but instead refers to studies on cultured cells. The Ord study does 
not appear to be cited. The omission of these references in the introduction oversells the novelty 
somewhat.  
  

We fully agree with this comment and have now mentioned and cited the new Ord et al. 
study in Circulation Research (Örd et al., 2021). It came online a few days before we 
initially submitted. We also cited the original scATAC-seq study on this carotid artery 
dataset by Depuydt et al (Depuydt et al., 2020). 
 

2) It isn’t clear whether the staging of atherosclerosis severity is according to the Stary criteria 
with four stages (Circulation, 1995). This is standard for the field and would provide more 
detailed information about patient plaque characteristics. Was pathology performed on plaque 
samples? While scATAC-seq was performed on various stages of disease, it seems that all of 
the data is combined rather than analyzed according to disease stage. Is the accessibility of 
CAD loci altered by disease stage?  
  

Thank you, we agree that the Stary criteria is the standard in the field to grade the 
severity of atherosclerosis. We have performed histology analyses on most of these 
coronary artery samples, which include healthy samples with minimal intimal thickening, 
early/intermediate atheromas as well as fibro-fatty plaques with calcification. Importantly, 
whenever possible, we used samples for snATAC-seq that were adjacent to regions of 
the coronary artery that were used for histology analysis. Representative histology 
images and quantitation of a subset of samples per disease stage is now included in 
Supplementary Figure 4 and Rebuttal Figure 5. Using Oil Red O (ORO) staining of 



lipids we observed an accumulation of lipid laden cells in the subintimal layer of the early 
atheroma (category 2) and fibroatheroma plaques (category 3). Sirius red and H&E 
staining also demonstrates increased intimal hyperplasia, collagen type I/III 
accumulation and decreased lumen diameter of the early atheroma and advanced lesion 
segments relative to the healthy control segments (category 1). In general, our results 
are consistent with the Stary (Stary et al., 1995) classification stages in that category 1 
represents type I/II lesions with adaptive intimal thickening and initial fatty streak/foam 
activation, category 2 represents type III/IV lesions (intermediate/advanced atheroma) 
with more intimal thickening and accumulation of lipid, and category 3 represents type 
V/VI lesions (advanced fibrocalcific atheroma) with evidence of a lipid core, fibrous cap, 
and/or calcification.  

 
Reviewer 3 is correct that most of our analyses use data combined for 28,316 nuclei 
across all individuals. In terms of comparing accessibility at CAD loci according to 
disease stage, we did not observe many genome-wide significant differences in 
chromatin accessibility between disease stages. This is expected given the continuous 
rather dichotomous nature of atherosclerosis progression. The loci we did observe make 
sense biologically in terms of the implicated genes, with marker genes having higher 
accessibility in Category 3 linked to inflammation and immune processes (e.g. CD5, 
CD84, CCL4L2, and ICAM1) (Rebuttal Figure 2). In contrast SMC marker genes related 
to contractile function (e.g. CNN1, KCNA5) were more accessible in Category 1 
samples.  Unfortunately due to difficulty obtaining high numbers of nuclei from more 
advanced diseased/plaque samples (Category 3) these samples have fewer analyzed 
nuclei compared to the other categories, as noted in response to Reviewer 1. Finally, 
dissecting differences between disease stages remains a challenging task since 
coronary lesions are very heterogeneous and this type of analysis may be more suitable 
for spatial genomic approaches to compare omic profiles in situ. 
  

3) Are the gene score differences between cell clusters in Fig. 3B statistically significant?  
  

This is a good point, which we have now clarified in a revised Figure 3B. The 
differences in gene scores comparing Cluster 4 + Cluster 7 vs. Cluster 5 + Cluster 6 are 
statistically significant and now reflected with p values shown in the Figure 3B panel.  

 
4) Would analysis of ‘super enhancers’ or clustered ATAC-seq peaks provide any additional 
information regarding potential functional regulatory regions?  
  

We agree that this is a very interesting question. In cultured human coronary artery 
smooth muscle cells ((Miller et al., 2016), GSE72696), H3K27ac ChIP-seq marks 
(established feature of super enhancers) have previously been used to identify SMC 
super enhancers. We re-analyzed these datasets using the SICER (Zang et al., 2009) 
package, which is optimized for broad peak calling from histone modifications and 
identified super enhancers from H3K27ac peaks >10 kb, as previously described (Wang 
et al., 2019). These cultured human coronary artery SMC super enhancers were 



enriched at SMC marker genes in our snATAC-seq data compared to all other cell types 
(Supplementary Figure 7). 

 
Here, we provide overlaps of accessible chromatin regions in each cell type with long 
stretches of H3K27ac marks (Supplementary Table 5). We find that ATAC-seq peak 
clusters (ATAC-seq peaks longer than 10 kb) in smooth muscle cells showed the highest 
association with super enhancers. We further observed that the SMC super enhancers 
showed significantly higher regulatory potential for the identified SMC marker genes 
compared to the marker genes from all other cell types (Supplementary Figure 7), 
supporting the additional functional insights gained from this analysis. We highlight an 
example at the LMOD1 locus (SMC marker and CAD gene), which harbors two SMC 
superhancers (Supplementary Figure 7). Enhancers at this gene have already been 
validated experimentally, however other top candidate super enhancers deserve 
validation using in vitro models.  

   
5) Further functional information on PRDM16 and TBX2 in atherosclerosis would be helpful. For 
the immunofluorescence in Fig. 6E, it would be helpful to include healthy tissue and advanced 
lesions for comparison to better understand the expression of PRDM16 in atherosclerosis. The 
methods indicate that healthy and sub-clinical atherosclerosis samples were used, but the 
healthy controls are not included in the manuscript. Is there eQTL or caQTL data for PRDM16 
or TBX2? The data presented for PRDM16 and TBX2 are not entirely convincing and appear to 
be preliminary.  
  

We agree with Reviewer 3 in that more functional information would help support our 
novel findings prioritizing PRDM16 and TBX2 at their respective CAD loci. For the 
revision we focused primarily on PRDM16 but also included some additional information 
for TBX2. For PRDM16 we conducted comprehensive immunofluorescence staining in 
both healthy (n=4) and diseased (n=8) coronary arteries along with whole slide confocal 
scanning and quantification (Figure 6, Supplementary Figure 15 and Rebuttal Figure 
6). We leveraged the CVPath biorepository of atherosclerotic samples to carry out these 
more comprehensive analyses in lesions at well defined disease stages. We observed 
PRDM16 staining colocalized in ACTA2 positive smooth muscle cells in the medial layer 
of healthy and early atheroma samples, which was reduced in the advanced 
fibroatheroma samples (both thin cap fibroatheroma and thick cap fibroatheroma). 
Interestingly, we observed high PRDM16 staining in the vasa vasorum, marking 
arterioles that are positive for ACTA2. We also observed staining in a few weakly ACTA2 
positive arterioles, which could represent pericytes and/or endothelial cells (EC). This is 
consistent with a recent murine study demonstrating a role for both EC and SMC 
expressed Prdm16 in regulating flow recovery in post-ischemia PAD models (Craps et 
al., 2021). While we identified PRDM16 as a SMC-specific marker based on our 
snATAC-seq data, further studies are needed to dissect the functional interplay in EC 
and SMCs. 
  



In addition to immunofluorescence, we leveraged data from our lab’s bulk RNA-seq data, 
publicly available arterial scRNA-seq data, and performed additional in vitro  
experiments. While neither of these genes were differentially expressed in bulk tissues 
from our coronary artery dataset (n=150), PRDM16 and TBX2 were both significantly 
upregulated in perivascular adipose tissue from diseased coronary arteries (n=44) 
(Numaguchi et al., 2019) (Supplementary Table 6 and 7). By querying human and 
mouse atherosclerosis datasets we confirmed the SMC and pericyte (and limited EC) 
expression for PRDM16 and TBX2. (Supplementary Figure 14). To gain more 
functional insight into the mapped regulatory elements for PRDM16 we cloned 4 
candidate PRDM16 enhancer sequences overlapping CAD SNPs upstream of a minimal 
promoter and compared these to two different promoter sequences in standard 
luciferase reporter assays (Rebuttal Figure 7). Candidate enhancer #3 had ~5 fold 
increase in normalized luciferase activity compared to the empty vector control, 
consistent with the activity of the PRDM16 promoter. These results in HEK 293T were 
consistent with assays in immortalized human coronary artery smooth muscle cells, 
despite the lower magnitude of activation. We observed that PRDM16 expression is 
greatly reduced in cultured SMCs compared to intact tissue, making systematic 
validation challenging. Due to the dozens of candidate PRDM16 SNPs highly associated 
with CAD, overall locus complexity, and difficulty transfecting SMCs, we feel this would 
be better suited for future in-depth investigations. 

 
In terms of eQTLs for PRDM16 and TBX2 in CAD-relevant tissues, we looked up signals 
at these CAD loci in the GTEx (GTEx Consortium et al., 2017), STARNET (Franzén et 
al., 2016) and Cardiogenic QTLizer (Munz et al., 2020) databases (Supplementary 
Data 10). We observed nominally significant eQTLs in STARNET and GTEx artery 
tissues for both genes, however there were modest numbers of eQTLs at both the 
PRDM16 and BCAS3/TBX2 loci in all of the studies. This is not completely surprising as 
many biologically important genes at GWAS loci often do not harbor many significant 
eQTLs due to constraint by negative selection (O’Connor et al., 2019; Wang and 
Goldstein, 2020). Indeed, both PRDM16 and TBX2 have high loss-of-function 
intolerance probabilities (pLI = 0.999 and 0.964, respectively) supporting their constraint 
and haploinsufficiency.  
 
With respect to caQTLs, we observed a CAD-associated signal at the PRDM16 locus 
(rs10797377, ACTRT2, chr1:3012242-3012643) that associates with peak accessibility 
in SMCs (RASQUAL q value = 1.86 x 10-4). Moreover, this regulatory element has a 
highly significant Peak2Gene link with PRDM16 and PRDM16-DT (Supplementary 
Data 5) in which chromatin accessibility strongly correlates with gene expression. 
Notably, using the activity-by-contact (ABC) based enhancer-promoter linking method 
(Nasser et al., 2021) in ENCODE human coronary artery, we also identified PRDM16 
and TBX2 as the target genes from CAD associated SNPs (Supplementary Table 9). 
While there are numerous linked CAD-associated candidate SNPs at these two loci, we 
believe the lack of additional caQTLs could reflect context-specific effects or buffering 
effects of allelic variation within enhancers at these loci. In the case of PRDM16, another 



independent association signal, rs2493292, is a missense variant, which is predicted to 
be tolerated/benign (SIFT, PolyPhen, MVP).   
 
Taken together, along with our gene regulatory analyses identifying these two genes as 
key driver genes in STARNET, these additional functional data demonstrate that 
PRDM16 and TBX2 are indeed the target genes for their respective CAD loci and may 
play critical roles in SMC during disease.   
  

Minor comments:  
1) The heatmap in Fig. 3D could use additional annotation to indicate where the trajectory 
begins and ends.   
  

We agree that providing additional annotation to the heatmap improves interpretation of 
this figure. We have now added labels with arrows to the heatmap to indicate both where 
the trajectory starts and ends.  

  
2) The legend for the heatmap in Fig. 4D is confusing. Are ‘zero’ peaks white? It seems that 
‘zero’ peaks are black on the legend, but this doesn’t seem to be correct.  
  

We thank Reviewer 3 for pointing this out. Zero overlaps should be white and the scale 
should start at 1. We have corrected this in Figure 4D.   
 

 
  
 
 
 
 
 
 
 
 
 
 



 

 
 
Rebuttal Figure 1. UMAP plots separated by each donor sample showing cells for each main 
cell cluster are represented from individual snATAC-seq libraries. Note: samples lacking an 
adventitial layer do not have cells in the fibroblast cluster (dark blue). Also, sample scL was 
excluded from caQTL mapping due to overall low cell numbers.  
 
 



 
 
Rebuttal Figure 2. Differentially accessible marker genes between different disease categories. 
Highlighted genes are immune genes that harbor more accessible peaks in advanced diseased 
coronary segments (category 3) relative to healthy segments (category 1). Also contractile SMC 
marker genes are more accessible in healthy artery segments relative to diseased segments. 
Differential marker genes were detected at FDR <= 0.1 and log2FC > log2(1.5). 
 
 
 
 



 
Rebuttal Figure 3. Comparison of effect size directions between smooth muscle cell caQTLs 
(5% FDR) and bulk coronary artery caQTLs (5% FDR). For this analysis, 503 caQTL peaks are 
shared between both datasets (peaks with a corresponding significant caQTL variant). The rsID 
reported in the SMC caQTL results (n=40 individuals) was compared with the rsID reported in 
the bulk caQTL results (n=35 individuals). Two variants were considered to be in linkage 
disequilibrium (LD) if the r2 value between them was between 0.2 and 1 (in EUR population). If 
variants had an r2 value < 0.2 (in EUR population), the variants were considered to be in low LD 
(blue portion of pie). For the caQTL effect size direction, we considered the RASQUAL Pi 
statistic. The RASQUAL Pi statistic can range from 0-1, where Pi < 0.5 reflects lower peak 
accessibility for the alternative allele and Pi > 0.5 reflects higher accessibility for the alternative 
allele. The effect sizes for linked variants go in the same direction (green portion of pie) if the Pi 
values in SMCs and bulk coronary artery are both < 0.5 or both > 0.5.  
 
 
 
 
 



 
 
 
Rebuttal Figure 4. UMAP and box plots of imputed geneScores for known adipocyte marker 
genes (UCP1, CITED1, and ZIC1) demonstrating the absence of adipocytes in our coronary 
artery snATAC dataset. This is consistent with the fact that perivascular adipose was trimmed 
prior to archiving these coronary artery specimens.   
 
 



 
 
Rebuttal Figure 5. Representative histology staining of adjacent frozen human coronary artery 
sections at different disease categories used for snATAC profiling (n=4 donors per category). 
Category 1 reflects normal to Stary atherosclerosis stage I/II lesions with adaptive intimal 
thickening and early lipid (Oil Red O (ORO)) and collagen (Sirius Red) accumulation in the 
subintimal layer. Category 2 reflects Stary stage III/IV early/intermediate atheroma lesions with 
increased lipid and collagen accumulation and proliferation (Hematoxylin & Eosin (H&E)). 
Category 3 reflects Stary stage V/VI advanced fibroatheroma or complex lesions with more 
severe lipid and collagen deposition as well as lipid core and thin media layer. (Below) Whole 
slide quantitative results of ORO area (mm2) normalized to overall tissue area and  Sirius Red 
based quantitation of intima-media thickness (IMT) with maximum intima and average media 
width captured from >6 automatically defined measurements (Methods). n=3, n=5, and n=10 
donors per lesion stage, respectively. ANOVA p-values shown for comparisons across lesion 
stages. Scale bar = 1mm.   



 
 
Rebuttal Figure 6. Movat pentachrome staining and PRDM16 (red) and alpha-smooth muscle 
actin (a-SMA) (green) immunofluorescence staining of atherosclerotic human coronary artery 
segments - left anterior descending (LAD) from normal-Stage I, Stage III-IV, and Stage V-VI 
lesions based on Stary classification stages. Whole slide images captured from 20x confocal 
microscopy stitched tiles. PRDM16/a-SMA co-staining (see arrows) depicted in yellow from 
merged images. DAPI (blue) marks nuclei. n = 4 per group. Scale bar = 1 mm, except for region 
of interest (ROI): scale bar = 100 µm. 
 
 
 
 



 
 
Rebuttal Figure 7. (Top) Luciferase reporter assays evaluating the transcriptional activity of 4 
candidate enhancer regulatory regions overlapping CAD variants in lentiviral transduced HEK 
293 cells. Candidate regions were cloned into the pLS-mP-Luc plasmid (Addgene plasmid # 
106253). Dots represent mean of triplicates from n=4 biological replicate experiments. Boxes 
and whiskers represent the median with upper and lower quartiles. (Bottom) Luciferase reporter 
assays evaluating the transcriptional activity of 4 candidate enhancer regulatory regions 
overlapping CAD variants in lentiviral transduced human coronary artery smooth muscle cells. 
Dots represent mean of triplicates from n=2 biological replicate experiments. Box and whiskers 
represent the median with upper and lower quartiles. e001-e004 are CAD enhancer regions, 
P001 and P002 are endogenous PRDM16/PRDM16-DT promoter sequences, Nc001 is a 
negative control enhancer sequence, and MP is the minimal promoter and empty vector from 
pMCS-Luc. Values are presented as % normalized luciferase of MP reporter. Statistical 
significance determined from % change of test reporters versus MP reporter using Wilcoxon 
Rank Test with continuity correction.   
 



Rebuttal Table 1. Candidate regulatory regions at the PRDM16 locus used for luciferase 
assays in cultured cells. 
 

Enhancer candidate 
name 

Region (hg38) PRDM16 CAD-associated 
SNPs 

e001 chr1:2998925-2999935 
  

rs72629460, rs12239064, 
rs12240128, rs67927838, 
rs59653178, rs67142023, 
rs72629462 

e002 chr1:3072552-3073451 
  

rs2981890 

e003 chr1:3074233-3074650 rs35397508 

e004 chr1:3075236-3075530 No SNPs but highly conserved 

p001 (*promoter) chr1:3067941-3069685 
  

PRDM16 promoter 

p002 (*promoter) chr1:3067041-3068642 
  

PRDM16-DT promoter 
rs2297829 

nc001 chr1:3230824-3231620 Negative control sequence 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Summary of changes 
 
Figures 
 

Figure Change/Addition 

Figure 3 Added a legend to the trajectory heatmap (Figure 3d) 

Figure 4 Changed the start value of the scale from 0 to 1 in Figure 4d 

Figure 5 Updated caQTL panels after removing individuals with low 
numbers of cells 

Figure 6 Added additional panels for PRDM16 
 
Supplementary Figures 
 

Supplementary Figure Change/Addition 

4 Added representative histology images for various stages of 
CAD 

6 Added plots showing correlation of snATAC promoter 
accessibility with integrated scRNA-seq expression 

7 Added plots for super enhancer analyses 

11 Added donut plot showing the correspondence of effect size 
directions between smooth muscle caQTLs and bulk coronary 
artery caQTLs 

14 Added UMAP feature plots of PRDM16 and TBX2 in human and 
mouse atherosclerosis scRNA-seq datasets 

15 Added additional representative whole slide histology and 
confocal immunofluorescence images for PRDM16, a-SMA, and 
LMOD1 

 
Supplementary Tables/Supplementary Data 
 
We have now moved many of the prior Supplementary Tables to separate Supplementary Data 
files below. We feel this repackaging makes the supplemental information much more organized 
than before. 
 

Supplementary Data File Details 



1 Top snATAC marker genes in each coronary artery cell type 

2 Consensus set of 323,767 coronary artery peaks across all 
cell types 

3 List of enriched transcription factor motifs within coronary 
artery cell type peaks 

4 Differential peak and promoter analysis results between 
differentiated smooth muscle cells and fibromyocytes 

5 Overlap of CAD GWAS SNPs with coronary artery cell type 
peaks and Peak2Gene link coordinates. For the Peak2Gene 
links, the peak coordinates now match the peak set used in 
the rest of the manuscript 

6 Chromatin accessibility QTLs within individual cell types 
calculated using RASQUAL (shown are SNPs passing 5% 
FDR threshold). For the updated caQTL analysis we excluded 
individuals from the analysis if they contained <20 nuclei 
belonging to the respective cell type 

7 Chromatin accessibility QTLs from bulk coronary artery 
samples calculated using RASQUAL (shown are SNPs 
passing 5% FDR threshold) 

8 Significant results for functional CAD variant prediction using 
gkm-SVM, gkmExplain, and DeltaSVM 

9 Sample size estimations for top fibromyocyte genes 
(comparing smooth muscle cells and fibromyocytes) 

10 eQTLs for PRDM16 and TBX2 in STARNET and GTEx artery 
tissues 

 
In the new version of the Supplementary Table file we have changed or added the following: 
 

Table Change/Addition 

ST2 Added the number of nuclei in each cell type captured and 
detected using 10x Genomics Cell Ranger ATAC QC 

ST3 Added the number of nuclei analyzed in each sample per cell 
type (after stringent ArchR QC filtering) 

ST5 Summary of snATAC peaks overlapping coronary artery smooth 
muscle cell super enhancers (SE) 
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Decision Letter, appeal: 
 
 IMPORTANT: Please note the reference number: NG-A57752R-Z Miller. This number must be quoted 
whenever you communicate with us regarding this paper. 
 
19th Nov 2021 
 
Dear Clint, 
 
Thank you for your message of 19th Nov 2021, asking us to reconsider our decision on your 
manuscript "Cell-specific chromatin landscape of human coronary artery resolves regulatory 
mechanisms of disease risk". I have now discussed the points of your letter with my colleagues, and 
we think that your revision has satisfactorily addressed the concerns raised at the past round of 
review. We therefore invite you to submit the revision of your manuscript. 
 
It might be useful to also include more details (e.g. statistics) on what further analysis has been 
performed, in response to Reviewer #1's comments on statistical power, in your point-by-point 
response; currently this section is very qualitative and a more rigorously quantitative presentation 
may well be more persuasive. 
 
When preparing a revision, please ensure that it fully complies with our editorial requirements for 
format and style; details can be found in the Guide to Authors on our website 
(http://www.nature.com/ng/). 
 
Please be sure that your manuscript is accompanied by a separate letter detailing the changes you 
have made and your response to the points raised. At this stage we will need you to upload: 
1) a copy of the manuscript in MS Word .docx format. 
2) The Editorial Policy Checklist: 
https://www.nature.com/documents/nr-editorial-policy-checklist.pdf 
3) The Reporting Summary: 
https://www.nature.com/documents/nr-reporting-summary.pdf 
(Here you can read about the role of the Reporting Summary in reproducible science: 
https://www.nature.com/news/announcement-towards-greater-reproducibility-for-life-sciences-
research-in-nature-1.22062 ) 
 
Please use the link below to be taken directly to the site and view and revise your manuscript: 
 
[REDACTED] 
 
 
With kind wishes, 
 
Michael Fletcher, PhD 
Associate Editor, Nature Genetics 
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Author Rebuttal, first revision: 
 
 Point-by-point response to Nature Genetics, 2021, Turner and Hu et al. 

  
We first thank all of the reviewers for their helpful comments and constructive feedback and the 
opportunity to consider this work for publication in Nature Genetics. We have provided extensive 
new  material and revisions to the text that we feel has markedly improved the quality of the 
manuscript. We have added power calculations and generated new bulk ATAC-seq caQTL 
results to support our primary results. Importantly, the caQTLs we highlight (for example 
rs13324341 (MRAS) in smooth muscle cells) were replicated in bulk coronary artery ATAC-seq 
libraries (50,000 nuclei per individual). We have also included histology characterization of 
these coronary artery samples in healthy and atherosclerotic contexts and more comprehensive 
immunostaining of PRDM16 in the vessel wall. Below we provide point-by-point responses (in 
blue) to each comment/remark from the three reviewers. At the end we also detail specific 
additions/changes we made to the manuscript. Specific changes to the enclosed manuscript 
text are also highlighted in blue for clarity.  
 
Reviewer Comments: 
 
Reviewer #1:  
Remarks to the Author:  
In this article, the authors have applied single-cell ATAC-seq (scATAC-seq) to profile 28,316 
cells across coronary artery segments from 41 patients with varying stages of Coronary artery 
disease (CAD). They identified 14 distinct cellular clusters and mapped ~320,000 accessible 
sites across these cells. The authors also identified cell type-specific elements, few transcription 
factors, and attempted to do chromatin accessibility quantitative trait locus (caQTL) mapping. 
They also used cis-regulatory elements (CREs) to link genes to disease-associated transcription 
factors such as PRDM16 and TBX2. The authors claim to provide a single cell atlas for coronary 
artery and help interpreting cis-regulatory mechanisms in CAD.  
  
A) It's technically a single-nucleus ATAC-seq as they cannot isolate cells from frozen samples to 
begin with. In the manuscript it should be relabeled as snATAC-seq  
  

Thank you, we agree with this comment and we have now changed “scATAC-seq” to 
“snATAC-seq” throughout the manuscript to more accurately reflect our single nuclei 
isolations from the frozen samples.  
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B) The most critical aspect of the paper is the number of nuclei obtained after snATAC-seq - 
28,316 cells. While superficially it may look like a decent number of nuclei for all the analysis, 
the fact that those cells are coming from 41 samples underscores the fact that the dataset is 
underpowered to dissect out inter-sample group-level differences and more importantly caQTLs. 
A closer look at the supplementary data (Supplementary Figure 3b-c) reveals that 50% of 
samples (about 19 samples) had less than 500 captured cells , with at least 8 samples less than 
250 cells. More striking is the fact that only 8 samples (out of 41 samples -- 19%) had more than 
1000 captured cells, and none over 1500 cells. The difference between different biological 
groups is even more striking with 87% of category 3 (atherosclerotic) samples having less than 
500 cells while significantly more cells were obtained from category 1 samples (controls). As 
such the group differences become confounded with huge cell-type capture-rate differences and 
it is bound to affect data analysis downstream.   
  

We appreciate Reviewer 1’s comment in this regard. Here, we respond with a few points 
to clarify our rationale and support our results: 
 
First, we actually conducted two steps of quality control (QC) for nuclei that were 
captured and sequenced in the snATAC-seq experiments. We captured and sequenced 
94,432 total nuclei (ranging from 113 (minimum) and 20,050 (maximum) with an average 
of 2,146 nuclei/sample and 17,433 unique fragments/nuclei) using the default QC 
thresholds from the 10x Genomics Cell Ranger ATAC pipeline (Supplementary Table 
2). We then subjected these nuclei to more stringent QC thresholds (transcription start 
site (TSS) enrichment ≥7 and ≥10,000 unique fragments per nuclei) (Supplementary 
Table 2). As expected, the high number of unique fragments per cell dictates how 
informative each individual cell is for downstream analyses and also contributes towards 
the power to detect cis-regulatory elements (Mandric et al., 2020). Although we did not 
obtain high nuclei numbers in some individuals, this is not unexpected based on the 
more stringent QC thresholds and the atherosclerotic disease nature of many of the 
samples profiled. By pooling all individuals together and obtaining 28,316 high quality 
nuclei, we were able to overcome the fact that we had fewer post-QC nuclei per 
individual. Importantly, cells belonging to the various clusters were evenly distributed 
across all of the individuals (Rebuttal Figure 1). Thus, when we are comparing clusters 
and cell types, the differences are unlikely to be driven by a select few individuals.  

  
Second, we feel our study is adequately powered to dissect out differences between cell 
types and subtypes (for example, differentiated smooth muscle cells vs. fibromyocytes in 
Figure 3). Recently developed power calculators for single-cell RNA-seq analysis (e.g. 
SCOPIT v1.1.4 (Davis et al., 2019) ) demonstrate that we are able to detect cell type 

https://sciwheel.com/work/citation?ids=9940792&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7767642&pre=&suf=&sa=0


 
 

 

9 
 

 

 

differences (Retrospective mode, assuming a cluster of at least 50 cells and set the 
required probability of sequencing the cells from each subpopulation to 0.95) for our 
rarest cell type (Mast cells at 0.7% frequency) by sequencing >9,129 cells (Rebuttal 
Figure 2a and Supplementary Figure 16a). Given that we focused our analysis on the 
main cell types in the vessel wall, we are well above this threshold to identify cell type 
differences in chromatin accessibility. To confirm that we had the appropriate sample 
size needed for SMC and fibromyocytes differential accessibility comparisons, we 
performed a similar canonical 2-sample t-test power analysis as described above 
(Rebuttal Figure 2b and Supplementary Figure 16b). Upon extracting ArchR 
differential accessibility-based gene scores using the same parameters as in the 
differential peak analysis (see above methods section), we calculated effect sizes for 
each gene using the gene score means and pooled standard deviations across cells 
from the SMC and fibromyocyte groups. To calculate the sample sizes required to reject 
the null hypothesis (no significant difference in accessibility-based gene scores between 
the two cell groups) at a given power value, we developed a custom python script using 
the statsmodels package. As before, we used stringent cutoffs for both the statistical 
power (0.99) and significance level (type 1 error rate, alpha = 0.01) to show the 
robustness of the differential accessibility-based analysis. As a result, we found that the 
required sample size for 93% of differential genes (based on accessibility-based gene 
scores) including fibromyocyte markers such as FBLN2, LUM, F2R and TNFAIP6 was 
well below the number of cells available for the two groups (SMC n=6518, fibromyocytes 
n=2512) (Supplementary Data 9). We also calculated the mean required sample sizes 
across all differential genes for a wide range of power values (0.05-0.99) to further 
confirm that we were well-powered to detect significant accessibility differences between 
SMCs and fibromyocytes (Rebuttal Figure 2b and Supplementary Figure 16b).   
 
Reviewer 1 makes a valid point that we have fewer cells per sample in category 3 
(advanced atherosclerosis) compared to category 1 (healthy controls). This may 
contribute to the limited number of differentially accessible genes/peaks identified 
between healthy and diseased individuals (Rebuttal Figure 3). However this may also 
be driven by the continuous rather than dichotomous nature of atherosclerotic plaques, 
which have a high degree of heterogeneity and plasticity of cell types (van Kuijk et al., 
2019). In fact, we have observed consistent results in group level differences in bulk 
ATAC-seq profiled samples from this set of patients (unpublished observations). 
Nonetheless, we acknowledge this as a known limitation in the Discussion and mention 
the benefit of performing more single nuclei profiling of advanced disease (category 3) 
samples to better address this question in future studies. Given the difficulty in procuring 
these precious samples from heart transplants (especially during the pandemic), we 
have been unable to obtain more unique individual samples for this particular study.  

https://sciwheel.com/work/citation?ids=7267104&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7267104&pre=&suf=&sa=0
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Third, we believe we suitably capture differences between individuals with respect to the 
caQTL analysis. To begin to estimate our power for caQTL analyses, we used the 
powerEQTL package for single-cell RNA-seq based eQTL studies, which assumes a 
standard linear regression model (Rebuttal Figure 2c and Supplementary Figure 16c) 
. Assuming an average of 670 SMC captured per individual across 41 individuals, we 
have 90% power to detect SNP associations for common variants (MAF~5%) with 
moderate effect size (beta = 0.3). However, these calculations grossly underestimate the 
improved power (>1.6 fold) derived from an allele-specific based method such as 
RASQUAL (Kumasaka et al., 2016), which is designed to detect molecular trait 
associations from small sample sizes. In fact, we previously demonstrated a 7-fold 
increase in significant eQTLs discovered with this approach compared to FastQTL in a 
cohort of 52 human coronary artery SMC (Liu et al., 2018). We used RASQUAL for our 
caQTL mapping and also limited these analyses to the two major cell types present in 
each of the samples (SMC and macrophages). Using more stringent inclusion criteria for 
the individual samples, we re-ran RASQUAL for these cell types, and discovered 1,984 
and 1,210 cis-caQTLs in SMC and macrophages, respectively, at 5% FDR. This is 
similar to our original results and we have now updated Figure 5 and Supplementary 
Data 6. 
 
To strengthen our single cell caQTL findings, we performed bulk ATAC-seq on the 
remaining frozen coronary arteries for all 41 of these matched patients. 35 of these bulk 
ATAC libraries were of sufficient quality and used for downstream bulk caQTL analysis. 
We added methods on the bulk ATAC-seq to the manuscript and added results in 
Supplementary Data 7. Since we did not need to perform single cell capture for these 
bulk reactions, each bulk ATAC-seq library contained ~50,000 nuclei per individual. Our 
results show many of our smooth muscle and macrophage single cell caQTLs are also 
detected as significant bulk caQTLs, with the direction of effects primarily consistent 
(Pearson r=0.814) (Rebuttal Figure 4 and Supplementary Figure 11). Most 
importantly, the single cell caQTLs that we highlight in the manuscript (such as MRAS, 
MEF2D, FCHO1, SMAD3) were also significant bulk caQTLs with consistent direction of 
effects. For instance, for rs13324341 at the MRAS locus, the peak containing this variant 
is accessible in smooth muscle cells. The T allele associates with greater accessibility in 
both our smooth muscle caQTL dataset as well as in the bulk coronary caQTL dataset. 
Furthermore, as we show in Figure 5b and Figure 5c, many of these caQTLs are 
significant eQTLs (5% FDR) in GTEx arterial tissues. We acknowledge in the Discussion 
that certain caQTLs are likely cell-type/state specific whereas other caQTLs are likely to 
be shared across several cell types and tissues. Also, we acknowledge that larger 
cohorts are likely needed to fully address this question.  

https://sciwheel.com/work/citation?ids=1264214&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5871472&pre=&suf=&sa=0
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Lastly, to compensate for the reduced power to detect cell type caQTLs (especially for 
less abundant cell types), we performed machine learning based prediction of CAD 
regulatory variant function using three different methods (Methods). Using the gapped 
k-mer support vector machine (gkm-SVM), gkm-Explain, and deltaSVM trained on 
accessible peaks from SMC, macrophages, fibroblasts, endothelial cells, pericytes, T/NK 
or Mast cells we identified single nucleotide variants predicted to alter chromatin 
accessibility and potentially transcription factor binding from the reference sequence 
(Supplementary Data 8). We identified a number of top candidate regulatory variants at 
CAD loci (e.g. LIPA and SMAD3) that are predicted to function through cell-specific 
regulatory mechanisms. This powerful and complementary approach could be extended 
to deep learning based models to enable more exhaustive prediction of variants that 
may be difficult to prioritize from QTL based methods alone. 

  
It is worth noting that despite following the Omni-ATAC protocol (Corces et al., 2017) 
that is optimized for frozen tissue and careful optimization, we were unable to capture 
high numbers of nuclei from these advanced coronary artery plaques. These advanced, 
category 3 samples had high amounts of extracellular matrix, calcification, and necrosis, 
and our group in addition to others have had difficulty capturing high numbers of 
cells/nuclei per sample from fibrous/calcified human tissues, especially atherosclerotic 
plaques. For example, a recent study from Depuydt et al. in Circulation Research 
(Depuydt et al., 2020) performed single cell RNA-seq from 18 patients, all of which were 
human carotid artery atherosclerotic plaques. Across all 18 patients, this study obtained 
a total of 3,282 cells, which is approximately 234 cells per individual. This study also 
performed snATAC-seq for 6 individuals (fibro-atheromatous carotid artery plaques) but 
only obtained a few hundred suitable nuclei per individual. As is the case for many other 
human atherosclerosis single-cell datasets, only 3-4 individual samples are typically 
available (refer to our data portal at PlaqView.com), further demonstrating the difficulty in 
obtaining and analyzing these samples.  

 
Overall, we acknowledge the reviewer’s important comments. However, given that this is 
the first study to perform snATAC-seq of both healthy and diseased human coronary 
arteries, which are extremely difficult to procure, we feel that 28,316 analyzed high-
quality nuclei, post-QC still represents a very valuable resource for the community. More 
importantly, based on the detailed explanations above, we feel that analyzing more 
nuclei per individual would not affect the major conclusions of this manuscript.  
  

C) The inherent noise in snATAC-seq data, compounded by the fact that the authors only 
captured less than 750 cells from majority of samples which are now sub-clustered into 14 

https://sciwheel.com/work/citation?ids=4117825&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9885513&pre=&suf=&sa=0
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clusters suggest that even cluster differences for small-to -medium sized clusters is grossly 
underpowered. Case-in-point is subclustering of smooth muscle clusters 6 and 7 which are less 
than 2000 cells each. While the authors do not provide how many cells from each sample 
contribute to clusters 6 and 7, the average number of cells for cluster 6 and 7 from each sample 
will be less than 50 cells/sample (2000cell/41samples = 48 cells/sample). With that low 
resolution of cells, I will be hard-pressed to find any meaningful analysis for these clusters.   
  
The situation is not that different in the 2 largest clusters (Smooth muscle cells, cluster 4 and 5) 
with about 6000 cells in each cluster and average contribution from each samples will be 150 
cells/sample  
  

We acknowledge the reviewer’s concern. Overall, we believe our snATAC data can 
identify biologically meaningful differences between main clusters and in the case of 
clusters 4-7 (smooth muscle cells), differences between cell sub-clusters (as shown in 
Figure 3). To further clarify this first point, we now provide individual UMAPs separated 
by each sample to visualize the number of cells contributing to each main cluster and 
sub-cluster (Rebuttal Figure 1). We also include the numbers of cells analyzed per 
cluster per sample in Supplementary Table 3.  
 
Secondly, to address the reviewer’s concern for power (also refer to Rebuttal Figure 2 
and Supplementary Figure 16), we performed another power calculation of detecting 
differentially expressed genes between main clusters and sub-clusters using the recently 
developed Hierarchicell R package (Zimmerman and Langefeld, 2021). As noted by the 
authors of this package, in order to identify at least 1.2 fold changes as statistically 
significant (power > 0.80), “researchers will need a minimum of 40 samples and 100 cells 
per sample.” This is assuming a traditional case/control study design. Given that 
atherosclerosis is a continuous trait, we already achieve maximal power with 100 
cells/sample. There are actually only minor differences in power when sampling 100, 
250, 500, or 1,000 cells per sample. In fact, the authors demonstrate that as the overall 
sample size increases (e.g. 20 to 100) there is a drop in power gains by sampling more 
cells/sample. This is consistent with the per gene sample size power calculation for our 
differential analysis of the integrated data, as described above (Rebuttal Figure 2, 
Supplementary Figure 16 and Supplementary Data 9). 
 
We did recognize the intrinsic noise in snATAC when performing these sub-cluster 
differential analyses as shown in Figure 3. Instead of comparing cluster 6 vs. cluster 7 
from the snATAC data alone, we actually compared cells labelled as ‘smooth muscle 
cells’ (SMCs) against cells labelled as ‘fibromyocytes’ upon integrating human coronary 
artery (HCA) scRNA-seq data from Wirka et al., Nature Medicine 2019 (Wirka et al., 

https://sciwheel.com/work/citation?ids=11897571&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7242611&pre=&suf=&sa=0
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2019). Integration of scRNA-seq data into snATAC-data has been shown to enhance 
clustering resolution and enable identification of cell subpopulations not possible with 
snATAC-seq data alone. Using the integrated data, we were able to annotate 6,518 
contractile SMCs and 2,512 fibromyocytes for the downstream differential accessibility 
analysis. We believe the integration of the snATAC-seq with coronary artery scRNA-seq 
data strengthens the cell type annotations and overcomes the inherent noise in the gene 
activity scores derived from snATAC accessibility data. As mentioned above, each 
individual in the study contains cells belonging to each cluster with nearly equivalent cell 
compositions across individuals. Further, the lower numbers of captured cells in certain 
individuals is further mitigated since we pooled all cells together for the smooth muscle 
cell vs. fibromyocyte analyses. We think this is a valid approach since the main goal of 
this differential analysis was to compare contractile and modulated SMCs as opposed to 
disease vs non-disease status. Thus, it remains unlikely that specific individuals are 
driving the observed differences between clusters. 
 
Nonetheless, we agree that increased sample sizes and/or nuclei/sample may still be 
necessary to perform sub-cluster comparisons between smaller clusters representing 
less abundant cell types (e.g. T cells) and more context-specific mechanisms. Since we 
did not focus on these less abundant cells in this manuscript, this would be an 
opportunity for follow-up studies. We have added this note in the revised Discussion.   

 
D) Can the authors integrate their data with their own snRNAseq data, now in bioRxiv ( 
https://doi.org/10.1101/2020.10.27.357715) ? More specifically, do the CREs line up caQTLs 
and eQTLS from the snRNAseq data? What is the overlap of open chromatin accessibility at the 
promoter of the first exon of a gene (snATAC-seq) compared to its expression (from snRNA-
seq)?  
  

We apologize for any confusion. The coronary artery scRNA-seq data analyzed in the 
bioRxiv paper by Ma et al. was from GSE131778 (Wirka et al., Nature Medicine 2019), 
which is the same published scRNA-seq dataset used in this manuscript for integration 
with snATAC-seq. We are co-authors on this original paper and it is currently the only 
publicly available human coronary artery scRNA-seq/snRNA-seq dataset. We have 
highlighted the agreement between our snATACseq and scRNAseq from the integration 
analysis with geneScore (snATACseq) vs. expression (scRNAseq) in Figure 1D.  
  
Regarding the alignment of caQTLs and eQTLs through similar CREs, this question is 
not yet possible as single-cell eQTLs have not yet been mapped. This will be an 
interesting question to pursue in future multimodal (snATAC/snRNA) analyses of these 
tissues. We did perform pseudo-bulk level comparisons between snATACseq and 

https://sciwheel.com/work/citation?ids=7242611&pre=&suf=&sa=0
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scRNAseq by comparing ATAC-seq peak occupancy at the promoters (e.g., 3 kb of 
TSS) of expressed genes (detected by scRNAseq pseudo-bulk level, e.g., RPKM >=1) 
for the same cell type. The results of these analyses are now reported in 
Supplementary Figure 6c, with an overall good correlation (Pearson r~0.55). The “gene 
score” model implemented in ArchR (Granja et al., 2021) that accounts for enhancer 
activities provides higher performance for estimation of gene expression. 
 

E) The authors should read this paper (https://doi.org/10.1038/s41467-020-19365-w) on 
effective design of single-cell sequencing experiments for cell-type-specific QTL analysis, 
applicable for both eQTLs and caQTLs. The number of cells captured is far more critical than 
the number of samples used or read-depth of each cell.  
  

We thank Reviewer 1 for sharing this paper (Mandric et al., 2020) and agree that this 
paper provides very good advice for planning experiments for cost. We agree that a high 
number of cells captured is important for identification of cell type QTLs, but believe this 
paper also emphasizes that a high number of individuals is very important. Both of these 
factors seem to be more important than the read depth per cell. Thus, we feel that the 
number of nuclei we captured is largely offset by increasing the number of individual 
samples, as described in the above responses. We have now expanded our Discussion 
section to emphasize the need for both increased numbers of captured cells and/or 
numbers of samples for improved cell type QTL discovery and cited the referenced 
paper. 
 
For the snATAC experiments we aimed for both a high number of individuals and a high 
number of nuclei/sample. We had sufficient nuclei concentrations for most samples and 
aimed to capture ~5,000 nuclei/per sample. However, our capture rate from the 10x 
Chromium Controller was lower than we anticipated. As we previously mentioned we 
obtained 94,432 total nuclei from Cell Ranger ATAC but filtered more stringently for 
downstream analyses. 

  
One key difference between our study and this paper is that we used RASQUAL 
(Kumasaka et al., 2016) to detect cell-type QTLs whereas this paper used Matrix eQTL. 
Matrix eQTL (Shabalin, 2012) uses linear regression to compare read counts between 
individuals across genotypes. Typical power calculators for single cell QTL studies (e.g. 
powerEQTL described above) rely on similar linear models. However, RASQUAL 
maximizes association detection by combining both between-individual and within-
individual allelic effects. Thus RASQUAL is much better equipped to discover QTLs in 
smaller sample sizes compared to Matrix eQTL. Although the samples analyzed in the 

https://sciwheel.com/work/citation?ids=10550671&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9940792&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1264214&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1038412&pre=&suf=&sa=0
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RASQUAL paper were from bulk ATAC libraries, RASQUAL was able to detect 
thousands of caQTLs from only 24 individuals. 

Reviewer #2:  
Remarks to the Author:  
This manuscript describes a tour de force employing single-cell ATAC-seq to 28,316 cells in 3 
epicardial coronary artery segments from patients with and without coronary atherosclerosis to 
identify cis-regulatory mechanisms in VSMC transition states. They further extend the findings 
of recent GWAS using an integrative approach to identify plausible molecular mechanisms 
whereby a risk locus confers an effect in a cell specific manner. Further they identify PRDM16 
and TBX2 as transcriptional regulators in SMCs.  
  
The unique value of this work stands as the first single-cell atlas of human coronary artery 
chromatin accessibility that is a unique resource of value to the scientific community.   
  
Comments.  
Figure 1 a. Are the reasons for transplant rejection of donor hearts known? Were calcified 
samples excluded? Of note, SMC can also differentiate towards osteoblastic cells, again a 
unique SMC phenotype.  
  

We should clarify that these are not “rejected” hearts in the typical nomenclature (e.g. 
rejected organs after transplantation). These “rejected” donor hearts are actually 
candidate donor hearts that were turned down by the transplant surgical team prior to 
being transplanted. We have now modified the terminology in the text to prevent any 
confusion. Regardless, while we have detailed information on the individual donor hearts 
from the United Network for Organ Sharing (UNOS), we do not usually have a specific 
reason for “rejection” beyond the surgical teams’ discretion. Some common reasons 
include: donor-recipient incompatibility such as size mismatches between donor and 
recipient, cerebrovascular incidents, and drug use. 

  
We included calcified coronary artery samples (all in category 3 (Figure 1)), yet these 
samples provided poorer capture rates and lower number of nuclei that passed our 
quality control thresholds. While the Omni-ATAC protocol generally worked well for 
frozen coronary samples, nuclei isolation was substantially more difficult for the highly 
calcified samples. The highly calcified/advanced plaque samples were difficult to break 
into small pieces and resulted in more debris in the nuclear preparations. As a result, we 
did not capture as many bona fide osteoblastic cells that are present in advanced 
atherosclerotic lesions. We suspect that this snATAC dataset does include 
osteochondrogenic cells that are at earlier stages of SMC transdifferentiation towards 
this cell type. This is based on preliminary integrative analyses with lineage-traced 
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mouse scRNA-seq data, where we identified integrated expression of the chondrocyte 
Sox9 marker in SMC-derived cells. Nonetheless, this would be an interesting follow-up 
study to identify other regulators of osteoblast differentiation by integrating mouse SMC 
lineage traced scRNA-seq datasets.  

  
Figure 1 e. Although 3 arterial segments were harvested from 41 individuals, data are shown for 
44 samples. Is this because of less than optimal sample quality or processing? Might the 
unknown cells represent adipocytes?   
It is of interest that the atherosclerosis samples with or without adventitia are generally similar in 
cell type.   
  

We have 44 samples from 41 individuals due to less than optimal sample processing 
from some extremely diseased/highly calcified samples for 3 individuals on the first 
attempt. For these samples we obtained a low number of nuclei that passed the ArchR 
QC thresholds, but still kept the high-quality nuclei for downstream analyses. We then 
repeated snATAC-seq library preparation and analyses for adjacent segments from 
these same 3 individuals. 

  
This is an interesting question regarding the potential assignment of the unknown cluster 
as adipocytes. While perivascular adipocytes and adipocyte signaling play important 
roles in inflammation and atherosclerosis, we do not think this unknown cluster (cluster 
9) represents adipocytes. Prior to sample freezing we carefully dissected the 
perivascular fat from the outer layer of the coronary arteries. From our experience, other 
studies do not trim the fat before profiling arterial tissue, which was done here to enrich 
vascular wall cell types. When we looked up snATAC gene scores for traditional 
adipocyte marker genes (e.g. UCP1, CITED1, and ZIC1) there was no noticeable 
enrichment for these genes compared to other cell clusters (Rebuttal Figure 5). Lastly, 
based on the snATAC marker gene scores, snRNA-seq integrated expression and the 
confusion matrix shown in Figure 1d, the ‘unknown’ cells closely resemble the 
‘Macrophage’ and ‘Mast’ labels from scRNA-seq. Top marker genes for this cluster 
include CD163 (reported to be an M2 macrophage marker) and CD300LB (expressed on 
myeloid cells). Nonetheless, we acknowledge that there is considerable heterogeneity in 
myeloid/immune cells in atherosclerosis (Lin et al., 2019, Fernandez et al., 2019). 

 
Figure 3. These are very nice data that define at a single cell level, marker genes, TF 
enrichment and differential promoter peaks that extend our understanding of differentiated vs 
fibromyocytic SMCs. Apropos of sample calcification, in Fig 3f – Does RUNX include RUNX2, a 
marker of osteogenic differentiation?  
  

https://sciwheel.com/work/citation?ids=6679892&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7588432&pre=&suf=&sa=0
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Thank you, this is an interesting question. For the position weight matrices displayed in 
Figure 3f, the RUNX motif includes RUNX2 (smooth muscle cell calcification marker (Lin 
et al., 2015, 2016) in addition to the very similar RUNX1 and RUNX3 motifs. We have 
now added a sentence in the main text in this regard. This would potentially suggest the 
fibromyocyte SMCs also encompass some osteochondrogenic cells and agree with 
recent single cell studies highlighting that SMCs can transition to osteogenic or 
chondrocytic phenotypes. This also agrees with the identification of TNFRSF11B 
(Osteoprotegerin) and POSTN (periostin) as top marker genes in fibromyocytes. 
   

Figure 4. It is of interest and perhaps not unexpected that the majority of recently reported CAD 
GWAS variants demonstrate functionality in vascular SMCs. 4d. Given the ongoing interest in 
immune function and CAD, the authors may wish to highlight the variants with strong 
macrophage peaks.  
  

We agree that macrophages and other immune cells play key roles in atherosclerosis 
and these cell types have been intensely studied in the CAD field. After smooth muscle 
cells, macrophages represented the second most abundant cell type in our snATAC 
dataset. We have now highlighted additional CAD associated variants residing in strong 
macrophage peaks (e.g. rs7296737 at SCARB1 and rs17680741 at TSPAN14) in the 
main text. We also highlighted a top regulatory variant in LIPA in Figure 5, which is 
predicted to alter macrophage-specific TF binding sites, as identified through our 
machine learning analysis.    

  
Figure 6. Relevant to the PRDM16 findings, beige (not brown) adipocytes are known to express 
SMC markers and can be derived from VSMCs under the direction of PRDM16. If present they 
could be identified by UCP1 expression. Here the authors should review the work of 
Spiegelman (2014).  
  

We thank Reviewer 2 for sharing this important paper from Spiegelman’s lab (Long et 
al., 2014). As mentioned, ectopic expression of PRDM16 in vitro can convert VSMCs to 
beige adipocytes (UCP1 being a thermogenic beige adipocyte marker). Additionally, this 
study emphasizes how VSMC-like cells display similarities to beige adipocytes rather 
than traditional brown adipocytes. We did attempt to correlate PRDM16 and UCP1 
based on imputed gene scores in SMCs, however these were modestly negatively 
correlated (Pearson r = -0.28).  
 

 
 
 

https://sciwheel.com/work/citation?ids=3934447,3934446&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=3934447,3934446&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=815553&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=815553&pre=&suf=&sa=0
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Reviewer #3:  
Remarks to the Author:  
This manuscript by Turner et al utilizes single cell ATAC-seq (scATAC-seq) data from coronary 
arteries from 41 patients to characterize cis-regulatory regions that are linked to CAD loci. This 
analysis reveals cell-specific accessible chromatin and potential binding sites at CAD risk loci 
and elucidates potential mechanisms for smooth muscle cell phenotypic. scATAC-seq studies 
were published recently on human carotid endarterectomy samples by Depuydt et al (Circ Res, 
2020) and Ord et al (Circ Res, 2021), which removes some novelty of the study by Turner. 
However, the Ord study had data from only 3 patients (all with advanced disease) and ~7000 
cells total. The current manuscript reports data on human right coronary arteries, LAD arteries 
and left circumflex arteries from 41 patients with various stages of disease and >28,000 
individual cells. Because of the inclusion of multiple patients, Turner et al were able to perform 
chromatin accessibility QTL analyses, which greatly  
adds to the study. This is also the first scATAC-seq dataset from coronary arteries. Overall, this 
is an excellent study and will provide an important resource for the community. The data and 
analysis are of high quality. There are several questions that remain.  
  
Major comments:  
  
1) The introduction section does not mention the other scATAC-seq datasets on human carotid 
artery atherosclerotic plaque, but instead refers to studies on cultured cells. The Ord study does 
not appear to be cited. The omission of these references in the introduction oversells the novelty 
somewhat.  
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We fully agree with this comment and have now mentioned and cited the new Ord et al. 
study in Circulation Research (Örd et al., 2021). It came online a few days before we 
initially submitted. We also cited the original scATAC-seq study on this carotid artery 
dataset by Depuydt et al (Depuydt et al., 2020). 
 

2) It isn’t clear whether the staging of atherosclerosis severity is according to the Stary criteria 
with four stages (Circulation, 1995). This is standard for the field and would provide more 
detailed information about patient plaque characteristics. Was pathology performed on plaque 
samples? While scATAC-seq was performed on various stages of disease, it seems that all of 
the data is combined rather than analyzed according to disease stage. Is the accessibility of 
CAD loci altered by disease stage?  
  

Thank you, we agree that the Stary criteria is the standard in the field to grade the 
severity of atherosclerosis. We have performed histology analyses on most of these 
coronary artery samples, which include healthy samples with minimal intimal thickening, 
early/intermediate atheromas as well as fibro-fatty plaques with calcification. Importantly, 
whenever possible, we used samples for snATAC-seq that were adjacent to regions of 
the coronary artery that were used for histology analysis. Representative histology 
images and quantitation of a subset of samples per disease stage is now included in 
Supplementary Figure 4 and Rebuttal Figure 6. Using Oil Red O (ORO) staining of 
lipids we observed an accumulation of lipid laden cells in the subintimal layer of the early 
atheroma (category 2) and fibroatheroma plaques (category 3). Sirius red and H&E 
staining also demonstrates increased intimal hyperplasia, collagen type I/III 
accumulation and decreased lumen diameter of the early atheroma and advanced lesion 
segments relative to the healthy control segments (category 1). In general, our results 
are consistent with the Stary (Stary et al., 1995) classification stages in that category 1 
represents type I/II lesions with adaptive intimal thickening and initial fatty streak/foam 
activation, category 2 represents type III/IV lesions (intermediate/advanced atheroma) 
with more intimal thickening and accumulation of lipid, and category 3 represents type 
V/VI lesions (advanced fibrocalcific atheroma) with evidence of a lipid core, fibrous cap, 
and/or calcification.  

 
Reviewer 3 is correct that most of our analyses use data combined for 28,316 nuclei 
across all individuals. In terms of comparing accessibility at CAD loci according to 
disease stage, we did not observe many genome-wide significant differences in 
chromatin accessibility between disease stages. This is expected given the continuous 
rather dichotomous nature of atherosclerosis progression. The loci we did observe make 
sense biologically in terms of the implicated genes, with marker genes having higher 
accessibility in Category 3 linked to inflammation and immune processes (e.g. CD5, 

https://sciwheel.com/work/citation?ids=11160058&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9885513&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7267688&pre=&suf=&sa=0
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CD84, CCL4L2, and ICAM1) (Rebuttal Figure 3). In contrast SMC marker genes related 
to contractile function (e.g. CNN1, KCNA5) were more accessible in Category 1 
samples.  Unfortunately due to difficulty obtaining high numbers of nuclei from more 
advanced diseased/plaque samples (Category 3) these samples have fewer analyzed 
nuclei compared to the other categories, as noted in response to Reviewer 1. Finally, 
dissecting differences between disease stages remains a challenging task since 
coronary lesions are very heterogeneous and this type of analysis may be more suitable 
for spatial genomic approaches to compare omic profiles in situ. 
  

3) Are the gene score differences between cell clusters in Fig. 3B statistically significant?  
  

This is a good point, which we have now clarified in a revised Figure 3b. The differences 
in gene scores comparing Cluster 4 + Cluster 7 vs. Cluster 5 + Cluster 6 are statistically 
significant and now reflected with p values shown in the Figure 3b panel.  

 
4) Would analysis of ‘super enhancers’ or clustered ATAC-seq peaks provide any additional 
information regarding potential functional regulatory regions?  
  

We agree that this is a very interesting question. In cultured human coronary artery 
smooth muscle cells ((Miller et al., 2016), GSE72696), H3K27ac ChIP-seq marks 
(established feature of super enhancers) have previously been used to identify SMC 
super enhancers. We re-analyzed these datasets using the SICER (Zang et al., 2009) 
package, which is optimized for broad peak calling from histone modifications and 
identified super enhancers from H3K27ac peaks >10 kb, as previously described (Wang 
et al., 2019). These cultured human coronary artery SMC super enhancers were 
enriched at SMC marker genes in our snATAC-seq data compared to all other cell types 
(Supplementary Figure 7). 

 
Here, we provide overlaps of accessible chromatin regions in each cell type with long 
stretches of H3K27ac marks (Supplementary Table 5). We find that ATAC-seq peak 
clusters (ATAC-seq peaks longer than 10 kb) in smooth muscle cells showed the highest 
association with super enhancers. We further observed that the SMC super enhancers 
showed significantly higher regulatory potential for the identified SMC marker genes 
compared to the marker genes from all other cell types (Supplementary Figure 7), 
supporting the additional functional insights gained from this analysis. We highlight an 
example at the LMOD1 locus (SMC marker and CAD gene), which harbors two SMC 
superhancers (Supplementary Figure 7). Enhancers at this gene have already been 
validated experimentally, however other top candidate super enhancers deserve 
validation using in vitro models.  

https://sciwheel.com/work/citation?ids=1877263&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1210335&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7794216&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7794216&pre=&suf=&sa=0
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5) Further functional information on PRDM16 and TBX2 in atherosclerosis would be helpful. For 
the immunofluorescence in Fig. 6E, it would be helpful to include healthy tissue and advanced 
lesions for comparison to better understand the expression of PRDM16 in atherosclerosis. The 
methods indicate that healthy and sub-clinical atherosclerosis samples were used, but the 
healthy controls are not included in the manuscript. Is there eQTL or caQTL data for PRDM16 
or TBX2? The data presented for PRDM16 and TBX2 are not entirely convincing and appear to 
be preliminary.  
  

We agree with Reviewer 3 in that more functional information would help support our 
novel findings prioritizing PRDM16 and TBX2 at their respective CAD loci. For the 
revision we focused primarily on PRDM16 but also included some additional information 
for TBX2. For PRDM16 we conducted comprehensive immunofluorescence staining in 
both healthy (n=4) and diseased (n=8) coronary arteries along with whole slide confocal 
scanning and quantification (Figure 6, Supplementary Figure 15 and Rebuttal Figure 
7). We leveraged the CVPath biorepository of atherosclerotic samples to carry out these 
more comprehensive analyses in lesions at well-defined disease stages. We observed 
PRDM16 staining colocalized in ACTA2 positive smooth muscle cells in the medial layer 
of healthy and early atheroma samples, which was reduced in the advanced 
fibroatheroma samples (both thin cap fibroatheroma and thick cap fibroatheroma). 
Interestingly, we observed high PRDM16 staining in the vasa vasorum, marking 
arterioles that are positive for ACTA2. We also observed staining in a few weakly ACTA2 
positive arterioles, which could represent pericytes and/or endothelial cells (EC). This is 
consistent with a recent murine study demonstrating a role for both EC and SMC 
expressed Prdm16 in regulating flow recovery in post-ischemia PAD models (Craps et 
al., 2021). While we identified PRDM16 as a SMC-specific marker based on our 
snATAC-seq data, further studies are needed to dissect the functional interplay in EC 
and SMCs. 
  
In addition to immunofluorescence, we leveraged data from our lab’s bulk RNA-seq data, 
publicly available arterial scRNA-seq data, and performed additional in vitro  
experiments. While neither of these genes were differentially expressed in bulk tissues 
from our coronary artery dataset (n=150), PRDM16 and TBX2 were both significantly 
upregulated in perivascular adipose tissue from diseased coronary arteries (n=44) 
(Numaguchi et al., 2019) (Supplementary Table 6 and 7). By querying human and 
mouse atherosclerosis datasets we confirmed the SMC and pericyte (and limited EC) 
expression for PRDM16 and TBX2. (Supplementary Figure 14). To gain more 
functional insight into the mapped regulatory elements for PRDM16 we cloned 4 
candidate PRDM16 enhancer sequences overlapping CAD SNPs upstream of a minimal 

https://sciwheel.com/work/citation?ids=10963103&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10963103&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11915145&pre=&suf=&sa=0
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promoter and compared these to two different promoter sequences in standard 
luciferase reporter assays (Rebuttal Figure 8). Candidate enhancer #3 had ~5 fold 
increase in normalized luciferase activity compared to the empty vector control, 
consistent with the activity of the PRDM16 promoter. These results in HEK 293T were 
consistent with assays in immortalized human coronary artery smooth muscle cells, 
despite the lower magnitude of activation. We observed that PRDM16 expression is 
greatly reduced in cultured SMCs compared to intact tissue, making systematic 
validation challenging. Due to the dozens of candidate PRDM16 SNPs highly associated 
with CAD, overall locus complexity, and difficulty transfecting SMCs, we feel this would 
be better suited for future in-depth investigations. 

 
In terms of eQTLs for PRDM16 and TBX2 in CAD-relevant tissues, we looked up signals 
at these CAD loci in the GTEx (GTEx Consortium et al., 2017), STARNET (Franzén et 
al., 2016) and Cardiogenic QTLizer (Munz et al., 2020) databases (Supplementary 
Data 10). We observed nominally significant eQTLs in STARNET and GTEx artery 
tissues for both genes, however there were modest numbers of eQTLs at both the 
PRDM16 and BCAS3/TBX2 loci in all of the studies. This is not completely surprising as 
many biologically important genes at GWAS loci often do not harbor many significant 
eQTLs due to constraint by negative selection (O’Connor et al., 2019; Wang and 
Goldstein, 2020). Indeed, both PRDM16 and TBX2 have high loss-of-function 
intolerance probabilities (pLI = 0.999 and 0.964, respectively) supporting their constraint 
and haploinsufficiency.  
 
With respect to caQTLs, we observed a CAD-associated signal at the PRDM16 locus 
(rs10797377, ACTRT2, chr1:3012242-3012643) that associates with peak accessibility 
in SMCs (RASQUAL q value = 1.86 x 10-4). Moreover, this regulatory element has a 
highly significant Peak2Gene link with PRDM16 and PRDM16-DT (Supplementary 
Data 5) in which chromatin accessibility strongly correlates with gene expression. 
Notably, using the activity-by-contact (ABC) based enhancer-promoter linking method 
(Nasser et al., 2021) in ENCODE human coronary artery, we also identified PRDM16 
and TBX2 as the target genes from CAD associated SNPs (Supplementary Table 9). 
While there are numerous linked CAD-associated candidate SNPs at these two loci, we 
believe the lack of additional caQTLs could reflect context-specific effects or buffering 
effects of allelic variation within enhancers at these loci. In the case of PRDM16, another 
independent association signal, rs2493292, is a missense variant, which is predicted to 
be tolerated/benign (SIFT, PolyPhen, MVP).   
 
Taken together, along with our gene regulatory analyses identifying these two genes as 
key driver genes in STARNET, these additional functional data demonstrate that 

https://sciwheel.com/work/citation?ids=4345863&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3905914&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3905914&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10733770&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8190342,7280058&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=8190342,7280058&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10850048&pre=&suf=&sa=0
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PRDM16 and TBX2 are indeed the target genes for their respective CAD loci and may 
play critical roles in SMC during disease.   
  

Minor comments:  
1) The heatmap in Fig. 3D could use additional annotation to indicate where the trajectory 
begins and ends.   
  

We agree that providing additional annotation to the heatmap improves interpretation of 
this figure. We have now added labels with arrows to the heatmap to indicate both where 
the trajectory starts and ends.  

  
2) The legend for the heatmap in Fig. 4D is confusing. Are ‘zero’ peaks white? It seems that 
‘zero’ peaks are black on the legend, but this doesn’t seem to be correct.  
  

We thank Reviewer 3 for pointing this out. Zero overlaps should be white and the scale 
should start at 1. We have corrected this in Figure 4d.   
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Rebuttal Figure 1. UMAP plots separated by each donor sample showing cells for each main 
cell cluster are represented from individual snATAC-seq libraries. Note: samples lacking an 
adventitial layer do not have cells in the fibroblast cluster (dark blue). Also, sample scL was 
excluded from caQTL mapping due to overall low cell numbers.  
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Rebuttal Figure 2. Power analysis results for cell type identification, differential accessibility, 
and caQTL. (a) SCOPIT v1.1.4 based power curve showing the probability of detecting at least 
50 cells of the rarest cell type in croronary artery based on our snATAC data (Mast cell at a 
frequency of 0.07), assuming alpha =0.05. 99% probability of detection is achieved from a 
minimum of 9,129 total cells, as shown by the intersecting orange lines. (b) Two-sample t-test 
based power curve, showing the probability of detecting differential gene scores in smooth 
muscle cells (SMC) versus modulated SMC (fibromyocytes) as a function of mean sample sizes 
(calculated from the required sample sizes for all differential genes; see Methods) (c) Single-cell 
caQTL power analysis based on PowerEQTL v0.3.4, assuming a standard linear mixed effects 
model, alpha=0.05, nTests = 250,000 overlapping SNPs, minimum effect size=0.3, # cells = 670 
(mean SMC/sample). A minimum of 40 samples is required to achieve 90% power to detect 
caQTL variants at ~5% minor allele frequency (MAF). 
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Rebuttal Figure 3. Differentially accessible marker genes between different disease categories. 
Highlighted genes are immune genes that harbor more accessible peaks in advanced diseased 
coronary segments (category 3) relative to healthy segments (category 1). Also contractile SMC 
marker genes are more accessible in healthy artery segments relative to diseased segments. 
Differential marker genes were detected at FDR <= 0.1 and log2FC > log2(1.5). 
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Rebuttal Figure 4. Comparison of effect size directions between smooth muscle cell caQTLs 
(5% FDR) and bulk coronary artery caQTLs (5% FDR), as visualized in scatter plot (a) and 
donut plot (b). For this analysis, 503 caQTL peaks are shared between both datasets (peaks 
with a corresponding significant caQTL variant). The rsID reported in the SMC caQTL results 
(n=40 individuals) was compared with the rsID reported in the bulk caQTL results (n=35 
individuals). Two variants were considered to be in linkage disequilibrium (LD) if the r2 value 
between them was between 0.2 and 1 (in EUR population). If variants had an r2 value < 0.2 (in 
EUR population), the variants were considered to be in low LD (blue). For the caQTL effect size 
direction, we considered the RASQUAL Pi statistic. The RASQUAL Pi statistic can range from 
0-1, where Pi < 0.5 reflects lower peak accessibility for the alternative allele and Pi > 0.5 reflects 
higher accessibility for the alternative allele. The effect sizes for linked variants go in the same 
direction (green) if the Pi values in SMCs and bulk coronary artery are both < 0.5 or both > 0.5. 
Linear regression line and Pearson correlation coefficient shown in (a).   
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Rebuttal Figure 5. UMAP and box plots of imputed geneScores for known adipocyte marker 
genes (UCP1, CITED1, and ZIC1) demonstrating the absence of adipocytes in our coronary 
artery snATAC dataset. This is consistent with the fact that perivascular adipose was trimmed 
prior to archiving these coronary artery specimens.   
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Rebuttal Figure 6. Representative histology staining of adjacent frozen human coronary artery 
sections at different disease categories used for snATAC profiling (n=4 donors per category). 
Category 1 reflects normal to Stary atherosclerosis stage I/II lesions with adaptive intimal 
thickening and early lipid (Oil Red O (ORO)) and collagen (Sirius Red) accumulation in the 
subintimal layer. Category 2 reflects Stary stage III/IV early/intermediate atheroma lesions with 
increased lipid and collagen accumulation and proliferation (Hematoxylin & Eosin (H&E)). 
Category 3 reflects Stary stage V/VI advanced fibroatheroma or complex lesions with more 
severe lipid and collagen deposition as well as lipid core and thin media layer. (Below) Whole 
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slide quantitative results of ORO area (mm2) normalized to overall tissue area and  Sirius Red 
based quantitation of intima-media thickness (IMT) with maximum intima and average media 
width captured from >6 automatically defined measurements (Methods). n=3, n=5, and n=10 
donors per lesion stage, respectively. ANOVA p-values shown for comparisons across lesion 
stages. Scale bar = 1mm.   
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Rebuttal Figure 7. Movat pentachrome staining and PRDM16 (red) and alpha-smooth muscle 
actin (a-SMA) (green) immunofluorescence staining of atherosclerotic human coronary artery 
segments - left anterior descending (LAD) from normal-Stage I, Stage III-IV, and Stage V-VI 
lesions based on Stary classification stages. Whole slide images captured from 20x confocal 
microscopy stitched tiles. PRDM16/a-SMA co-staining (see arrows) depicted in yellow from 
merged images. DAPI (blue) marks nuclei. n = 4 per group. Scale bar = 1 mm, except for region 
of interest (ROI): scale bar = 100 µm. 
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Rebuttal Figure 8. (Top) Luciferase reporter assays evaluating the transcriptional activity of 4 
candidate enhancer regulatory regions overlapping CAD variants in lentiviral transduced HEK 
293 cells. Candidate regions were cloned into the pLS-mP-Luc plasmid (Addgene plasmid # 
106253). Dots represent mean of triplicates from n=4 biological replicate experiments. Boxes 
and whiskers represent the median with upper and lower quartiles. (Bottom) Luciferase reporter 
assays evaluating the transcriptional activity of 4 candidate enhancer regulatory regions 
overlapping CAD variants in lentiviral transduced human coronary artery smooth muscle cells. 
Dots represent mean of triplicates from n=2 biological replicate experiments. Box and whiskers 
represent the median with upper and lower quartiles. e001-e004 are CAD enhancer regions, 
P001 and P002 are endogenous PRDM16/PRDM16-DT promoter sequences, Nc001 is a 
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negative control enhancer sequence, and MP is the minimal promoter and empty vector from 
pMCS-Luc. Values are presented as % normalized luciferase of MP reporter. Statistical 
significance determined from % change of test reporters versus MP reporter using Wilcoxon 
Rank Test with continuity correction.   
 
Rebuttal Table 1. Candidate regulatory regions at the PRDM16 locus used for luciferase 
assays in cultured cells. 
 

Enhancer candidate 
name 

Region (hg38) PRDM16 CAD-associated 
SNPs 

e001 chr1:2998925-2999935 
  

rs72629460, rs12239064, 
rs12240128, rs67927838, 
rs59653178, rs67142023, 
rs72629462 

e002 chr1:3072552-3073451 
  

rs2981890 

e003 chr1:3074233-3074650 rs35397508 

e004 chr1:3075236-3075530 No SNPs but highly conserved 

p001 (*promoter) chr1:3067941-3069685 
  

PRDM16 promoter 

p002 (*promoter) chr1:3067041-3068642 
  

PRDM16-DT promoter 
rs2297829 

nc001 chr1:3230824-3231620 Negative control sequence 
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Summary of changes 
 
Figures 
 

Figure Change/Addition 

Figure 3 Added a legend to the trajectory heatmap (Figure 3d) 

Figure 4 Changed the start value of the scale from 0 to 1 in Figure 4d 

Figure 5 Updated caQTL panels after removing individuals with low 
numbers of cells 

Figure 6 Added additional panels for PRDM16 
 
Supplementary Figures 
 

Supplementary Figure Change/Addition 

4 Added representative histology images for various stages of 
CAD 

6 Added plots showing correlation of snATAC promoter 
accessibility with integrated scRNA-seq expression 

7 Added plots for super enhancer analyses 
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11 Added donut plot showing the correspondence of effect size 
directions between smooth muscle caQTLs and bulk coronary 
artery caQTLs 

14 Added UMAP feature plots of PRDM16 and TBX2 in human and 
mouse atherosclerosis scRNA-seq datasets 

15 Added additional representative whole slide histology and 
confocal immunofluorescence images for PRDM16, a-SMA, and 
LMOD1 

 
Supplementary Tables/Supplementary Data 
 
We have now moved many of the prior Supplementary Tables to separate Supplementary Data 
files below. We feel this repackaging makes the supplemental information much more organized 
than before. 
 

Supplementary Data File Details 

1 Top snATAC marker genes in each coronary artery cell type 

2 Consensus set of 323,767 coronary artery peaks across all 
cell types 

3 List of enriched transcription factor motifs within coronary 
artery cell type peaks 

4 Differential peak and promoter analysis results between 
differentiated smooth muscle cells and fibromyocytes 

5 Overlap of CAD GWAS SNPs with coronary artery cell type 
peaks and Peak2Gene link coordinates. For the Peak2Gene 
links, the peak coordinates now match the peak set used in 
the rest of the manuscript 

6 Chromatin accessibility QTLs within individual cell types 
calculated using RASQUAL (shown are SNPs passing 5% 
FDR threshold). For the updated caQTL analysis we excluded 
individuals from the analysis if they contained <20 nuclei 
belonging to the respective cell type 

7 Chromatin accessibility QTLs from bulk coronary artery 
samples calculated using RASQUAL (shown are SNPs 
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passing 5% FDR threshold) 

8 Significant results for functional CAD variant prediction using 
gkm-SVM, gkmExplain, and DeltaSVM 

9 Sample size estimations for top fibromyocyte genes 
(comparing smooth muscle cells and fibromyocytes) 

10 eQTLs for PRDM16 and TBX2 in STARNET and GTEx artery 
tissues 

 
In the new version of the Supplementary Table file we have changed or added the following: 
 

Table Change/Addition 

ST2 Added the number of nuclei in each cell type captured and 
detected using 10x Genomics Cell Ranger ATAC QC 

ST3 Added the number of nuclei analyzed in each sample per cell 
type (after stringent ArchR QC filtering) 

ST5 Summary of snATAC peaks overlapping coronary artery smooth 
muscle cell super enhancers (SE) 
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Thank you for submitting your revised manuscript "Cell-specific chromatin landscape of human 
coronary artery resolves regulatory mechanisms of disease risk" (NG-A57752R1). It has now been 
seen by the original referees and their comments are below. The reviewers find that the paper has 
improved in revision, and therefore we'll be happy in principle to publish it in Nature Genetics, pending 
minor revisions to satisfy the referees' final requests and to comply with our editorial and formatting 
guidelines. 
 
If the current version of your manuscript is in a PDF format, please email us a copy of the file in an 
editable format (Microsoft Word or LaTex)-- we can not proceed with PDFs at this stage. 
 
We are now performing detailed checks on your paper and will send you a checklist detailing our 
editorial and formatting requirements soon. Please do not upload the final materials and make any 
revisions until you receive this additional information from us. 
 
Thank you again for your interest in Nature Genetics Please do not hesitate to contact me if you have 
any questions. 
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Michael Fletcher, PhD 
Associate Editor, Nature Genetics 
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Reviewer #1 (Remarks to the Author): 
 
The authors have made exhaustive changes to the manuscript and have made great progress in 
addressing all the issue. I therefore recommend this work for publication. 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have provided a detailed response to previous reviews with acknowledgment of the 
caveats inherent in this type of analysis and addition of new and relevant information. 
 
 
Reviewer #3 (Remarks to the Author): 
 
The authors have responded thoughtfully and completely to the previous reviews and the manuscript 
is now acceptable. There are just a few minor edits that I would suggest. 
 
1) The manuscript still refers to ‘single-cell ATAC-seq’ rather than ‘single-nucleus ATAC-seq’ in several 
places, including figures. 
2) The numbers indicated on the UMAP of Suppl. Fig. 1F do not seem to be necessary and are 
distracting. 
3) Figure 2E needs a more informative axis title. Is this fold enrichment? 
4) ‘MAM’ should be defined in Suppl. Fig. 13. 
 
 

Author Rebuttal, second revision: 
 
Point-by-point response to Nature Genetics, 2021, Turner and Hu et al. 
  
We thank all of the reviewers for their helpful final comments on our manuscript. Below we 
provide point-by-point responses (in blue) to each comment/remark from the three reviewers. At 
the end we also detail specific additions/changes we made to the manuscript. Specific changes 
to the enclosed manuscript text are also highlighted in blue for clarity.  
 
Reviewer Comments: 
 
Reviewer #1:  
Remarks to the Author:  
The authors have made exhaustive changes to the manuscript and have made great progress 
in addressing all the issue. I therefore recommend this work for publication. 
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Thank you for the positive feedback on our revised manuscript and recommendation for 
publication.   

 
Reviewer #2:  
Remarks to the Author:  
The authors have provided a detailed response to previous reviews with acknowledgment of the 
caveats inherent in this type of analysis and addition of new and relevant information. 

 
Thank you for the positive feedback on our revised manuscript and recommendation for 
publication.   

 
Reviewer #3: 
Remarks to the Author: 
The authors have responded thoughtfully and completely to the previous reviews and the 
manuscript is now acceptable. There are just a few minor edits that I would suggest. 
 

Thank you for the positive feedback on our revised manuscript and additional minor 
edits. 

 
1) The manuscript still refers to ‘single-cell ATAC-seq’ rather than ‘single-nucleus ATAC-seq’ in 
several places, including figures. 
 

Thank you for this comment. We have now changed all instances of ‘single-cell ATAC-
seq’ or ‘scATAC-seq’ to ‘single-nucleus ATAC-seq’ or ‘snATAC-seq’ throughout the 
manuscript, including figures and legends. 

 
2) The numbers indicated on the UMAP of Suppl. Fig. 1F do not seem to be necessary and are 
distracting. 
 

Thank you for this comment. We have now omitted the numbers overlapping the clusters 
in the UMAP of Supplementary Figure 1F. 

 
3) Figure 2E needs a more informative axis title. Is this fold enrichment? 
  

Thank you for this comment. We have now added a more informative x-axis title for 
Figure 2E – ‘Normalized deviation score’ and moved the motif name above the plot. 

 
4) ‘MAM’ should be defined in Suppl. Fig. 13. 
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Thank you for this comment. We have now defined ‘MAM’ as ‘mammary artery’ in the 
figure and legend for Suppl. Fig. 13. 

 
 

Final Decision Letter: 
 
In reply please quote: NG-A57752R2 Miller 
 
31st Mar 2022 
 
Dear Clint, 
 
I am delighted to say that your manuscript "Single-nucleus chromatin accessibility profiling highlights 
regulatory mechanisms of coronary artery disease risk" has been accepted for publication in an 
upcoming issue of Nature Genetics. 
 
Over the next few weeks, your paper will be copyedited to ensure that it conforms to Nature Genetics 
style. Once your paper is typeset, you will receive an email with a link to choose the appropriate 
publishing options for your paper and our Author Services team will be in touch regarding any 
additional information that may be required. 
 
After the grant of rights is completed, you will receive a link to your electronic proof via email with a 
request to make any corrections within 48 hours. If, when you receive your proof, you cannot meet 
this deadline, please inform us at rjsproduction@springernature.com immediately. 
 
You will not receive your proofs until the publishing agreement has been received through our system. 
 
Due to the importance of these deadlines, we ask that you please let us know now whether you will be 
difficult to contact over the next month. If this is the case, we ask you provide us with the contact 
information (email, phone and fax) of someone who will be able to check the proofs on your behalf, 
and who will be available to address any last-minute problems. 
 
Your paper will be published online after we receive your corrections and will appear in print in the 
next available issue. You can find out your date of online publication by contacting the Nature Press 
Office (press@nature.com) after sending your e-proof corrections. Now is the time to inform your 
Public Relations or Press Office about your paper, as they might be interested in promoting its 
publication. This will allow them time to prepare an accurate and satisfactory press release. Include 
your manuscript tracking number (NG-A57752R2) and the name of the journal, which they will need 
when they contact our Press Office. 
 
Before your paper is published online, we shall be distributing a press release to news organizations 
worldwide, which may very well include details of your work. We are happy for your institution or 
funding agency to prepare its own press release, but it must mention the embargo date and Nature 
Genetics. Our Press Office may contact you closer to the time of publication, but if you or your Press 
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