
Supplementary Methods 
 
Isolation of nuclei from frozen tissue samples 
  
For all experiments approximately 50 mg of frozen coronary artery tissue was ground into a fine 
powder using pre-chilled Mortar and Pestle with dry ice and liquid nitrogen. Frozen coronary 
artery tissue powder was then transferred back to a pre-chilled 1.5 mL microcentrifuge tube and 
kept on dry ice until all samples were broken down. We added 1 mL of cold 1X Homogenization 
Buffer (5 mM CaCl2, 3 mM Mg(Ac)2, 10 mM Tris pH 7.8, 320 mM sucrose, 0.1 mM EDTA, 0.1% 
NP-40, 0.1 mg/mL BSA, Roche cOmplete protease inhibitor) and the tubes were gently inverted 
5 times and the powder gently pipetted up and down using a wide-bore 1 mL pipette tip set to a 
volume of 1 mL. The samples were then immediately transferred to cold, pre-chilled 1 mL glass 
Dounce homogenizers on ice. 
  
We performed Dounce homogenization (10 strokes with Pestle A (Loose) and 20 strokes with 
Pestle B (Tight)) on ice and passed the lysate through a 70 µm Falcon strainer (Corning). The 
flow-through was collected and transferred to a chilled 2 mL Lo-Bind microcentrifuge tube 
(Eppendorf) and centrifuged at 4°C for 1 minute at 100 g. This supernatant was transferred to a 
new 2 mL Lo-Bind microcentrifuge tube (Eppendorf) and an OptiPrep (Iodixanol)/sucrose 
(Sigma) gradient was generated the same way as in the Omni-ATAC protocol1. 400 µl of sample 
was first mixed thoroughly with 400 µl of 50% Iodixanol by pipetting (to give 25% Iodixanol). 
Next, we layered 600 µl of 29% Iodixanol underneath and then 600 µl of 35% Iodixanol 
underneath the 29% layer. Samples were centrifuged for 20 minutes at 10,000 g at 4°C and the 
top layers were aspirated down to within 300 µl of the nuclei band. 
  
At this stage we carefully took the band containing the nuclei (setting the pipette volume to 100 
µl) and added the nuclei to 1.3 mL of cold Nuclei Wash Buffer (10 mM Tris-HCl (pH 7.4), 10 mM 
NaCl, 3 mM MgCl2, 1% BSA, 0.1% Tween-20) in a 1.5 mL Lo-Bind microcentrifuge tube. The 
microcentrifuge tube was inverted gently 5 times, nuclei gently mixed by pipetting (setting the 
pipette volume to 1 mL), and contents passed through a 40 µm Falcon cell strainer (Corning) 
into a new 1.5 mL Lo-Bind microcentrifuge tube (Eppendorf). Nuclei were pelleted by 
centrifugation for 5 minutes at 500 g at 4°C and supernatant carefully removed. Finally, this 
nuclei pellet was gently resuspended in 100 µl of the Nuclei Buffer provided with the kit (diluted 
from 20X Stock to 1X working concentration with nuclease-free water) by gently pipetting up 
and down. Samples and nuclei were kept on ice for all steps of the nuclear isolation. For each 
sample we measured the nuclei concentration by taking the mean of two separate counts using 
Trypan blue (Thermo Fisher) and the Countess II instrument (Thermo Fisher). Post cell lysis we 
generally observed less than 5% Live cells when visualizing with the Countess, consistent with 
proper lysis. 
  
Single-nucleus ATAC GEM preparation 
  
The full protocols for the single cell ATAC-seq data generation are available at the following link: 
https://support.10xgenomics.com/single-cell-atac. 



  
We first performed a pilot study (4 samples) using the original Chromium Single Cell ATAC 
Reagent Kit protocol (10x Genomics, PN-1000111). The remaining samples were processed 
using the Chromium Next GEM Single Cell ATAC Reagent Kit v1.1 (10x Genomics, PN-
1000175 and PN-1000176) protocol. Transposed nuclei (15 µl) were mixed with Barcoding 
Enzyme/Reagent Master Mix (60 µl) for a total of 75 µl per sample. This Transposed Nuclei + 
Master Mix volume was subsequently added to the 10x Genomics Chromium GEM chip. 50 µl of 
Gel Beads and 40 µl of Partitioning Oil were subsequently added to the chip and the chip 
covered with the 10x Gasket. The assembled chip was then run on the 10x Genomics 
Chromium Controller instrument to generate Gel Beads in Emulsions (GEMs). 100 µl of GEMs 
were then incubated in a thermal cycler (105°C lid temperature) using the following cycling 
conditions: 72°C for 5 minutes; 98°C for 30 seconds; 12 cycles of 98°C for 10 seconds, 59°C for 
30 seconds, 72°C for 1 minute; then holding at 15°C. After incubation, GEMs were cleaned up 
using Dynabeads MyOne and SPRIselect reagent to produce a volume of 40 µl. 
  
Single-nucleus ATAC library generation 
  
Each sample was uniquely indexed with the Chromium i7 Multiplex Kit N, Set A, 96 rxns (10x 
Genomics) PN-1000084. The index sequences for this kit are listed in Supplementary Table 2. 
The sample index PCR reaction was prepared by mixing 40 µl of single-nucleus ATAC library 
with 57.5 ul of Sample Index PCR Mix and 2.5 μl of an individual primer from the Chromium i7 
Sample Index N, Set A kit. The subsequent PCR amplification conditions were as follows: 98°C 
for 45 seconds; then 11 cycles of 98°C for 20 seconds, 67°C for 30 seconds, and 72°C for 29 
seconds; 72°C for 1 minute; then holding at 4°C. After the sample index PCR we performed a 
final double sided size selection using SPRIselect beads. Before sequencing all snATAC 
libraries were run on the Agilent TapeStation High Sensitivity D1000 or D5000 ScreenTape. 
Library sizes are shown in Supplementary Figure 1. 
  
Differential analysis between SMCs and fibromyocytes 
  
Data processing 
  
In order to explore differential regulatory profiles in SMCs and fibromyocytes, we performed 
another round of snATAC-scRNA-seq integration (using the data from Wirka et al. Nature 
Medicine 2019, GEO accession GSE131780)2. To delineate modulated SMCs (fibromyocytes) 
with high resolution and to further validate results from Wirka et al, we slightly increased the 
stringency of quality control for scRNA-seq data including coverage as an additional metric. 
Genes expressed in less than 5 cells were filtered out. Cells expressing < 500 and > 2500 
genes, and with < 2000 UMIs were also trimmed from the dataset to prune defective cells, 
multiplets or cells with low coverage. Moreover, cells containing <1% and > 5% of reads 
mapping to the mitochondrial genome were discarded. Upon discarding lower quality cells, 7209 
high quality cells remained for subsequent analysis. Read counts normalization and 
dimensionality reduction was performed as described above. To optimize clustering, several 
resolutions (granularity parameters) were applied to avoid under- or over-clustering of the data. 



A resolution of 1.2-1.7 yielded a consistent number of clusters and upon identifying the 
differentially expressed genes for each, clusters could be successfully annotated using the 
human scRNA cluster-specific gene lists provided by Wirka et al 2019. 
  
Differential accessibility, annotation and promoter analysis 
  
Using cell type groupings defined by scRNA-seq label transfer, peaks with differential 
accessibility between Fibromyocytes and traditional Smooth Muscle Cells (SMC) were identified 
using a Wilcoxon-test as implemented in the ArchR package3. Peaks called during this analysis 
had a width of 500 bp. The threshold for differential peak significance was set at FDR <= 0.05 
and Log2 fold change > 1, resulting in a total of 5681 significantly upregulated peaks and 2121 
downregulated peaks. For differentially accessible promoter analysis, the promoter coordinates 
of protein coding genes were extracted using the R packages ensembldb v2.14.04 and 
EnsDb.Hsapiens.v86 v2.99.0 (Rainer J (2017). EnsDb.Hsapiens.v86: Ensembl based 
annotation package. R package version 2.99.0). These promoter coordinates were overlapped 
with upregulated and downregulated peak coordinates using the R package GenomicRanges 
v1.42.05. 
  
As an additional approach for differential peak annotation, protein coding gene coordinates were 
extracted with ensembldb. Upregulated and downregulated peaks were annotated with the 
nearest protein coding gene using GenomicRanges v1.42.0. This annotation was validated 
using the R package ChIPseeker v1.26.0 6 along with TxDb.Hsapiens.UCSC.hg38.knownGene 
v3.10.0 (Team BC, Maintainer BP (2019). TxDb.Hsapiens.UCSC.hg38.knownGene: Annotation 
package for TxDb object(s). R package version 3.4.6). 
  
Differential motif and Gene Ontology (GO) enrichment 
  
Differential upregulated and downregulated peaks for fibromyocytes were converted into BED 
files and tested for TF motif enrichment using the command line tool HOMER v4.10 
(http://homer.ucsd.edu/homer/ngs/) 7. The findMotifsGenome.pl script was used to search for 
known and de-novo motifs. The analysis was run using default values, with the exception of the 
parameter “-size”, that was set to “-size given” to define peaks width from the BED files data 
instead of arbitrarily defining a constant value. The same BED files were used for region set 
enrichment analysis using the Genomic Regions Enrichment of Annotations Tool (GREAT 
v4.0.4) (http://great.stanford.edu/public/html/index.php)8 using the whole genome as 
background (reported results are from the GO database).  
  
Correlation of promoter profiles and integrated expression 
  
For the coronary artery scRNA-seq data5, individual cells from the different cell types were 
separated. For each cell type, we subsequently took the average of scRNA-seq read counts 
from all the related cells to represent the average expression index. For the snATAC data, 
individual cells from different cell types were similarly separated. For each cell type, reads from 
all the related cells were collected and piled up to generate pseudo-bulk data. The average 



signal across +/- 3 kb centered on gene transcription start sites (TSS) were calculated as the 
promoter accessibility. Finally, for each cell type observed in both the scRNA and snATAC-seq 
datasets, we compared the promoter accessibility and average expression in log2 scale using 
scatter plots. The correlation coefficients were also calculated and labeled. This material is 
shown in Extended Data Figure 3c. 
  
Super enhancer analysis 
  
We used published H3K27ac ChIP-seq data in human coronary artery smooth muscle cells from 
our previous study 9 to identify the super enhancers in SMCs. In detail, the H3K27ac ChIP-seq 
reads were mapped to the hg38 genome with Bowtie2 (v2.3.5.1)10 with default parameters (and 
-x 2000 as an additional parameter). The high quality (MAPQ > 30) unique mappable reads 
were kept for subsequent analyses. The H3K27ac genome-wide domains were identified with 
SICER (v2)11 with default parameters. Next, the SICER peaks >= 10 kb were selected and 
those with non-overlaps with transcription start sites (TSS) +/- 3kb were defined as super 
enhancers. When comparing the effect of super enhancers to snATAC marker genes (from 
different cell types), we calculated regulatory potential (RP)12 on each gene to estimate the 
regulatory effect of super enhancers on a given gene set. Only the reads/signal on the super 
enhancer regions were included in calculating the RP score. The RP scores were then log 
transformed (i.e., log2(RP+1)) and z-normalized for fair comparison. The normalized RP scores 
were subsequently plotted for different marker gene sets. Results are presented in 
Supplementary Figure 4 and Supplementary Table 5. 
  
Bulk coronary artery ATAC-seq 
  
We generated bulk ATAC-seq libraries using coronary arteries from the same set of patients  
analyzed by snATAC-seq. We again used the Omni-ATAC protocol1 to isolate nuclei from frozen 
coronary artery samples, but transposed 50,000 nuclei/sample for all bulk ATAC-seq reactions. 
After the density gradient centrifugation step using OptiPrep (Iodixanol)/sucrose (Sigma), 
50,000 nuclei were transferred to cold ATAC RSB (Resuspension Buffer; 10 mM Tris-HCl pH 
7.4, 10 mM NaCl, 3 mM MgCl2) + 0.1% Tween-20 and centrifuged for 5 minutes at 4°C at 500 g. 
The supernatant was carefully removed and nuclei were resuspended in 50 µl of transposition 
mix (25 µl 2X TD buffer, 2.5 µl Tn5 transposase (Illumina), 16.5 µl PBS, 0.5 µl 1% digitonin, 0.5 
µl 10% Tween-20), pipetted up and down 6 times, followed by shaking at 1000 rpm for 30 
minutes at 37°C. ATAC-seq reactions were purified using the Zymo DNA Clean and 
Concentrator-5 Kit. The ATAC-seq libraries were amplified as per Supplementary Protocol 1 in 
the Omni-ATAC study using indexed oligos from Supplementary Table 1 of the original ATAC-
seq paper 13.  Library size distributions were evaluated using Agilent TapeStation analysis and 
quantified using Qubit 3.0 fluorometer (Thermo Fisher Scientific) and KAPA qPCR (Kapa 
Biosystems). Libraries were multiplexed and sequenced to approximately 200 million paired 
reads per library on an Illumina NovaSeq. 
  
Bulk coronary ATAC-seq libraries were analyzed using the PEPATAC pipeline14 (version 0.8.6). 
Within this pipeline, adapter trimming was performed using Skewer15 and reads were first pre-



aligned to the mitochondrial genome and a list of human repeats using Bowtie2 (-k 1 -D 20 -R 3 
-N 1 -L 20 -i S,1,0.50-k 1 -D 20 -R 3 -N 1 -L 20 -i S,1,0.50). After discarding mitochondrial and 
repeat sequences, trimmed fastq files were mapped to the human hg38 genome using Bowtie2 
(--very-sensitive --X 2000)10. Samtools16 was used to remove poor quality reads (-q 10) and 
duplicate sequences were removed using the samblaster tool17. Peaks were called on sorted, 
deduplicated bam files using MACS2 (-f BED -q 0.01 --shift -100 --extsize 200 --nomodel --
keep-dup all)18 and ignoring the hg38 blacklist of peaks. Due to tissue availability we could not 
repeat bulk ATAC-seq for some bulk ATAC-seq libraries with lower quality. We were left with 
bulk ATAC-seq libraries for 35 out of the 41 individuals for downstream analyses. 
  
To generate a bulk ATAC-seq counts matrix, we used bam files from these 35 individuals and 
the snATAC peak coordinates (in saf format) as input for featureCounts19 with the -p flag for 
paired-end mode. For the bulk caQTL analysis for replication (n=35), we used the same 
conditions as the single cell caQTL analysis in RASQUAL20. We used the default RASQUAL 
createASVCF.sh script, the VCF file for these individuals (variants > 5% minor allele frequency), 
and the bulk ATAC bam files to generate the bulk allele-specific VCF file. rasqualTools was 
used to make compatible read count and sample specific offset files. For the bulk samples we 
only retained ATAC peaks with an average of 10 or more read counts across individuals. We 
again tested association for all variants within a +/- 10 kb window and ran RASQUAL with the -t 
flag to output the top associated SNP for each peak. We adjusted for age, sex, and the first 
three principal components of ancestry in the covariate file (-x flag). To obtain the null 
distribution of bulk q values we performed 5 different permutation runs for each cell type using 
the --random-permutation flag to break the relationship between genotype and peak 
accessibility. Finally, we adjusted for multiple testing using FDR corrections using the same 
method as for cell type caQTLs (https://github.com/natsuhiko/rasqual/issues/21). 
  
Histological analysis and quantitation of atherosclerosis 
  
For all histological staining, frozen sections (8 μm thickness) were prepared from OCT 
embedded human coronary artery segments adjacent to those used for snATAC profiling. 
A minimum of two sections per sample were blindly stained with each of the following stain, Oil 
Red O (ORO), Picro-Sirius red (PSR) and Hematoxylin and Eosin (H&E) at the UVA Research 
Histology Core. Briefly, for ORO staining, frozen sections were fixed in 10% Neutral Buffered 
Formalin solution, washed and stained in Oil Red O solution (Poly Science #s2120) for 5 min. 
After washing, slides were then stained in Hematoxylin solution (Richard Allen #7221) for 1 min 
before being rinsed and mounted with an aqueous mounting medium. For H&E, slides were 
stained using the Hematoxylin 360 reagents manufactured by Leica in an automated Gemini 
Stainer. For PSR, slides were placed in Picro-Sirius red solution (Direct Red 80 in saturated 
aqueous solution of picric acid) for 1 hour, rinsed in deionized water and were washed twice in 
acidified water. Slides were then dehydrated in ethanol, cleared in xylene and mounted. 
 
Whole slide images were then captured at approximately 100,000 x 30,000 pixel resolution 
using a Hamamatsu NanoZoomer S360 Digital Slide Scanner C13220 at the Biorepository and 
Tissue Research Facility at UVA. Visualizations, annotations and quantifications were blindly 



conducted within the PathcoreFlow workspace or using custom automated and semi-automated 
approaches as further detailed below. 
A total of 18 donors across lesion stages were independently examined by two experimenters, 
and categorized into three different disease stages according to the Stary classification 
guidelines as follows (Cat 1: N=3; Cat 2: N=5; Cat 3: N=10). 
 
To quantitate the lipid droplet area in ORO digitized images, we created a binary mask with the 
white region representing the target color (red) and black representing all other colors. An 
automated analysis was performed using a custom Python script using OpenCV package. The 
original images in the RGB (Red, Green, Blue) channel were first converted to the HSV (Hue, 
Saturation, Value) channel. In OpenCV, Hue has values from 0 to 180, Saturation and Value 
from 0 to 255. Thus, OpenCV uses HSV ranges between (0-180, 0-255, 0-255). Lipid droplets in 
ORO-stained images are predominantly red, so we first set the cv2.inRange function with the 
range of HSV values from true red color (0,255,255). To accommodate for color variations, we 
considered a range of HSV values for the red color. By checking the HSV color map in OpenCV, 
the red color has hue values in the range of 0 to 10. We also set the intensity value v in 
range(20,255) and saturation s in range(100,255). We used the cv2.inRange to generate a 
mask that has a value of 255 for pixels where the HSV values fall within the specified color 
range and a value of 0 for non-color pixels with values outside this interval. Pixel area 
measurements were converted to mm squared and normalized to the total tissue mask area.  
 
To quantitate intima-media thickness (IMT) and distinguish the arterial wall layers, collagen was 
visualized using Picrosirius Red staining. We developed a semi-automated approach to 
quantitate the IMT from blinded Picrosirius Red digitized whole slide images. First, we used a 
manual free hand tool to trace the lumen, intima and media layers. The lumen boundaries were 
used to calculate the lumen area, lumen centroid and minimum and maximum lumen diameter. 
To accurately measure the IMT, we utilized the centroid as the center for remapping the three 
layer boundary image to a polar coordinate space. The mean, minimum and maximum IMT 
were then determined for each section.  
  
Sample size estimation 
  
While the overall sample size of this study was determined based on tissue availability, we 
performed several post-hoc power calculations. In the conventional sample size estimation for 
detecting cell type marker genes, we regarded snATAC accessibility-based gene scores of the 
marker gene in the target cell type as distribution 1 and the gene scores of the same marker 
gene in the rest of cell types as distribution 2. Subsequent power calculations for t-test were 
conducted based on these two distributions. We used the Python “statsmodels” package (v0.14) 
to carry out sample size power calculations applying a stringent cutoff (power=0.99, alpha=0.01) 
to ensure high confidence. 
  
To demonstrate that we had sufficient power to detect cell types from our combined snATAC 
data, we performed single cell sample size calculation using SCOPIT 21 (Supplementary 
Figure 7). In detail, we estimated the sample size with the “Retrospective” mode on the 



SCOPIT web server (http://navinlab.com/SCOPIT/)  and set the “number of cells must be 
sequenced” to 50. 
  
To confirm that we had the appropriate sample size needed for SMC and fibromyocytes 
differential accessibility comparisons, we performed a similar canonical 2-sample t-test power 
analysis as described above. Upon extracting ArchR differential accessibility-based gene scores 
using the same parameters as in the differential peak analysis (see above methods section), we 
calculated effect sizes for each gene using the gene score means and pooled standard 
deviations across cells from the SMC and fibromyocyte groups. To calculate the sample sizes 
required to reject the null hypothesis (no significant difference in accessibility-based gene 
scores between the two cell groups) at a given power value, we developed a custom python 
script using the statsmodels package. As before, we used stringent cutoffs for both the 
statistical power (0.99) and significance level (type 1 error rate, alpha = 0.01) to show the 
robustness of the differential accessibility-based analysis. As a result, we found that the 
required sample size for 93% of differential genes (based on accessibility-based gene scores) 
including fibromyocyte markers such as FBLN2, LUM, F2R and TNFAIP6 was well below the 
number of cells available for the two groups (SMC n=6518, fibromyocytes n=2512) 
(Supplementary Data 9). We also calculated the mean required sample sizes across all 
differential genes for a wide range of power values (0.05-0.99) to further confirm that we were 
well-powered to detect significant accessibility differences between SMCs and fibromyocytes 
(Supplementary Figure 7).  
  
We used the single-cell powerEQTL tool 22 to demonstrate that we had sufficient power in our 
caQTL analysis (Supplementary Figure 7). While this tool assumes a standard linear mixed 
effects model, we estimated the minimum power (0.90) to detect caQTL variants at 5% minor 
allele frequency given the following parameters: alpha=0.05, n tested SNPs = 250,000, 
minimum effect size = 0.3, n cells = 650 (mean n SMCs/sample), log standard deviation (sigma) 
= 0.13, and intra-class correlation (rho) = 0.5. These estimates assume normally distributed 
chromatin accessibility levels after pre-processing. Given that we used allele-specific and total 
read counts to map caQTLs via RASQUAL, we expect at least 1.6x improved power for true 
positive caQTL discovery over linear models, based on previous estimates20. 
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Supplementary Figure 1. Quality control (QC) for all coronary artery single nucleus ATAC libraries. (a) 
Distribution of transcription start site (TSS) enrichment scores for cells across all snATAC samples. (b) 
Density plot of TSS enrichment versus number of unique fragments (Log10) for total nuclei across all samples. 
We retained nuclei with TSS enrichments greater than or equal to 7 and more than 10,000 unique fragments. 
(c) Distribution of fragment sizes for all samples demonstrate typical ATAC-seq nucleosomal periodicity for cells 
passing QC. (d) TSS enrichment profiles for each coronary artery sample for nuclei passing QC. (e) Clustering 
all snATAC-seq samples according to cluster assignments. (f) UMAP of nuclei colored by corresponding 
sample.
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Supplementary Figure 2. (a) Genome browser tracks comparing accessibility profiles for aggregated nuclei 
for each cell type (top) with accessible fragments from 100 randomly selected nuclei in each cell type (bottom). 
Shown is the myocardin (MYOCD) locus that is an established smooth muscle cell marker gene. Genome 
browser tracks were plotted using ArchR. (b) Correlation of log2 normalized bulk and single-nucleus ATAC 
signal intensity for matched patient samples. Pearson correlation r values are shown for each sample.
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Supplementary Figure 3. (a) UMAP plots of coronary artery nuclei colored by sample and patient charac-
teristics. Age group 0 (under 35), age group 1 (35-49), age group 2 (50-60), age group 3 (over 60). Disease 
categories described below. (b) Coronary samples colored according to derived coronary artery branch. Violin 
plots show overall distribution per category. (c) Coronary samples colored by disease category. Category 1: 
processed segment has no evidence of atherosclerosis; category 2: processed segment has no evidence of 
atherosclerosis but the patient has atherosclerosis; category 3: the processed segment is atherosclerotic.
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Supplementary Figure 4. (a) Normalized regulatory potential of long ATAC peaks (>10 kb) that are annotated 
as super enhancers (SE) from human coronary artery smooth muscle cell (HCASMC) enhancer histone 
modification H3K27ac, as detected using SICER. For the boxplot the centerline, bounds of box, top line and 
bottom line represent the median, 25th to 75th percentile range, 25th percentile - 1.5*interquartile range (IQR) 
and 75th percentile + 1.5*IQR, respectively. Number of cell type marker genes in the boxes (n):  SMC:785; 
Fibroblast:477; Endothelial:499; Macrophage:1571; Mast:561; Pericyte:95; Plasma:1024; T/NK: 1138. (b) 
UCSC browser screenshot showing two fine-mapped CAD GWAS SNPs (rs2820315 and rs2819348) at the 
LMOD1 locus overlapping super enhancers (grey boxes) identified from H3K27ac ChIP-seq in HCASMC. 
Individual coronary artery cell type specific chromatin accessibility tracks are also shown below.  	   
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BMP1 eQTL rs73551705
Artery - aorta  

P = 4.6E-19

b
P = 1.1E-8

MRAS eQTL rs13324341
Artery - coronary  

c dMEF2D eQTL rs4450010
Artery - tibial  

P = 1.9E-27

Supplementary Figure 5. Chromatin acccessibility QTL quality control and top CAD replicated eQTLs. (a) 
Quantile-quantile (qq) plots of observed lead caQTL q values (log10) from RASQUAL against the permuted 
lead caQTL q values (log10) obtained using the ‘-t’ option in RASQUAL. (b-d) eQTL violin plots for top CAD 
caQTL variants in GTEx artery tissues. In GTEx (v8) there are n=584 samples with donor genotypes for tibial 
artery, n=387 for aorta, and n=213 for coronary artery. Number of points for each genotype are shown in 
parentheses. Boxplot within the violin plot includes median (white line) and IQR, with the upper (75%) and 
lower (25%) quartiles shown. P-valules shown are nominal p-values determined from FasQTL based linear 
regression analysis (by GTEx) by testing genome-wide association of genotype with quantile normalized gene 
expression levels.  
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Supplementary Figure 6. (a) Single-cell RNA-seq Seurat v4 based analysis of human coronary artery 
atherosclerosis dataset (n=4) from Wirka et al. (Nat Med 2019). Cell type labels are based on those provided 
from the original manuscript. Feature UMAP plots for PRDM16 and TBX2 depict predominant expression in 
SMC and pericytes, with evidence of PRDM16 expression in endothelial cells (EC). (b) Single-cell RNA-seq 
Seurat v4 based analysis of mouse atherosclerotic brachiocephalic artery (BCA) and ascending aorta 
samples from SMC lineage traced Ldlr knockout models from Pan et al. Circulation 2020. Feature UMAP plots 
for Prdm16 and Tbx2 depict predominant Prdm16 and Tbx2 expression in SMC populations, with evidence of 
Prdm16 expression in EC and some macrophages. 
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Supplementary Figure 7. Power analysis results for cell type identification, differential accessibility, and 
caQTL. (a) SCOPIT v1.1.4 based power curve showing the probability of detecting at least 50 cells of the 
rarest cell type in coronary artery based on our snATAC data (Mast cell at a frequency of 0.07), assuming 
alpha =0.05. 99% probability of detection is achieved from a minimum of 9,129 total cells, as shown by the 
intersecting orange lines. (b) Two-sample t-test based power curve, showing the probability of detecting 
differential gene scores in smooth muscle cells (SMC) versus modulated SMC (fibromyocytes) as a function of 
mean sample sizes (calculated from the required sample sizes for all differential genes; see Methods) (c) 
Single-cell caQTL power analysis based on PowerEQTL v0.3.4, assuming a standard linear mixed effects 
model, alpha=0.05, nTests = 250,000 overlapping SNPs, minimum effect size=0.3, # cells = 670 (mean SMC/
sample). A minimum of 40 samples is required to achieve 90% power to detect caQTL variants at ~5% minor 
allele frequency (MAF).  

Cell type identification power analysis - SCOPIT v1.1.4 

Two-sample t-test power analysis - 
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