SUPPLEMENTARY MATERIALS & METHODS, & DATA

Hematopoietic Stem Cell-Derived Adipocytes Modulates Adipose Tissue Cellularity, Leptin Production, and Insulin Responsiveness in Mice.

Gavin, Sullivan, Maltzahn...Klemm

Supplementary Table 1: List of conventional PCR primers and sequences.

Primer Name	Sequence (3' -> 5')	Description
	CTC TGC TGC CTC CTG GCT	
oIMR7318	ТСТ	mT/mG genotyping (common)
	CGA GGC GGA TCA CAA GCA	
oIMR7319	ATA	mT/mG genotyping (WT R)
oIMR7320	TCA ATG GGC GGG GGT CGT T	mT/mG genotyping (WT F)
	GCG GTC TGG CAG TAA AAA	
oIMR1084	CTA TC	cre transgene forward
	GTG AAA CAG CAT TGC TGT	
oIMR1085	CAC TT	cre transgene reverse
	CTA GGC CAC AGA ATT GAA	
oIMR7338	AGA TCT	internal positive control forward
	GTA GGT GGA AAT TCT AGC	
oIMR7339	ATC ATC C	internal positive control reverse
	CCA AAG TCG CTC TGA GTT	
13840	GTT ATC	DTA wild-type forward
13841	GAG CGG GAG AAA TGG ATA TG	DTA wild-type reverse
12211	CGA CCT GCA GGT CCT CG	DTA mutant forward
	CTC GAG TTT GTC CAA TTA TGT	
8824	CAC	DTA mutant reverse

Supplementary Table 2: List of quantitative real-time PCR assays.

Gene	Vendor	Assay Identifier
Actb	Qiagen	QT01136772
Adipoq	Integrated DNA Technologies	Mm.PT.58.9719546
B2m	Integrated DNA Technologies	Mm.PT.39a.22214835
B2m	Thermo Fisher Scientific	Mm00437762_m1
EGFP	Thermo Fisher Scientific	Mr04329676_mr
Gapdh	Qiagen	QT01658692
Pdk4	Qiagen	QT00157248

Supplementary Table 3: Flow cytometry antibodies and fluorophore conjugates

Antibody	Fluorophore	Vendor	Catalog
CD11b	PE/Cy7	BioLegend	cat no. 101215
CD45	APC/Cy7	BioLegend	cat no. 103115
CD29	PE/Cy5	BioLegend	cat no. 102219
CD140a (Pdgfrα)	APC	BioLegend	cat no. 135907
Sca-1	AF700	BioLegend	cat no. 108141
B220	PE/Cy5	BioLegend	cat no. 103209
Ly6G/Ly6C (Gr-1)	PE/Cy5	BioLegend	cat no. 108409
Sca-1	BV650	BioLegend	cat no. 108143
CD170 (Siglec-F)	APC	BioLegend	cat no. 155507
cKit	PE	BD Bioscience	Cat no.553869
mouse FcX	-	BioLegend	cat no. 101319
Compensation beads	-	eBiosciences	cat no. 01-1111-42

Supplementary Table 4: List of key resources and reagents.

Reagent Type	Description	Vendor	Identifiers
Antibody-linked	Lineage Cell	Miltenyi Biotech	Cat. No. 130-
magnetic beads	Depletion Kit, mouse		090-858
Biological molecule	Fibrinogen	Sigma Aldrich	cat no. F8630
Biological molecule	Thrombin	Sigma Aldrich	cat no. T9549
		Enzyme	
		Research	
Biological molecule	Bovine plasminogen	Laboratories	cat no. BPg
Biological molecule	Urokinase	Sigma Aldrich	cat no. U4010
	Dulbeco's modified		cat no. 10-013-
Cell culture reagent	eagle medium	MediaTech	CV
Cell culture reagent	Fetal bovine serum	GeminiBio	cat no. A57H74L
	MesenCult Basal	StemCell	
Cell culture reagent	mouse media	Technologies	cat no. 05501
	Stem Cell Stimulatory	StemCell	
Cell culture reagent	Supplement	Technologies	cat no. 05502
Cell Separation			cat no. 130-042-
Column	LD Columns	Miltenyi Biotech	901
		Thermo Fisher	
Chemical compound	DAPI	Scientific	cat no. D1306
		Electron	
		Microscopy	
Chemical compound	Paraformaldehyde	Sciences	cat. RT 15710-S
	HCS LipidTOX Deep		
	Red Neutral Lipid	Thermo Fisher	
Chemical compound	Stain	Scientific	cat no. H34477
Chemical compound	Oil Red O	Sigma Aldrich	cat no. 00625
Commercial kit	RNeasy Mini Kit	Qiagen	cat no. 740104
Commercial kit	RED Extract-n-amp	Sigma Aldrich	cat no. R4775
			cat no.
Commercial Kit	Triglyceride Reagent	Pointe Scientific	T7532120
			cat no. T7531-
Commercial Kit	Triglyceride Standard	Pointe Scientific	STD
			cat no. NEFA-
Commercial Kit	NEFA assay	WAKO Chemicals	HR(2)
	Adipocyte chamber	Nexcelom	cat no. CHT4-
Consumable	slides	Bioscience	PD300-002
			cat no. 06-
Consumable	Glucose test strips	McKesson	R3051P-05
Genetic reagent			
sample (M.		Jackson	
musculus)	C57BL/6J	Laboratory	stock no. 000664

Genetic reagent			
sample (M.		Jackson	
musculus)	ROSA ^{mT/mG}	Laboratory	stock no. 007676
Genetic reagent			
sample (M.		Jackson	
musculus)	ROSADTA	Laboratory	stock no. 009669
Genetic reagent			
sample (<i>M.</i>		Jackson	
musculus)	AdipoQ-cre	Laboratory	stock no. 010803
Instrument	Cell Sorter	Beckman Coulter	MoFlo XDP70
	Fluorescent		
Instrument	Microscope	Nikon	TE2000-U
Instrument	Color Camera	Nikon	DS-Fi2
	Black & White		
Instrument	Camera	Nikon	DS-QiMc
Instrument	Camera Control Unit	Nikon	DS-U3
		Nexcelom	Cellometer
Instrument	Imaging cytometer	Bioscience	Vision CBA
	Quantitative magnetic		
Instrument	resonance imager	EchoMRI	EchoMRI-900
			True METRIX
Instrument	Blood glucometer	McKesson	PRO
	Small animal indirect	Columbus	Oxymax -
Instrument	calorimeter	Instruments	CLAMS
Software	Prism	GraphPad	Ver. 9.2.1
Software	NIS Elements-AR	Nikon	Ver. 4.3.0
		Nexcelom	
Software	Cellometer Vision	Bioscience	Ver. 3.0.0.9

Supplementary Figure 1. Flow cytometry gating scheme for the isolation of mouse bone marrow HSCs. A) Small debris was removed from the cell population by a combination of forward scatter (FSC) and side scatter (SSC) gating. B) Single cells are isolated from clusters of cells by SSC Height versus SSC Width gating. C) Cells expressing the mTomato reporter gene but lacking mature hematopoietic Lin(eage) markers were separated from Lin^{POS} and mTomato^{NEG} populations. D. Lin^{NEG} cells expressing both Sca-1 and PDGFR α were isolated as murine hematopoietic stem cells (HSCs). The mTomato marker was included in the analysis to ensure that transplanted HSCs and their HSCDA progeny could be identified based on mTomato or mGFP expression, respectively.

Supplementary Figure 2. Flow cytometry gating scheme for the isolation and quantitation of HSCDAs. A) Small debris was removed from the cell population by a combination of forward scatter (FSC) and side scatter (SSC) gating. B) Single cells are isolated from clusters of cells by SSC Height versus SSC Width gating. C) Live cells were identified by their lack of DAPI fluorescence, and high lipid content was confirmed by staining with LipidTOX. D) Finally, HSCDAs were identified by their GFP fluorescence from the autofluorescent conventional adipocyte population.

Supplementary Figure 3. GFP^{POS} **HSCDAs are present in Competent** mice, but not in Ablated mice. A) Representative fluorescence microscope images shows the presence of GFPexpressing adipocytes among nonfluorescent cells in free-floating adipocytes from Competent mice. GFP^{POS} adipocytes were not routinely observed in Ablated animals. B) Imaging flow cytometry confirmed the presence of unilocular lipid-containing (LipidTOX^{POS}) cells expressing GFP under the control of the adiponectin gene promoter (AdipoQ) or GFP-deficient wild type cells in Competent mice.

Supplementary Figure 4. AdipoSoft/FIJI images of adipocyte sizing. Representative phase contrast images of Competent and Ablated adipose tissue sections were acquired at 4X magnification Unprocessed .tiff image files were processed using the Adiposoft plug-in with FIJI to obtain adipocyte morphology.

Supplementary Figure 5. Flow cytometry gating scheme for the isolation of HSCDA progenitors and conventional mesenchymal adipocyte progenitors. A)Small debris was removed from the cell population by a combination of forward scatter (FSC) and side scatter (SSC) gating. B) Single cells are isolated from clusters of cells by SSC Height versus SSC Width gating. C) Hematopoietic cells (green peak) expressing either Lin(eage) surface markers or CD45 were separated from mesenchymal cells (red peak). D) The hematopoietic population from (C) was found to consist primarily (>95%) of CD45^{POS}/CD11b^{POS} myeloid cells. E. A small portion of the stromal myeloid cells expressed the mesenchymal progenitors markers CD29 and PDGFR α , and were designated HSCDA progenitors. E) Most of the mesenchymal cells in (C) expressed CD29, with a substantial portion also expressing PDGFR α . These cells were designated mesenchymal adipocyte progenitors.

Supplementary Figure 6. HSCDA ablation does not elicit lipid deposition in liver or skeletal muscle. Liver and gastrocnemius muscle were harvested from Competent and Ablated mice and frozen in OTC. Five um sections were stained with Oil Red O solution for 10 min, briefly rinsed with 70% isopropanol then washed extensively in water. Representative Phase contrast and brightfield images are shown.

Supplementary Figure 7. Crown-like structures in the gonadal and subcutaneous (SubQ) adipose tissue of Competent and Ablated mice. Gonadal and subcutaneous adipose tissue from Competent and Abated mice was fixed, paraffin-embedded and sectioned. Deparaffinized and hydrated sections were stained overnight with antibodies to the mouse macrophage marker, CD68 and counterstained with an Alexa 555-conjugated secondary antibody. Representative phase contrast images show adipose tissue structure. Fluorescent images show DAPI-stained nuclei (blue), CD68 (red) and merged areas in magenta. All images 10x.

Supplementary Figure 8. Daily changes in energy balance and energy intake in Competent and Ablated mice. Surgery-naïve (thin black borders) or ovariectomized (OVX, thick red borders) Competent (black and green crosshatched) and Ablated (solid black) mice were housed individually in calorimetry chambers and acclimated for 72 hours. Energy balance and energy intake were then measured over a period of 96 hours. These parameters were relatively constant over the first 72 hours of the measurement period for surgery-naive Competent mice or for both OVX cohorts. Energy balance declined on day 4 for the surgery-naïve Competent animals.