

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Incidence of Hospitalized Acute Lower Respiratory Tract Disease Including Pneumonia and Lower Respiratory Tract Infection in Bristol, England, 2019

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-057464
Article Type:	Original research
Date Submitted by the Author:	18-Sep-2021
Complete List of Authors:	Hyams, Catherine; University of Bristol, Academic Respiratory Unit; University of Bristol, School of Population Health Sciences Begier, Beth; Pfizer Inc Garcia Gonzalez, Maria; University of Bristol; Southmead Hospital, Academic Respiratory Unit Southern, Jo; Pfizer Ltd Campling, James; Pfizer Ltd Gray, Sharon; Pfizer Inc Oliver, Jennifer; University of Bristol, Schools of Cellular and Molecular Medicine and Population Health Sciences Gessner, Bradford; Pfizer Inc Finn, Adam; University of Bristol, Schools of Cellular and Molecular Medicine and Population Health Sciences
Keywords:	Heart failure < CARDIOLOGY, Respiratory infections < THORACIC MEDICINE, Epidemiology < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Title: Incidence of Hospitalized Acute Lower Respiratory Tract Disease Including Pneumonia and

Lower Respiratory Tract Infection in Bristol, England, 2019

Authors: Catherine Hyams^{1,2,3}, Elizabeth Begier⁴, Maria Garcia Gonzalez^{1,2}, Jo Southern⁵, James Campling⁵, Sharon Gray⁴, Jennifer Oliver¹, Bradford D. Gessner⁴, Adam Finn¹

Affiliations:

¹ Bristol Vaccine Centre, Schools of Cellular and Molecular Medicine and Population Health Sciences, University of Bristol, Bristol, BS2 8AE, United Kingdom

² Academic Respiratory Unit, Learning and Research Building, Southmead Hospital, Bristol, UK, BS10 5NB

³ Acute Medical Unit, Southmead Hospital, Bristol, UK, BS10 5NB

⁴ Vaccines Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA

⁵ Vaccines Medical Affairs, Pfizer Ltd, Tadworth, UK, KT20 7NS

Corresponding author:	Catherine Hyams, MBBS BSc(Hons) PhD Population Health Sciences, University of Bristol, Bristol, BS2 8AE, United Kingdom catherine.hyams@nbt.nhs.uk Catherine.hyams@bristol.ac.uk
Alternate author:	Maria Garcia Gonzalez
	qa18884@bristol.ac.uk
Running Title:	Incidence of acute lower respiratory tract disease in adults
Keywords:	Pneumonia, respiratory infection, lower respiratory tract infection, heart
	failure
Funding:	CH was funded by the National Institute for Health Research (NIHR) [NIHR
	Academic Clinical Fellowship (ACF-2015-25-002]. The views expressed are
	those of the author(s) and not necessarily those of the NIHR or the
	Department of Health and Social Care. The remainder of the study funding
	was from Pfizer, Inc (WI255886-1).

2		
3 4	Competing Interests:	EB, JS, JC, SG, and BG are full time employees of Pfizer Vaccines and hold
5		
6		stock or stock options. CH is Principal Investigator of the Avon CAP study
7		
8		which is an investigator-led University of Bristol study funded by Pfizer and
9		
10		has previously received support from the NIHR in an Academic Clinical
11		
12 13		Fellowship. AF is a member of the Joint Committee on Vaccination and
14		
15		Immunization (JCVI) and chair of the World Health Organization European
16		
17		Technical Advisory Group of Experts on Immunization (ETAGE) committee. In
18		
19		addition to receiving funding from Pfizer as Chief Investigator of this study,
20		
21 22		he leads another project investigating transmission of respiratory bacteria in
22		
24		families jointly funded by Pfizer and the Gates Foundation. The other
25		
26		authors have no relevant conflicts of interest to declare.
27		

Word count:

2997/4000

Summary (38/40 words): Using both retrospective and prospective methodologies, we found a high annual incidence of acute lower respiratory disease (>1700 per 100000; 1.7%) in and around Bristol, UK: pneumonia (~0.6%), lower respiratory tract infection without pneumonia (>0.7%), and heart failure (>0.3%).

Author Contributions: CH, EB, MGG, JS, BDG and AF generated the research questions and analysis plan CH, EB, MGG, JS, JC, SG and BDG undertook and contributed to the data analysis. AF oversaw the research and data collection which was undertaken by CH and MGG. All authors contributed to the preparation of the manuscript.

1 Abstract (278/300):

To determine the disease burden of aLRTD and its subsets (pneumonia, lower respiratory tract

4 infection [LRTI], heart failure) in hospitalized adults in Bristol, UK.

5 Setting

- 6 Single-centre, secondary care hospital, Bristol UK
- 7 Design

8 We estimated aLRTD hospitalizations incidence in adults (≥18 years) in Bristol, UK using two 9 approaches. First, retrospective ICD-10 code analysis (first five positions/hospitalization) identified 10 aLRTD events over a 12-month period (March2018–Feb2019). Secondly, during a 21-day prospective 11 review (19Aug–9Sept2019), aLRTD admissions were identified, categorized by diagnosis, and 12 subsequently annualized. Hospital catchment denominators were calculated using linked general 13 practice and hospitalization data, with each practice's denominator contribution calculated based on 14 practice population and percent of the practices' hospitalizations admitted to the study hospital.

15 Participants

Prospective review: 1322 adults screened; 410 identified with aLRTD. Retrospective review: 7727 adult
admissions.

18 Primary and Secondary outcome measures

19 The incidence of aLRTD and its subsets in the adult population of Southmead Hospital, Bristol UK.

20 Results

Based on ICD-10 code analysis, annual incidences per 100000 population were: aLRTD, 1901;
 pneumonia, 591; LRTI, 739; heart failure, 402. aLRTD incidence was highest among those ≥65-years:
 65–74 (3684 per 100000 adults), 75–84 (6962 per 100000 adults), and ≥85 (11430 per 100000 adults).

BMJ Open

3 4	24	During the prospective review, 410/1322 (31%) hospitalized adults had aLRTD signs/symptoms, and
5 6 7	25	annualized incidences closely replicated retrospective analysis results.
8 9 10	26	Conclusions
11 12	27	aLRTD disease burden was high, increasing sharply with age. aLRTD incidence is probably higher than
13 14	28	estimated previously due to criteria specifying respiratory-specific symptoms or radiological change,
15 16 17	29	usage of only the first diagnosis code, and mismatch between case count sources and population
18 19	30	denominators. This may have significant consequences for healthcare planning, including usage of
20 21	31	current and future vaccinations against respiratory infection.
22 23	32	
24 25	33	
26		
27 28	34	Strengths and Limitations of This Study
29 30	35	• We used two analytical methods at the same site over a comparable period, to calculate
31 32	36	incidence using both prospective and retrospective approaches.
33 34	37	• The case burden of aLRTD and its subgroups was pre-defined and included patients with
35 36 37	38	atypical presentations
38 39	39	• We calculated incidence using a denominator derived from GP records, providing increased
40 41	40	accuracy compared to population calculations based on census data.
42 43	41	• This was a single-center study, with a predominantly Caucasian cohort; therefore, the findings
44 45 46	42	might not be generalizable to other populations.
40 47 48	43	• The ICD-10 coding data analysis was limited to codes within the first five positions, and
49 50	44	therefore may have excluded some cases where other diagnoses were placed higher in the
51 52 53	45	diagnostic coding hierarchy.
54 55	46	
56 57		
58		
59 60		

47 Introduction

Acute lower respiratory tract disease (aLRTD) encompasses pneumonia, lower respiratory tract infection (LRTI), acute bronchitis, exacerbation of underlying respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD), and acute heart failure (HF) events resulting in respiratory symptoms (e.g. breathlessness). Before the COVID-19 pandemic, European healthcare costs for pneumonia alone were estimated at €10 billion annually, including €5.7 billion for inpatient care. [1] Pneumonia incidence in Europe varies by country and intra-country region, age, socioeconomic status, and gender; [2-4, 7] however, in all studies pneumonia incidence increases sharply with age. [3] Pneumonia affects an estimated 0.5% to 1% of UK adults each year [5, 6]. Overall LRTI incidence is considerably higher with ~15% of UK adults aged \geq 65 years experiencing an event each year. [7]

However, aLRTD incidence may be considerably higher than previously reported, given that published literature has documented several reasons why previous estimates may have been erroneously low. Estimates of aLRTD based on pneumonia defined as radiologically demonstrated alveolar infiltrates, may underestimate true disease burden as chest radiography (CXR) is an imperfect gold-standard. Immunosuppressed, elderly or dehydrated patients are likely to be under-represented if respiratory infection is defined by radiologically demonstrated changes. [8, 9] Microbiological investigations for pneumonia are undertaken variably and identify a causative pathogen in 50% of cases at most [10, 11]; hence, the disease is probably under-reported when confirmed microbiological diagnosis is required. Furthermore, Respiratory Syncytial Virus (RSV) infection has recently been recognized as an important respiratory pathogen later in life, [16] with severe disease occurring in patient groups in whom the diagnosis is likely to be under-recognized (e.g. the elderly or those with underlying cardiac conditions). [17] Studies of clinical coding data are retrospective and subject to recognized limitations associated with this methodology. [12, 13] Older patients with pneumonia often have atypical Page 7 of 31

1 2

BMJ Open

3 4	72
5 6	73
7 8	74
9 10 11	75
12 13	76
14 15 16	77
17 18 19	78
20 21	79
22 23 24	80
25 26	81
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	82
56 57 58 59	

60

72 presenting signs and symptoms, which may lead to missed or incorrect admission diagnoses. [14] 73 Pneumonia may occur secondary to, or be an underlying cause of, the main presenting complaint, 74 particularly in patients with cerebrovascular accidents (CVA), heart failure (HF), COPD exacerbations 75 or altered consciousness levels. [15] In these scenarios, pneumonia may not be the primary 76 hospitalization diagnosis code and may not even be coded as an associated diagnosis.

78 Given the paucity of data supporting accurate aLRTD incidence rates and its disease subsets, we 79 undertook to assess aLRTD incidence by two approaches (retrospective and prospective) in Bristol, rden of h. 80 UK, seeking to determine the disease burden of hospitalized aLRTD and its subgroups more accurately.

2		
3 4	83	Methods
5 6	84	Study Design
7 8 9	85	This study was conducted at a large secondary care institution in UK (North Bristol NHS Trust) with
10 11	86	specialist Respiratory Services (interstitial lung disease, pleural disease). Two approaches were
12 13	87	undertaken to estimate aLRTD incidence: (1) "retrospective analysis" of aLRTD International
14 15 16	88	Classification of Diseases Tenth Revision (ICD-10) diagnostic codes for an entire year; and, (2) 21-day
17 18	89	observational "prospective review" of aLRTD hospital admissions.
19 20 21	90	Ethics
22 23 24	91	This study was approved by North Bristol NHS Trust Research Audit Ethics Committee (CA52218).
25 26 27	92	Patient and Public Involvement
28 29 30	93	No patient involved.
31 32 33	94	Retrospective Analysis
34 35	95	For the retrospective analysis, all adult inpatient admissions (≥18 years) to the study hospital during
36 37 38 39 40 41 42	96	March 2018–February 2019 with aLRTD ICD-10 diagnostic codes (Supplementary data 1) in any of the
	97	first 5 positions were identified and categorized into aLRTD subgroups: pneumonia, LRTI, other LRTD,
	98	and HF. A mutually exclusive hierarchy was used (pneumonia, LRTI, then other LRTD) although HF
43 44 45	99	diagnoses could co-occur with other categories. "Other LRTD" included acute respiratory events that
46 47	100	could not definitively be placed in another category.
48 49 50	101	Prospective Review
51 52	102	Adult patients (≥18 years) resident within Bristol, North Somerset, and South Gloucestershire Clinical
53 54 55	103	Commissioning Group (CCG) referred to the Acute Medical Unit (AMU) at North Bristol NHS Trust
56 57	104	during 19 th August –9 th September 2019 were included. A respiratory physician (CH) reviewed
58 59 60	105	presenting features and investigation results for each admitted patient to determine whether aLRTD

BMJ Open

was present. Further medical record review was undertaken if patients had: new/worsening
breathlessness, cough or sputum production; new or worsening peripheral oedema; pleurisy; clinical
examination findings consistent with respiratory infection or HF; or fever attributable to suspected
respiratory infection. Patients with non-respiratory diagnoses were excluded.

110 Prospective Review Outcome measures

aLRTD was considered confirmed in individuals with: new/worsening respiratory symptoms, with or without fever; sepsis, delirium or raised inflammatory markers attributable to likely respiratory infection in admitting clinical team's opinion; radiological change in keeping with infection (e.g. consolidation); and/or final diagnosis of LRTI, pneumonia or infective exacerbation of a chronic respiratory condition. A pneumonia diagnosis was assigned if radiological changes likely due to infection were described by the reporting radiologist. A LRTI diagnosis was assigned if aLRTD signs and symptoms likely to be due to infection were present without demonstrated radiological change. A HF diagnosis was assigned in presence of: new/worsening breathlessness and bi-basal crepitations, cardiac wheeze or new/worsening bilateral pitting oedema; elevated pro-NT BNP (≥450pg/mL); radiologist-reported radiographic changes consistent with cardiac failure; or a final consultant physician diagnosis of HF, cardiac failure or left-ventricular failure. When present, ≥1 diagnosis was selected.

For both retrospective and prospective studies, pneumonia included both community and healthcare setting acquired cases; although, the prospective review only captured admitting diagnoses and pneumonias occurring later during hospitalization were not included.

126 Incidence calculations

Annual incidence per 100000 persons was calculated for both retrospective and prospective studies.
 Case counts from prospective review were annualized (i.e., case counts by diagnosis and overall were

> divided by the percentage of annual admissions for these diagnosis groups that occurred in this 21-day period in the retrospective analysis).

Incidence Denominators

To calculate appropriate population denominators for incidence calculations, aLRTD hospital admission event data were linked to aggregated GP practice patient registration data within the NHS Bristol, North Somerset, and South Gloucestershire CCG for 2017–2019. Only 4% of patients sought care at North Bristol NHS Trust hospital from outside these local CCGs, despite presence of specialist respiratory services. For GP practices within these same CCGs, the proportion of their aLRTD admissions occurring at North Bristol NHS Trust was multiplied by their patient registration count in 2019 by age group, to get each practice's contribution to the denominator (e.g. if 50% aLRTD admissions were at North Bristol among persons 50-64 years, the practice would contribute half of their patients 50-64 years to the denominator). Further details of this methodology have been e lien described previously. [27]

Statistical analysis

Patient characteristics were tabulated by aLRTD diagnosis. Categorical variables were presented as counts with percentages. Continuous data are presented with means and standard deviations (SD) if normally distributed and medians and interquartile range (IQR) if not normally distributed. Patient groups difference were evaluated using the Friedman test with Wilcoxon signed-rank test.

2		
3 4	149	Results
5 6	150	
7 8	151	Retrospective analysis
9 10 11 12 13 14 15 16 17	152	Over a 12-month period, we identified 7727 hospital admissions for aLRTD: 3005 LRTI admissions,
	153	2402 pneumonia, 1633 HF and 1071 other LRTD (Table 1). aLRTD admissions were lowest in March
	154	and April and highest December through February (Figure 1A), overall and for all aLRTD subgroups
	155	(P<0.05) (Figure 1B-D). Overall, 28.1% (2244) cases were identified as being potentially hospital-
18 19 20	156	acquired infection based on co-occurring ICD-10 code 'Y95 Nosocomial Infection'.
21 22 23	157	
24 25 26	158	Prospective review
27 28 29 30 31 32 33 34 35 36 37 38 39 40	159	Among 1322 eligible adult patients referred to AMU over the 21-day review period (Figure 2), 410
	160	patients had signs or symptoms of aLRTD: 188 (46%) LRTI; 152 (37%) pneumonia, and 77 (19%) HF.
	161	Seven patients had both decompensated HF and a respiratory infection at hospital admission. On
	162	admission, >10% of aLRTD patients did not have respiratory symptoms: 16 (11%) pneumonia, 25 (13%)
	163	LRTI, and 18 (14%) HF (Table 2).
	164	Almost all adults admitted with aLRTD underwent routine biochemistry, hematology, and radiological
41 42 43	165	investigation (99.9%, n=409). In contrast, only 150 (37%) patients with aLRTD had microbiological
43 44 45	166	testing performed: blood cultures (n=149, 36%) and urine cultures (n=143, 35%). Pneumonia patients
46 47	167	more commonly underwent microbiological investigation than LRTI patients (P <0.05) with highest
48 49 50 51 52 53 54	168	disparity in rates of sputum culture, urinary antigens, and respiratory viral PCR (Table 2). All cardiac
	169	failure patients who underwent microbiological investigation had concomitant respiratory infection
	170	(Table 2). Overall, a microbiological diagnosis was found in 11 (3%) cases, highlighting the low
55 56	171	frequency of definitive pathogen identification in aLRTD. Younger patients underwent microbiological
57 58	172	testing more frequently than the elderly for all aLRTD categories (Table 2).
59 60	173	

174 Disease incidence

Retrospective analysis yielded an overall aLRTD incidence of 1901 per 100000. Disease incidence rose with increasing age (Table 3), both overall and for all disease subgroups; incidences per 100000 among adults aged ≥85 years were: 11430 (aLRTD), 6116 (LRTI), 4215 (pneumonia) and 4005 (HF). Overall, 28.1% aLRTD hospitalizations also included an ICD-10 discharge code for 'nosocomial infection', suggesting the aLRTD event or other infection was hospital-acquired. For pneumonia 25.3% had the nosocomial infection code. If all of these were related to the pneumonia diagnosis, an estimated residual 1794 events would have been community-acquired pneumonia (annual incidence 441/100000 adults). Among older age categories, where the incidence of aLRTD was highest, LRTI incidence was similar to pneumonia incidence, with an approximate 1:1 ratio of LRTI to pneumonia cases. However, among adults under age 50 years, there were approximately twice as many LRTI cases observed as pneumonia cases. Incidence calculations using annualized prospective review results were broadly comparable with retrospective analysis of ICD-10 data (Table 3).

Liezonz

2	
3	
4	
5	
6	
7	
/	
8 9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23 24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

188 **Discussion:**

This is the first UK study to assess aLRTD incidence comprehensively. We conducted an analysis of 12-189 190 months of hospital admissions by ICD-10 diagnosis code data and a 21-day prospective review at a 191 large academic hospital in southwest England. With both approaches, we found a high annual 192 incidence of aLRTD (>1700 per 100000; 1.7%), pneumonia (~0.6%), LRTI without pneumonia (>0.7%), 193 and HF (>0.4%). Incidences increased sharply in a non-linear manner as age increased above 65 years 194 for all aLRTD categories. These results suggest rates are probably significantly higher than previous 195 disease estimates from the UK (Table 4) but comparable with many results globally, [18,19] with important consequences for healthcare resources. For example, a recent review highlighted that 196 197 pneumonia incidences ranged from 1000 to 2500 per 100000 (1-2.5%) among persons aged 65-74 198 years in Spain, Germany, France, Japan and the US, which are comparable to the >1250 per 100000 199 (1.3%) reported here. Some of the potential sources of underestimation for other UK incidence studies 200 (Table 4) include: case source and denominator mismatch; use of first position in ICD-code analysis 201 only; inclusion of enrolled subjects in consent-based prospective studies only; requiring specific 202 symptoms and chest x-ray confirmation in order to be classified as pneumonia/aLRTD; and, lastly, the 203 rising incidence of aLRTD.

204

205 Comparison with published literature

206 No studies have reported aLRTD incidence comprehensively in UK hospitalized patients within the last 207 20 years. However, eight publications report incidence of ≥ 1 aLRTD subgroup. Seven publications 208 reported community-acquired pneumonia (CAP) incidence (three from Nottingham, UK). For 209 pneumonia, our incidence estimates were three to four-fold higher than other UK inpatient incidence 210 estimates (Table 4) but comparable to estimates from other countries. [18, 19] Only two UK studies 211 from approximately 20 years ago reported LRTI incidence (one with both CAP and LRTIs; Table 4), and 212 only one provided an inpatient estimate. [25] LRTI incidence was approximately 2-fold lower than that

calculated here, taking into account inclusion of CAP and other LRTI in their estimates. [25] The one
UK study reporting HF incidence had methodological differences (i.e., inclusion of outpatients and
limiting to initial HF diagnosis) and estimates could not be compared. [26] Close examination of the
existing literature methods yielded multiple sources for potential underestimation.

First, for incidence studies that were not countrywide, identifying an appropriate denominator is challenging. Like many other inpatient settings worldwide, UK hospitals' catchment areas for acute treatment are principally driven by geography, but the proportion of any area's residents expected to use the hospital becomes less clear as distance from the hospital increases because catchment areas and populations of different hospitals may overlap. Defining hospital catchment populations based solely on census data cannot account for this variability. Including all geographic areas using the hospital to any extent results in population denominator overestimation and underestimated incidence. Here, we addressed this by calculating population denominators based on hospital utilization behavior from referring General Practices.

Second, other studies used fewer codes in their ICD code analysis: all limited their analyses to events where the diagnostic code was in the first position (Table 4; case definition column), potentially excluding admissions in which pneumonia/LRTI complicated other underlying respiratory diseases, including COPD and asthma. Limiting to first position has been shown to reduce sensitivity for pneumonia events by about 30% (66%–72% sensitive). [20, 21] Conversely, the recent British Thoracic Society (BTS) audit on CAP found ~27% of pneumonia events identified by ICD code (J12-18) had no new CXR infiltrates. [6] Even accounting for this potential over coding practice, our estimates remain well above other published UK estimates.

Third, for other prospective studies, exclusion of events where patients did not consent to
 participation or were not identified by study surveillance processes (often conducted predominately
 during business hours) can introduce underestimation. Further, other prospective pneumonia studies
 specifically required documentation of specific symptoms, radiological findings, and treatments, [22]

BMJ Open

3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21 22	
20 21 22 23	
23 24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
37 38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	

potentially excluding those without these features documented in medical records. In our prospective
review, approximately 11% did not display typical signs and symptoms of pneumonia and could have
been excluded by that requirement. Requiring CXR confirmation has been shown to reduce incidence
estimates for pneumonia, [19] although all pneumonia events in our prospective review were
radiologically confirmed.

Fourth, trends over time may also contribute to our estimates being higher than previous reports. Our
 study's estimates are recent, and rising incidence of pneumonia has been documented in all studies
 that have reported such trends. [22-24]

246 Finally, this study included, in part, hospital-acquired pneumonias (HAP), which were excluded from 247 estimates calculated in some other studies (Table 4). The retrospective analysis may have included more nosocomial infection than the prospective review, as the latter was focused on evaluation of 248 patients at admission for aLRTD and would not have reliably captured events that developed during 249 250 hospitalization. 25.3% pneumonia events included a nosocomial infection code, but this code could 251 relate to any nosocomial infection during that hospitalization. If all these cases were assumed to be hospital-acquired pneumonia, our estimates community-acquired pneumonia incidence would still be 252 253 well above prior UK estimates: 441/100000 (≥ 18 years).

254 While not impacting all-cause aLRTD incidence estimates discussed above, during the prospective 255 review, we found low rates of microbial investigation which prevented us from generating pathogen-256 specific incidence estimates. Only 52% of patients with radiologically-confirmed pneumonia 257 underwent microbiological testing during hospitalization, with even lower rates in other aLRTD 258 subgroups (41% LRTI and 14% HF). Microbiological testing occurred less frequently as age increased, 259 particularly in LRTI patients. It is possible that, because aLRTD hospitalizations are substantially more 260 common among older persons, less etiologic investigation is performed. Furthermore, clinicians may 261 elect to treat elderly patients with a more pragmatic and less invasive approach. Management 262 guidelines do not require specific pathogen identification to inform treatment choice. Presence only

of atypical features on presentation (in this series, 13% LRTI and 11% pneumonia cases) may also reduce the likelihood of timely microbiological testing. Low rates of microbiological testing, and consequently of confirmed microbiological diagnosis, may represent a source of underestimation of pathogen-specific disease incidence in patient groups (i.e., testing bias), particularly in elderly patient groups.

269 Strengths and Limitations of This Study

This study has many strengths. First, this study used two analytical methods at the same site over a comparable period, to calculate incidence using both prospective and retrospective approaches. Second, the case burden of aLRTD and its subgroups was pre-defined and included patients with atypical presentations but with clinical and/or radiological diagnoses, who may otherwise have been excluded from analysis. Additionally, we calculated incidence using a denominator derived from GP records, providing increased accuracy compared to population calculations based on census data.

However, the study also had some limitations. This was a single-center study, with a predominantly Caucasian cohort; therefore, the findings might not be generalizable to other populations. The ICD-10 coding data analysis was limited to codes within the first five positions, and therefore may have excluded some cases where other diagnoses were placed higher in the diagnostic coding hierarchy. Furthermore, we could not determine how many cases of the 28.1% ICD-10 cases also coded with nosocomial infection had hospital-acquired respiratory infection rather than other nosocomial infections.

Although the denominator used to calculate incidence was derived from GP records, this was still an Although the denominator used to calculate incidence was derived from GP records, this was still an estimate as there is no precisely defined denominator hospital catchment. We were unable to exclude patients from outside the local CCGs in the retrospective analysis, due to the way ICD-10 data was obtained. However, these patients were excluded from the prospective review and the incidence

BMJ Open

calculated was comparable, suggesting any effect that patients attending North Bristol NHS Trust from outside the local CCGs have on incidence estimates is minimal. This may be because any effect of travelling or health-seeking behavior is bi-directional: whilst some patients admitted to Southmead hospital were from outside the local area, it is also true that patients with aLRTD within the relevant CCGs would have been admitted to other hospitals. We also acknowledge the 21-day prospective review period was relatively short, not repeated and may not be fully representative of clinical practice and cases throughout the year.

In conclusion, we found similarly high estimates of LRTD incidence using two different approaches. Combining all types of LRTD highlights the high burden for this important and potentially life-threatening disease group. Incidence assessments require close assessments of potential areas of under ascertainment, including unidentified or unenrolled cases in prospective studies, reduced positions or number of ICD-10 codes included for retrospective studies, and population denominator mismatch for all study types. Our prospective review findings highlight the need to consider atypical clinical presentations for pneumonia and the lack of routine microbiological investigation in many aLRTD patients required for pathogen-specific aLRTD incidence calculation. Future research should include a fully prospective assessment of aLRTD incidence with comprehensive diagnostic testing across multiple respiratory seasons, to ensure accurate capture of all aLRTD events, particularly in the elderly. Such research should be undertaken given the high and rising aLRTD burden to enable appropriate healthcare planning and identification of interventions which may reduce disease burden.

) 307

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4	308	Acknowledgements
5 6	309	We would like to acknowledge the assistance of Qi Yan, PhD (Pfizer, Inc.) who provided
7 8 9	310	indispensable medical writing and literature review support for this manuscript and Harvey Walsh
10 11	311	Health who performed the hospital denominator calculation used here. For the denominator
12 13	312	analysis, Hospital Episode Statistics (HES) Data were re-used with the permission of NHS Digital via
14 15 16	313	Harvey Walsh Limited.
17	314	
18 19	315	Data Sharing
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 9 40 41 42 34 45 46 47 48 9 50 152 53 54 55 56 57 89 60	316	No additional data available

2 3	317	Refere	ences
4 5	318	1.	Gibson GJ, Loddenkemper R, Lundback B, Sibille Y. Respiratory health and disease in Europe:
6 7	319	the ne	w European Lung White Book. Eur Respir J 2013; 42(3): 559-63.
8	320	2.	Cilloniz C, Polverino E, Ewig S, et al. Impact of age and comorbidity on cause and outcome in
9 10 11 12	321		community-acquired pneumonia. Chest 2013 ; 144(3): 999-1007.
	322	3.	Torres A, Cilloniz C, Blasi F, et al. Burden of pneumococcal community-acquired pneumonia in
13 14	323		adults across Europe: A literature review. Respir Med 2018; 137: 6-13.
15	324	4.	European Lung White Book. Pneumonia. Available at:
16 17	325		https://www.erswhitebook.org/chapters/acute-lower-respiratory-
18 19	326		infections/pneumonia/#:~:text=pneumonia%20(VAP)
20	327		<u>Incidence,000%20cases%20are%20expected%20annually</u> . Accessed April 25, 2021.
21 22	328	5.	British Lung Foundation. Pneumonia Statistics. Available at:
23 24	329		https://statistics.blf.org.uk/pneumonia. Accessed April 25, 2021.
25	330	6.	Lim W, Lawrence H. British Thoracic Society. National Audit Report: Adult Community
26 27	331		Acquired Pneumonia Audit 2018-2019. National Audit Period: 1 December 2018 – 31 January
28 29	332		2019, 2019 .
30 31	333	7.	Millett ER, Quint JK, Smeeth L, et al. Incidence of community-acquired lower respiratory tract
32	334		infections and pneumonia among older adults in the United Kingdom: a population-based
33 34	335		study. PLoS One 2013 ; 8(9): e75131.
35 36	336	8.	Maughan BC, Asselin N, Carey JL, et al. False-negative chest radiographs in emergency
37	337		department diagnosis of pneumonia. R I Med J (2013) 2014 ; 97(8): 20-3.
38 39	338	9.	Self WH, Courtney DM, McNaughton CD, et al. High discordance of chest x-ray and computed
40 41	339		tomography for detection of pulmonary opacities in ED patients: implications for diagnosing
42	340		pneumonia. Am J Emerg Med 2013 ; 31(2): 401-5.
43 44	341	10.	Cilloniz C, Ewig S, Polverino E, et al. Microbial aetiology of community-acquired pneumonia
45 46	342		and its relation to severity. Thorax 2011 ; 66(4): 340-6.
47	343	11.	Jain S, Self WH, Wunderink RG, Team CES. Community-Acquired Pneumonia Requiring
48 49	344		Hospitalization. N Engl J Med 2015 ; 373(24): 2382.
50 51	345	12.	Mainor AJ, Morden NE, Smith J, et al. ICD-10 Coding Will Challenge Researchers: Caution and
52 53	346		Collaboration may Reduce Measurement Error and Improve Comparability Over Time. Med
54	347		Care 2019 ; 57(7): e42-e6.
55 56	348	13.	Burns EM, Rigby E, Mamidanna R, et al. Systematic review of discharge coding accuracy. J
57 58 59 60	349		Public Health (Oxf) 2012 ; 34(1): 138-48.

Page 20 of 31

BMJ Open

2			
3 4	350	14.	Henig O, Kaye KS. Bacterial Pneumonia in Older Adults. Infect Dis Clin North Am 2017 ; 31(4):
5 6	351		689-713.
7	352	15.	Fine MJ, Smith MA, Carson CA, et al. Prognosis and outcomes of patients with community-
8 9	353		acquired pneumonia. A meta-analysis. JAMA 1996 ; 275(2): 134-41.
10	354	16.	Falsey AR, Walsh EE. Respiratory syncytial virus infection in elderly adults. Drugs Aging 2005;
11 12	355		22(7): 577-87.
13 14	356	17.	Branche AR, Falsey AR. Respiratory syncytial virus infection in older adults: an under-
15	357		recognized problem. Drugs Aging 2015 ; 32(4): 261-9.
16 17	358	18.	Chalmers J, Campling J, Ellsbury G, Hawkey PM, Madhava H, Slack M. Community-acquired
18 19	359		pneumonia in the United Kingdom: a call to action. Pneumonia (Nathan) 2017 ; 9: 15.
20	360	19.	Shi T, Denouel A, Tietjen AK, et al. Global and Regional Burden of Hospital Admissions for
21 22	361		Pneumonia in Older Adults: A Systematic Review and Meta-Analysis. J Infect Dis 2020;
23 24	362		222(Suppl 7): S570-S6.
25	363	20.	van de Garde EM, Oosterheert JJ, Bonten M, et al. International classification of diseases codes
26 27	364		showed modest sensitivity for detecting community-acquired pneumonia. J Clin Epidemiol
28 29	365		2007; 60(8): 834-8.
30	366	21.	Yu O, Nelson JC, Bounds L, Jackson LA. Classification algorithms to improve the accuracy of
31 32	367		identifying patients hospitalized with community-acquired pneumonia using administrative
33 34	368		data. Epidemiology and infection 2011 ; 139(9): 1296-306.
35	369	22.	Pick H, Daniel P, Rodrigo C, et al. Pneumococcal serotype trends, surveillance and risk factors
36 37	370		in UK adult pneumonia, 2013-18. Thorax 2020 ; 75(1): 38-49.
38 39	371	23.	Elston JW, Santaniello-Newton A, Meigh JA, et al. Increasing incidence of invasive
40	372		pneumococcal disease and pneumonia despite improved vaccination uptake: surveillance in
41 42	373		Hull and East Yorkshire, UK, 2002-2009. Epidemiology and infection 2012 ; 140(7): 1252-66.
43 44	374	24.	Thorrington D, Andrews N, Stowe J, Miller E, van Hoek AJ. Elucidating the impact of the
45	375		pneumococcal conjugate vaccine programme on pneumonia, sepsis and otitis media hospital
46 47	376		admissions in England using a composite control. BMC medicine 2018 ; 16(1): 13.
48 49	377	25.	Lovering AM, MacGowan AP, Anderson P, Irwin D. Epidemiology and resource utilization for
50	378		patients hospitalized for lower respiratory tract infection. Clin Microbiol Infect 2001 ; 7(12):
51 52	379		666-70.
53 54	380	26.	Uijl A, Koudstaal S, Direk K, et al. Risk factors for incident heart failure in age- and sex-specific
54 55	381		strata: a population-based cohort using linked electronic health records. European journal of
56 57	382		heart failure 2019 ; 21(10): 1197-206.
58			, , , ,
59 60			

383	27
384	
385	
386	
387	
388	
	384 385 386 387

27. Campling J, Begier E, Vyse A, et al. A novel approach to calculate the local population denominator to calculate disease incidence for hospital admission related health events in England. Abstract for: Public Health Science: A National Conference Dedicated to New Research in UK Public Health. 26 November, 2021.

to per terien ont

Table 1: Demographic Characteristics of Patients admitted with aLRTD for 1 Year ICD-10 code Retrospective Analysis and 21-day Prospective Review Period -

- 2018–2019

Characteristic	Pneumonia		LRTI		Heart Failure		Other LRTD	All LRTD		
Study	Prospective review	Retrospective analysis	Prospective review	Retrospective analysis	Prospective review	Retrospective analysis	Retrospective Review Only	Prospective review	Retrospective analysis	
N	152	2402	188	3005	77	1633	1071	410	7727	
Gender, females	61 (40)	1078 (45)	99 (53)	1482 (49)	39 (51)	731 (45)	489 (46)	194 (47)	3780 (49)	
Age		I			I	I		1		
Median (IQR), y	80 (67-86)	81 (66-88)	70 (46-87)	69 (45-87)	87 (72-90)	87 (70-90)	74 (53-82)	80 (64-88)	81 (65-90)	
18-24	4 (3)	72 (3)	9 (5)	151 (5)	0 (0)	0 (0)	26 (2)	13 (3)	249 (3)	
25-34	2 (2)	48 (2)	12 (6)	183 (6)	0 (0)	3 (0)	33 (3)	14 (3)	267 (3)	
35-44	6 (4)	97 (4)	14 (7)	209 (7)	2 (3)	10 (1)	59 (6)	22 (5)	375 (5)	
45-54	8 (5)	118 (5)	11 (6)	183 (6)	0 (0)	22 (1)	112 (10)	19 (5)	435 (6)	
55-64	18 (12)	293 (12)	19 (10)	305 (10)	8 (10)	158 (10)	210 (20)	45 (11)	966 (13)	
65-74	34 (22)	501 (21)	32 (17)	549 (18)	10 (15)	199 (12)	223 (21)	75 (18)	1472 (19)	
75-84	44 (28)	667 (28)	40 (21)	621 (21)	20 (30)	498 (31)	205 (19)	100 (24)	1991 (26)	
≥85	38 (26)	606 (25)	51 (27)	704 (23)	37 (55)	742 (45)	203 (19)	123 (30)	2255 (29)	

Table 2. Clinical Characteristics and Investigations of Patients admitted with aLRTD over 21-day Prospective Review Period in August-September 2020

Characteristic	Pneumonia n=152 (%)	LRTI n=188 (%)	Heart Failure n=77 (%)	All LRTD n=410 (%)
GP	56 (37)	72 (39)	30 (39)	158 (39)
A&E department	93 (61)	100 (54)	45 (58)	238 (58)
Transfer from another unit	2 (1)	13 (7)	0 (0)	15 (4)
Other	1 (1)	1 (1)	2 (3)	4 (1)
Referral Source				
Typical features ⁺	136 (89)	163 (87)	63 (82)	355 (87)
Atypical features	16 (11)	25 (13)	14 (18)	55 (13)
- collapse/falls	11 (7)	12 (6)	0 (0)	23 (6)
- confusion	0 (0)	7 (4)	4 (5)	10 (2)
- drowsiness	1 (1)	1 (1)	2 (3)	4 (1)
 off legs/generally unwell 	5 (3)	5 (3)	8 (10)	18 (4)
LRTD Signs and symptoms on re	eferral to AMU			
Biochemistry	152 (100)	185 (99)	77 (100)	419 (100)
Haematology	152 (100)	185 (99)	77 (100)	419 (100)
Radiology	152 (100)	185 (99)	77 (100)	419 (100)
Investigations Performed				
Testing by Age Group	<u> </u>			
All patients	79/152 (52)*	77/188 (41)	11/77 (14)	167 (41)
18-24	3/4 (75)	6/9 (66)	0/0 (0)	9/13 (69)
25-34	0/0 (0)	6/12 (50)	0/0 (0)	6/12 (50)
35-44	5/6 (83)	10/14 (71)	2/2 (100)	17/22 (77)
45-54	6/8 (75)	6/11 (55)	0/0 (0)	13/19 (68)
55-64	11/18 (61)	12/19 (63)	5/8 (63)	31/45 (69)
65-74	15/34 (44)	12/32 (38)	1/10 (10)	28/75 (37)
75-84	21/43 (49)	10/40 (25)	2/20 (10)	33/100 (33)
≥85	18/39 (46)	15/51 (19)	1/37 (3)	34/124 (27)
Test performed			4	
Blood culture	79 (52)	70 (37)	5 (6)	150 (37)
Urine culture	66 (43)	77 (41)	11 (14)	150 (37)
Sputum culture	27 (18)*	7 (4)	2 (3)	35 (9)
BinaxNOW [®] Pn UAT ‡	29 (19)*	6 (3)	0 (0)	35 (9)
Respiratory virus PCR	16 (11)*	11 (6)	1 (1)	28 (7)
Pleural fluid culture	3 (2)	0 (0)	1 (1)	4 (1)

A&E, Accident and Emergency department; GP, general practitioner; LRTD, lower respiratory tract disease; LRTI, lower respiratory tract infection; IQR, interquartile range; Pn UAT, pneumococcal urinary antigen test; PCR, polymerase chain reaction.

* *P*<0.05.

Typical symptoms included cough, breathlessness, increased or discolored sputum production, wheeze, pleurisy, peripheral oedema, hemoptysis, reduced exercise tolerance and/or fever.
BinaxNOW Pn UAT was only performed in accordance with NICE/BTS guidelines.

Table 3: Incidence of aLRTD resulting in hospital admission based on prospective and retrospective approaches by age group and condition, North Bristol National Health Service Trust- United Kingdom 2018-2019.

			Age	Groups		
	All Adults	18-49 y	50-64 y	65-74 y	75-84 y	≥85 y
Population in 2018	406481	226920	91534	45705	29487	12835
Retrospective Analysis of	a Year's ICD-10	0 codes				
Annual cases – N (row %)						
All aLRTD	7,727	1,130 (14)	1,103 (14)	1,684 (22)	2,053 (27)	1,757 (23
Pneumonia	2,402	264 (11)	288 (12)	589 (25)	720 (30)	541 (22
LRTI	3,005	576 (19)	410 (14)	572 (19)	662 (22)	785 (26
Other LRTD	1,071	246 (23)	268 (25)	226 (21)	200 (19)	131 (12
Heart Failure	1,633	48 (3)	189 (12)	397 (24)	485 (30)	514 (31
LRTI/Pneumonia Ratio	1.3	2.2	1.4	1.0	0.9	1.5
Incidence (per 100,000)		Ó'				
All aLRTD	1,901	497	1,205	3,684	6,962	13,689
Pneumonia	591	116	315	1,289	2,442	4,215
LRTI	739	254	448	1,252	2,245	6,116
Other LRTD	263	108	293	494	678	1,021
Heart Failure	402	21	206	869	1,645	4,005
21-day Prospective Review	v (annualized)					
Annualized cases – N (row %)						
All aLRTD	7,885	1,038	962	1,692	2,231	1,962
Pneumonia	2,621	224	397	776	690	534
LRTI	3,857	796	531	653	1,061	816
Heart Failure	2,000	51	205	308	641	795
LRTI/Pneumonia Ratio	1.5	3.6	1.3	0.8	1.5	1.5
Incidence (per 100,000)						
All aLRTD	1,940	458	1,050	3,703	7,565	15,283
Pneumonia	645	99	433	1,698	2,339	4,164
LRTI	944	351	580	1,429	3,599	6,360
Heart Failure	492	23	224	673	2,174	6,193

LRTI = lower respiratory tract infection; LRTD = lower respiratory tract disease.

Pneumonia category includes community and healthcare acquired. For retrospective ICD-10 based cohort, the following mutually exclusive hierarchy was used to define pneumonia, LRTI, and other LRTD; heart failure event could overlap with other categories.

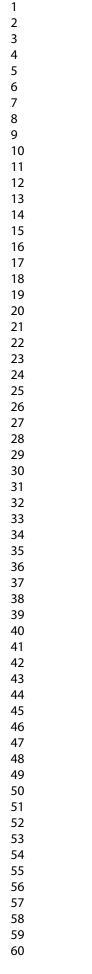

"Other LRTD" contains LRTD events that could not definitively be placed in one of the other respiratory disease categories.

Figure Legends:

Figure 1: aLRTD admissions identified by Retrospective ICD-10 diagnostic code analysis at North Bristol National Health Service Trust— United Kingdom 2018–2019.

Monthly number of patients admitted, based on ICD-10 coding analysis, with (A) all acute Lower Respiratory Tract Disease (aLRTD) (black bars), (B) Pneumonia (slashed bars), (C) Lower Respiratory <text> Tract Infection (LRTI) (white bars), (D) Other LRTD (cross-hash bars), and (E) Heart Failure (grey bars).

Figure 2: Flow diagram of the Prospective Review

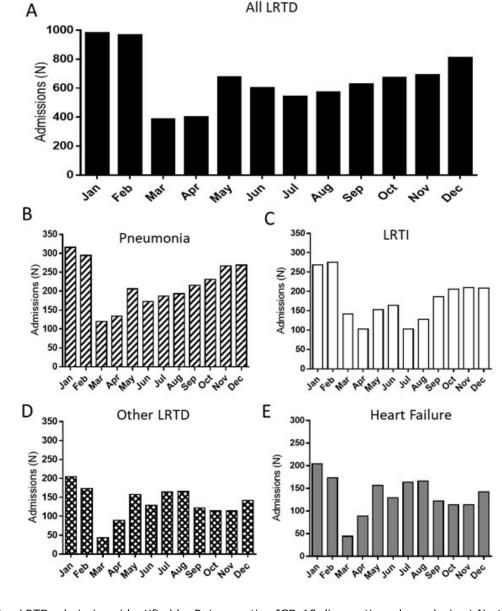


Figure 1: aLRTD admissions identified by Retrospective ICD-10 diagnostic code analysis at North Bristol National Health Service Trust— United Kingdom 2018–2019.

Monthly number of patients admitted, based on ICD-10 coding analysis, with (A) all acute Lower Respiratory Tract Disease (aLRTD) (black bars), (B) Pneumonia (slashed bars), (C) Lower Respiratory Tract Infection (LRTI) (white bars), (D) Other LRTD (cross-hash bars), and (E) Heart Failure (grey bars).

49x60mm (300 x 300 DPI)

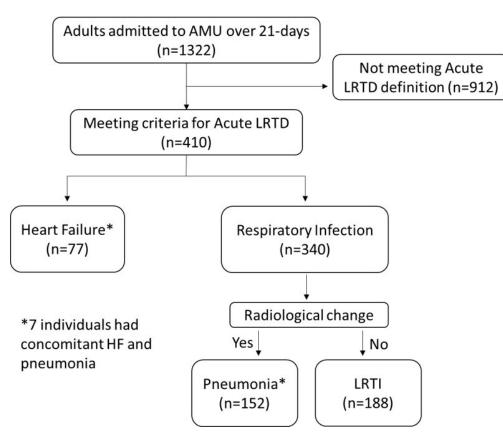


Figure 2: Flow diagram of the Prospective Review

67x55mm (300 x 300 DPI)

Table 4: Literature review of aLRTD incidence in hospitalized adults, United Kingdom

Study	Study Years	Location (Facility)	Event Setting	Age	Case Definition ^b	Key inclusion	Denominator Source	Overall Incidence	Age Breakdown (years)	Incidence per 100,000 by age ^d	Comments
Community -	-acquired Pne	umonia									
Current Study	2018 – 2019	Bristol (Southmead Hospital)	Inpatients only	≥18 y	Clinical signs/symptoms with radiological change in keeping with infection (prospective review portion)	Hospital- acquired pneumonia	Based on number of persons ≥18 years registered in referring GP practices. For practices with	648	18 –49 50 –64	116 315	Retrospective analysis includes 1 st 5 positions
				\frown .	AND Retrospective ICD-10 code analysis (1 st	(HAP) included	split referral patterns, number adjusted for percent of		65 –74	1,289	
					5 positions): J12-J18, J85, and J86		admissions that came to	591	75 –84	2,442	
					6		Southmead.		≥85	4,215	
Elston 2012, Epidemiol	2002 – 2009	Hull and East Yorkshire Hospitals ^c	Inpatients only	≥16 y	ICD-10 codes (1 st position only): J18.0, J18.9, J13X, J18.1, and J15X	HAP included	Mid-year population estimates for Hull (city) and EroY (Surrounding County) from	143 (2002) - 207 (2009)	15 –64	48.8 – 84.1	Fewer ICD-10 codes included than other
Infect					r ro		Office for National Statistics		≥65	543 – 781	analyses; Y95 Nosocomial infection included.
Millet	1997 -	UK	Both	≥65 y	Read and ICD 10 codes; no specified	HAP	Mid-year UK population	799	65 –69	281	Incidence
2013, J Clin Epidemiol	2011		inpatients and outpatients		codes provided. For ICD-10, used first diagnosis code for first episode of hospitalization only.	Excluded	estimates from Office for National Statistics		70 –74	431	estimates converted to per 100,000 person-
							1.		75 –79	694	years
									80 –84 y	1,205	
									85 –89	2,184	
									≥90	4,194	
Pick 2020,	2013 -	Nottingham	Inpatients	≥16 y	Inclusion criteria: one or more	HAP	Mid-year estimates for the	96.3	16 –49	27.3	Only
Thoraxª	2014	(2 large university hospitals)	only		symptom suggestive of LRTI (defined as cough, increasing dyspnea, sputum production and fever), with evidence of	Excluded	Greater Nottingham area from the Office for National Statistics, including local population data		50 –64	80.2	consented/enrolled subjects included in estimates
		licopreaso,			acute infiltrates consistent with		stratified by age group		65 –74	181.3	Required CXR -
					respiratory infection on admission radiography, and treated for a diagnosis of CAP Exclusion criteria:				75 –84	400.6	confirmation but not all LRTI patients had CXR
					hospitalization within 10 days of index				≥85	707.5	Census-derived
	2017 –				admission, a diagnosis of tuberculosis or post-obstructive pneumonia.			158.4	16 –49	29.9	denominator that may not have fully
	2018				· · · · · · · · · · · · ·				50 –64	146.9	matched catchment area.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	2013 -							120.4	65 –74 75 –84 ≥85 	310.4 559.5 1522.6	Required specir symptoms and evidence of treatment and - some CAP ever
	2018										may not have l this informatio documented
Thorrington 2019, BMC	2004 – 2005	England	Inpatients only	≥65 y	ICD 10 codes (1 st position only): J18 (pneumonia of unspecified causative	HAP Included	Mid-year population estimates for England for 2004 to 2015	NA	≥65	829	Incidence is pe 100,000 perso
Med	2014 – 2015				organism)		from Office for National Statistics		≥65	1787	years. Fewer IG 10 codes inclue than other ana
Trotter 2008, EID	1997 – 1998	England	Inpatients only	≥65 y	ICD 10 codes (1 st position only): J12 – J18	HAP Included	Mid-year population estimates for England for 1997 to 2004	NA	65 –74	263	Incidence estimates
							from the Office for National		75 –84	684	converted to
							Statistics		≥85	1599	100,000 popul
	2004 – 2005				49.				65 –74	355	
									75 –84	877	
									≥85	2218	
			•		•			•	•		
	ratory Tract In	1				Pneumonia					1
Lower Respir Current Study	ratory Tract In 2018 – 2019	Bristol (Southmead	Inpatients only	≥18 y	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological	Pneumonia Excludes all Pneumonia	Based on number of persons ≥18 years registered in referring	802	18 –49 50 –64	254 448	
Current	2018 -	Bristol		≥18 y	or elevated pro-NT BNP or radiological change AND	Excludes all	≥18 years registered in referring GP practices. For practices with split referral patterns, number	802		_	
Current	2018 -	Bristol (Southmead		≥18 y	or elevated pro-NT BNP or radiological change	Excludes all	≥18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to	802	50 –64	448	
Current	2018 -	Bristol (Southmead		≥18 y	or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis:	Excludes all	≥18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of		50 –64 65 –74	448 1,252	
Current	2018 -	Bristol (Southmead		≥18 y ≥16 y	or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42, J44, J45, and J46 LRTI episodes from four groups by ICD	Excludes all	≥18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to		50 –64 65 –74 75 –84	448 1,252 2,442	Incidence
Current Study	2018 – 2019	Bristol (Southmead Hospital)	only		or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42, J44, J45, and J46	Excludes all Pneumonia	≥18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to Southmead.	739	50 –64 65 –74 75 –84 ≥85	448 1,252 2,442 6,116	converted to p
Current Study Lovering 2001, Clinical Micro. &	2018 – 2019 1994 –	Bristol (Southmead Hospital) Bristol (Southmead	only		or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42, J44, J45, and J46 LRTI episodes from four groups by ICD 9/10 codes: (1) CAP; (2) chest infection or acute exacerbation in presence of asthma; (3) chest infection or acute	Excludes all Pneumonia Includes Community-	 218 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to Southmead. No information on denominator 	739	50 -64 65 -74 75 -84 ≥85 16 -39	448 1,252 2,442 6,116 151	converted to p 100,000 popul Study involved
Current Study Lovering 2001, Clinical	2018 – 2019 1994 –	Bristol (Southmead Hospital) Bristol (Southmead	only		or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42, J44, J45, and J46 LRTI episodes from four groups by ICD 9/10 codes: (1) CAP; (2) chest infection or acute exacerbation in presence of asthma; (3) chest infection or acute exacerbation in presence of COPD; or (4) bronchitis with no radiological	Excludes all Pneumonia Includes Community- acquired	 218 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to Southmead. No information on denominator 	739	50 -64 65 -74 75 -84 ≥85 16 -39 40 -49	448 1,252 2,442 6,116 151 175	converted to p 100,000 popul Study involved single hospital no mention of
Current Study Lovering 2001, Clinical Micro. &	2018 – 2019 1994 –	Bristol (Southmead Hospital) Bristol (Southmead	only		or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42, J44, J45, and J46 LRTI episodes from four groups by ICD 9/10 codes: (1) CAP; (2) chest infection or acute exacerbation in presence of asthma; (3) chest infection or acute exacerbation in presence of COPD; or (4) bronchitis with no radiological evidence of pneumonia or pre-existing respiratory disease, such as COPD or	Excludes all Pneumonia Includes Community- acquired Pneumonia	 218 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to Southmead. No information on denominator 	739	50 - 64 65 - 74 75 - 84 ≥85 16 - 39 40 - 49 50 - 59 60 - 69 70 - 79	448 1,252 2,442 6,116 151 175 294 1,086 2,135	converted to p 100,000 popul Study involved single hospital
Current Study Lovering 2001, Clinical Micro. &	2018 – 2019 1994 –	Bristol (Southmead Hospital) Bristol (Southmead	only		or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42, J44, J45, and J46 LRTI episodes from four groups by ICD 9/10 codes: (1) CAP; (2) chest infection or acute exacerbation in presence of asthma; (3) chest infection or acute exacerbation in presence of COPD; or (4) bronchitis with no radiological evidence of pneumonia or pre-existing	Excludes all Pneumonia Includes Community- acquired	 218 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to Southmead. No information on denominator 	739	50 - 64 65 - 74 75 - 84 ≥85 16 - 39 40 - 49 50 - 59 60 - 69	448 1,252 2,442 6,116 151 175 294 1,086	converted to pr 100,000 popula Study involved single hospital no mention of source of

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2013, J Clin Epidemiol	2011		inpatients and outpatients		codes provided. For ICD-10, used first diagnosis code for inpatient episode only.	Community- acquired Pneumonia HAP Excluded	estimates from Office for National Statistics. (Patients were not considered at risk for community-acquired LRTI during an LRTI illness-episode, during a HES hospitalization, or for 14 days after any HES hospitalization or CPRD hospital code. This person-time was excluded from denominator.)		7074 7579 8084 8589 ≥90	10,740 12,607 15,137 18,791 26,287	converted to per 100,000 person years
Heart Failure						All or First Episode					
Current	2018-2019	Bristol	Inpatients	≥18 y	Clinical signs/symptoms of heart failure	All	Based on number of persons	328	18 – 49	21	
Study		(Southmead Hospital)	only		or elevated pro-NT BNP or radiological change		≥18 years registered in referring GP practices. For practices with		50 –64	206	
							split referral patterns, number		65 –74	869	
					AND		adjusted for percent of admissions that came to	402	75 –84	1,645	
					Retrospective ICD-10 code analysis: 1110; 1130; 1132; 150		Southmead.		≥85	4,005	
Uijl 2019,	2000 -	UK	Both	≥55 v	4 sources of HER were linked: CPRD	First	Not Reported	Not	55 –64, M	360	Incidence
Eur J Heart Fail	2010		inpatients and outpatients	200 ;	primary care records, HES secondary care hospital charges, Myocardial Ischaemia National Audit Project	episode at 55 years or older		Reported	55 –64, F	190	converted to pe 100,000 person years
			sacpatients		(MINAP) disease registry, and ONS	counted			65 –74, M	1,360	Included first
					national death registry. HES ICD-10				65 –74, F	920	episode of HF
					codes: Heart failure: I110, I130, I132, I260, I50 and I21. Individuals were	1			>75, M	3,440	(inpatient or outpatient) at a
					excluded if they presented a history of HF before their index date in CPRD, HES or MINAP.		~7/.		>75, F	2,800	55 and up, so repeat episodes not included.

^a Only the most recent incidence estimates from the Nottingham CAP study were included.

^b Add text names for all listed ICD codes in this footnote or appendix.

^c Included hospitals were Hull Royal Infirmary, Castle Hill Hospital, Princess Royal Hospital, Scarborough District General Hospital, Bridlington & District

Hospital, York Teaching Hospital, Scunthorpe General Hospital, Goole & District Hospital.

^d For the current study, only age-group estimates from the retrospective analysis were included in this table, but these were closely comparable to the annualized incidence estimates based on the prospective review. See Table 3 for full results.

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	3
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	3
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation	5-6
		being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7-9
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	7-9
		methods of selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	8
		confounders, and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	7-8
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	15-1
Study size	10	Explain how the study size was arrived at	7-8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	8-9
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	NA
		(<i>d</i>) Cohort study—If applicable, explain how loss to follow-up was	NA
		addressed	
		Case-control study—If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable, describe analytical methods taking	
		account of sampling strategy	
			NA

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially	1
-		eligible, examined for eligibility, confirmed eligible, included in the study,	2
		completing follow-up, and analysed	2
		(b) Give reasons for non-participation at each stage	N
		(c) Consider use of a flow diagram	2
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	2
data		information on exposures and potential confounders	2
		(b) Indicate number of participants with missing data for each variable of interest	N
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	N
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	1
			1
			2
			2
		Case-control study-Report numbers in each exposure category, or summary	N
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	N
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	1
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	N
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	N
		meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and	1
		sensitivity analyses	2
			2
Discussion			
Key results	18	Summarise key results with reference to study objectives	1
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	1
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	1
		multiplicity of analyses, results from similar studies, and other relevant evidence	1
Generalisability	21	Discuss the generalisability (external validity) of the study results	1
			1
Other informatio	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	1
		applicable, for the original study on which the present article is based	

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Incidence of Hospitalized Acute Lower Respiratory Tract Disease Including Pneumonia and Lower Respiratory Tract Infection in Bristol, England, 2019

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-057464.R1
Article Type:	Original research
Date Submitted by the Author:	29-Mar-2022
Complete List of Authors:	Hyams, Catherine; University of Bristol, Academic Respiratory Unit; University of Bristol, Bristol Vaccine Centre Begier, Elizabeth; Pfizer Inc Garcia Gonzalez, Maria; University of Bristol; Southmead Hospital, Academic Respiratory Unit Southern, Jo; Pfizer Ltd Campling, James; Pfizer Ltd Gray, Sharon; Pfizer Inc Oliver, Jennifer; University of Bristol, Schools of Cellular and Molecular Medicine and Population Health Sciences Gessner, Bradford; Pfizer Inc Finn, Adam; University of Bristol, Bristol Vaccine Centre
Primary Subject Heading :	Respiratory medicine
Secondary Subject Heading:	Infectious diseases, Epidemiology
Keywords:	Heart failure < CARDIOLOGY, Respiratory infections < THORACIC MEDICINE, Epidemiology < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Title: Incidence of Hospitalized Acute Lower Respiratory Tract Disease Including Pneumonia and

Lower Respiratory Tract Infection in Bristol, England, 2019

Authors: Catherine Hyams^{1,2,3}, Elizabeth Begier⁴, Maria Garcia Gonzalez^{1,2}, Jo Southern⁵, James Campling⁵, Sharon Gray⁴, Jennifer Oliver¹, Bradford D. Gessner⁴, Adam Finn¹

Affiliations:

¹ Bristol Vaccine Centre, Schools of Cellular and Molecular Medicine and Population Health Sciences, University of Bristol, Bristol, BS2 8AE, United Kingdom

² Academic Respiratory Unit, Learning and Research Building, Southmead Hospital, Bristol, UK, BS10 5NB

³ Acute Medical Unit, Southmead Hospital, Bristol, UK, BS10 5NB

⁴ Vaccines Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA

⁵ Vaccines Medical Affairs, Pfizer Ltd, Tadworth, UK, KT20 7NS

Corresponding author:	Catherine Hyams, MBBS BSc(Hons) PhD Population Health Sciences, University of Bristol, Bristol, BS2 8AE, United Kingdom catherine.hyams@nbt.nhs.uk Catherine.hyams@bristol.ac.uk
Alternate author:	Maria Garcia Gonzalez
	qa18884@bristol.ac.uk
Running Title:	Incidence of acute lower respiratory tract disease in adults
Keywords:	Pneumonia, respiratory infection, lower respiratory tract infection, heart
	failure
Funding:	CH was funded by the National Institute for Health Research (NIHR) [NIHR
	Academic Clinical Fellowship (ACF-2015-25-002]. The views expressed are
	those of the author(s) and not necessarily those of the NIHR or the
	Department of Health and Social Care. The remainder of the study funding
	was from Pfizer, Inc (WI255886-1).

2		
3 4	Competing Interests:	EB, JS, JC, SG, and BG are full time employees of Pfizer Vaccines and hold
5		
6		stock or stock options. CH is Principal Investigator of the Avon CAP study
7		
8		which is an investigator-led University of Bristol study funded by Pfizer and
9		
10		has previously received support from the NIHR in an Academic Clinical
11		
12 13		Fellowship. AF is a member of the Joint Committee on Vaccination and
14		
15		Immunization (JCVI) and chair of the World Health Organization European
16		
17		Technical Advisory Group of Experts on Immunization (ETAGE) committee. In
18		
19		addition to receiving funding from Pfizer as Chief Investigator of this study,
20		
21 22		he leads another project investigating transmission of respiratory bacteria in
22		
24		families jointly funded by Pfizer and the Gates Foundation. The other
25		
26		authors have no relevant conflicts of interest to declare.
27		

Word count:

2997/4000

Summary (38/40 words): Using both retrospective and prospective methodologies, we found a high annual incidence of acute lower respiratory disease (>1700 per 100000; 1.7%) in and around Bristol, UK: pneumonia (~0.6%), lower respiratory tract infection without pneumonia (>0.7%), and heart failure (>0.3%).

Author Contributions: CH, EB, MGG, JS, BDG and AF generated the research questions and analysis plan CH, EB, MGG, JS, JC, SG and BDG undertook and contributed to the data analysis. AF oversaw the research and data collection which was undertaken by CH and MGG. All authors contributed to the preparation of the manuscript.

1 Abstract (278/300):

To determine the disease burden of acute lower respiratory tract disease (aLRTD) and its subsets

4 (pneumonia, lower respiratory tract infection [LRTI], heart failure) in hospitalized adults in Bristol, UK.

5 Setting

- 6 Single-centre, secondary care hospital, Bristol UK
- 7 Design

8 We estimated aLRTD hospitalizations incidence in adults (≥18 years) in Bristol, UK using two 9 approaches. First, retrospective ICD-10 code analysis (first five positions/hospitalization) identified 10 aLRTD events over a 12-month period (March2018–Feb2019). Secondly, during a 21-day prospective 11 review (19Aug–9Sept2019), aLRTD admissions were identified, categorized by diagnosis, and 12 subsequently annualized. Hospital catchment denominators were calculated using linked general 13 practice and hospitalization data, with each practice's denominator contribution calculated based on 14 practice population and percent of the practices' hospitalizations admitted to the study hospital.

15 Participants

Prospective review: 1322 adults screened; 410 identified with aLRTD. Retrospective review: 7727 adult
admissions.

18 Primary and Secondary outcome measures

19 The incidence of aLRTD and its subsets in the adult population of Southmead Hospital, Bristol UK.

20 Results

Based on ICD-10 code analysis, annual incidences per 100000 population were: aLRTD, 1901;
 pneumonia, 591; LRTI, 739; heart failure, 402. aLRTD incidence was highest among those ≥65-years:
 65–74 (3684 per 100000 adults), 75–84 (6962 per 100000 adults), and ≥85 (11430 per 100000 adults).

BMJ Open

3 4	24	During the prospective review, 410/1322 (31%) hospitalized adults had aLRTD signs/symptoms, and
5 6 7	25	annualized incidences closely replicated retrospective analysis results.
8 9 10	26	Conclusions
11 12	27	aLRTD disease burden was high, increasing sharply with age. aLRTD incidence is probably higher than
13 14	28	estimated previously due to criteria specifying respiratory-specific symptoms or radiological change,
15 16 17	29	usage of only the first diagnosis code, and mismatch between case count sources and population
17 18 19	30	denominators. This may have significant consequences for healthcare planning, including usage of
20 21	31	current and future vaccinations against respiratory infection.
22 23	32	
24		
25 26	33	
27 28	34	Strengths and Limitations of This Study
29 30	35	• We used two analytical methods at the same site over a comparable period, to calculate
31 32	36	incidence using both prospective and retrospective approaches.
33 34 35	37	• The case burden of aLRTD and its subgroups was pre-defined and included patients with
35 36 37	38	atypical presentations
38 39	39	• We calculated incidence using a denominator derived from GP records, providing increased
40 41	40	accuracy compared to population calculations based on census data.
42 43 44	41	• This was a single-center study, with a predominantly Caucasian cohort; therefore, the findings
45 46	42	might not be generalizable to other populations.
47 48	43	• The ICD-10 coding data analysis was limited to codes within the first five positions, and
49 50	44	therefore may have excluded some cases where other diagnoses were placed higher in the
51 52 53	45	diagnostic coding hierarchy.
54 55	46	
56 57		
58		
59 60		

47 Introduction

Acute lower respiratory tract disease (aLRTD) encompasses pneumonia, non-pneumonic lower respiratory tract infection (NP-LRTI), acute bronchitis, exacerbation of underlying respiratory diseases (including asthma and chronic obstructive pulmonary disease [COPD]), and acute heart failure (HF) events resulting in respiratory symptoms (e.g. breathlessness). Before the COVID-19 pandemic, European healthcare costs for pneumonia alone in adults were estimated at €10 billion annually, including €5.7 billion for inpatient care. [1] Pneumonia incidence in Europe varies by country and intra-country region, age, socioeconomic status, and gender; [2-4] however, in all studies pneumonia incidence in adults increases sharply with age. [3] Pneumonia affects an estimated 0.5% to 1% of UK adults each year [5, 6]. Overall LRTI incidence is considerably higher with ~15% of UK adults aged ≥65 years experiencing an event each year.[7] Whilst HF is not typically clinically included as an acute respiratory illness, HF with respiratory symptoms may be caused by respiratory viral infection, such as respiratory syncytial virus (RSV), either acutely or 3-4 weeks after the primary infection [8, 9].

However, aLRTD incidence may be considerably higher than previously reported, given that published literature has documented several reasons why previous estimates may have been erroneously low [1]. Estimates of aLRTD based on pneumonia defined as radiologically demonstrated alveolar infiltrates, may underestimate true disease burden as chest radiography (CXR) is an imperfect gold-standard. [10, 11] Immunosuppressed, elderly or dehydrated patients are likely to be under-represented if respiratory infection is defined by radiologically demonstrated changes. [10, 11] Microbiological investigations for pneumonia are undertaken variably and identify a causative pathogen in 50% of cases at most [12, 13]; hence, the disease is probably under-reported when confirmed microbiological diagnosis is required. Furthermore, Respiratory Syncytial Virus (RSV) infection has recently been recognized as an important respiratory pathogen later in life, [9] with severe disease occurring in patient groups in whom the diagnosis is likely to be under-recognized (e.g.

BMJ Open

the elderly or those with underlying cardiac conditions). [8] Studies of clinical coding data are retrospective and subject to recognized limitations associated with this methodology [14, 15]. Older patients with pneumonia often have atypical presenting signs and symptoms, which may lead to missed or incorrect admission diagnoses. [16] Pneumonia may occur secondary to, or be an underlying cause of, the main presenting complaint, particularly in patients with cerebrovascular accidents (CVA), HF, COPD exacerbations or altered consciousness levels. [17] In these scenarios, pneumonia may not be the primary hospitalization diagnosis code and may not even be coded as an associated diagnosis.

There are many studies examining the incidence of acute respiratory illness in children; however, data on respiratory illness in adults in the UK is lacking. Given the paucity of data supporting accurate aLRTD incidence rates and its disease subsets in adults, we undertook to assess aLRTD incidence by two approaches (retrospective and prospective) in Bristol, UK, seeking to determine the disease burden of hospitalized aLRTD and its subgroups more accurately.

iez oni

1 2		
3 4	86	Methods
5 6 7	87	Study Design
7 8 9	88	This study was conducted at a large secondary care institution in UK (North Bristol NHS Trust) with
10 11	89	specialist Respiratory Services (interstitial lung disease, pleural disease). Two approaches were
12 13 14	90	undertaken to estimate aLRTD incidence: (1) "retrospective analysis" of aLRTD International
14 15 16	91	Classification of Diseases Tenth Revision (ICD-10) diagnostic codes for an entire year; and, (2) 21-day
17 18	92	observational "prospective review" of aLRTD hospital admissions.
19 20 21	93	Ethics
22 23 24	94	This study was approved by North Bristol NHS Trust Research Audit Ethics Committee (CA52218).
25 26 27	95	Patient and Public Involvement
28 29 30	96	No patient involved.
31 32 33	97	Retrospective Analysis
34 35	98	For the retrospective analysis, all adult inpatient admissions (≥18 years) obtained from Hospital
36 37 38	99	Episode Statistic (HES) to the study hospital during March 2018–February 2019 with aLRTD ICD-10
39 40	100	diagnostic codes (Supplementary data 1) in any of the first 5 positions were identified and categorized
41 42	101	into aLRTD subgroups: pneumonia, NP-LRTI, other LRTD, and HF (Supplementary data 2). A mutually
43 44	102	exclusive hierarchy was used (pneumonia, NP-LRTI, then other LRTD) although HF diagnoses could co-
45 46 47	103	occur with other categories. "Other LRTD" included acute respiratory events that could not definitively
48 49	104	be placed in another category. Only the first 5 ICD-10 codes were available for analysis.
50 51 52	105	Prospective Review
53 54	106	Adult patients (≥18 years) resident within Bristol, North Somerset, and South Gloucestershire Clinical
55 56 57	107	Commissioning Group (CCG) referred to the Acute Medical Unit (AMU) at North Bristol NHS Trust
58 59 60	108	during 19 th August –9 th September 2019 were included in an audit on acute respiratory illness. This

BMJ Open

time period was selected because it was felt to represent a period when there were an average number of adults hospitalised with aLRTD. A respiratory physician (CH) reviewed presenting features and investigation results for each admitted patient to determine whether aLRTD was present. Further medical record review was undertaken if patients had: new/worsening breathlessness, cough or sputum production; new or worsening peripheral oedema; pleurisy; clinical examination findings consistent with respiratory infection or HF; or fever attributable to suspected respiratory infection. Patients with non-respiratory diagnoses were excluded. There were no patient refusals for either approach.

117 Prospective Review Outcome measures

aLRTD was considered confirmed in individuals with: new/worsening respiratory symptoms, with or without fever; sepsis, delirium or raised inflammatory markers attributable to likely respiratory infection in admitting clinical team's opinion; radiological change in keeping with infection (e.g. consolidation); and/or final diagnosis of NP-LRTI, pneumonia or infective exacerbation of a chronic respiratory condition. A pneumonia diagnosis was assigned if radiological changes likely due to infection were described by the reporting radiologist. An NP-LRTI diagnosis was assigned if aLRTD signs and symptoms likely to be due to infection were present without demonstrated radiological change. A HF diagnosis was assigned in presence of: new/worsening breathlessness and bi-basal crepitations, cardiac wheeze or new/worsening bilateral pitting oedema; elevated pro-NT BNP (≥450pg/mL); radiologist-reported radiographic changes consistent with cardiac failure; or a final consultant physician diagnosis of HF, cardiac failure or left-ventricular failure. When present, ≥1 diagnosis was selected.

130 For both retrospective and prospective studies, pneumonia included both community and healthcare
 131 setting acquired cases; although, the prospective review only captured admitting diagnoses and
 132 pneumonias occurring later during hospitalization were not included.

60 133 Incidence calculations

Annual incidence per 100000 persons was calculated for both retrospective and prospective studies.
Case counts from prospective review were annualized (i.e., case counts by diagnosis and overall were
divided by the percentage of annual admissions for these diagnosis groups that occurred in this 21day period in the retrospective analysis).

138 Incidence Denominators

To calculate appropriate population denominators for incidence calculations, aLRTD hospital admission event data were linked to aggregated GP practice patient registration data within the NHS Bristol, North Somerset, and South Gloucestershire CCG for 2017–2019. Only 4% of patients sought care at North Bristol NHS Trust hospital from outside these local CCGs, despite presence of specialist respiratory services. In the UK, GP registration is available free of charge for all, regardless of residential status. For GP practices within these same CCGs, the proportion of their aLRTD admissions occurring at North Bristol NHS Trust was multiplied by their patient registration count in 2019 by age group, to get each practice's contribution to the denominator (e.g. if 50% aLRTD admissions were at North Bristol among persons 50–64 years, the practice would contribute half of their patients 50–64 years to the denominator). Further details of this methodology have been described previously. [18]

150 Statistical analysis

Patient characteristics were tabulated by aLRTD diagnosis. Categorical variables were presented as counts with percentages. Continuous data are presented with means and standard deviations (SD) if normally distributed and medians and interquartile range (IQR) if not normally distributed. Patient groups difference were evaluated using the Friedman test with Wilcoxon signed-rank test.

Results

Retrospective analysis

Prospective review

NP-LRTI, and 18 (14%) HF (Table 2).

1

Over a 12-month period, we identified 7727 hospital admissions for aLRTD: 3005 NP-LRTI admissions,

2402 pneumonia, 1633 HF and 1071 other LRTD (Table 1). aLRTD admissions were lowest in March

and April and highest December through February (Figure 1A), overall and for all aLRTD subgroups

(P<0.05) (Figure 1B-D). Overall, 28.1% (2244) cases were identified as being potentially hospital-

Among 1322 eligible adult patients referred to AMU over the 21-day review period (Figure 2), 410

patients had signs or symptoms of aLRTD: 188 (46%) NP-LRTI; 152 (37%) pneumonia, and 77 (19%) HF.

Seven patients had both decompensated HF and a respiratory infection at hospital admission. On

admission, >10% of aLRTD patients did not have respiratory symptoms: 16 (11%) pneumonia, 25 (13%)

Almost all adults admitted with aLRTD underwent routine biochemistry, hematology, and radiological

investigation (99.9%, n=409). In contrast, only 150 (37%) patients with aLRTD had microbiological

testing performed: blood cultures (n=149, 36%) and urine cultures (n=143, 35%). Pneumonia patients

more commonly underwent microbiological investigation than NP-LRTI patients (P<0.05) with highest

disparity in rates of sputum culture, urinary antigens, and respiratory viral PCR (Table 2). All cardiac

failure patients who underwent microbiological investigation had concomitant respiratory infection

(Table 2). Overall, a microbiological diagnosis was found in 11 (3%) cases, highlighting the low

frequency of definitive pathogen identification in aLRTD. Younger patients underwent microbiological

testing more frequently than the elderly for all aLRTD categories (Table 2).

acquired infection based on co-occurring ICD-10 code 'Y95 Nosocomial Infection'.

2	
3 4	156
5 6	157
7	
8 9	158
10 11	159
12 13	160
14 15	161
16 17 18	162
19 20 21	163
22 23 24	164
25 26	165
27 28	166
29 30 31	167
32 33	168
34 35 36	169
37 38	170
39 40	171
41 42 43	172
43 44 45	173
46 47	174
48 49	175
50 51	176
52 53 54	177
55 56	178
57 58 59 60	179

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

180 Disease incidence

Retrospective analysis yielded an overall aLRTD incidence of 1901 per 100000. Disease incidence rose with increasing age (Table 3), both overall and for all disease subgroups; incidences per 100000 among adults aged ≥85 years were: 11430 (aLRTD), 6116 (NP-LRTI), 4215 (pneumonia) and 4005 (HF). Overall, 28.1% aLRTD hospitalizations also included an ICD-10 discharge code for 'nosocomial infection', suggesting the aLRTD event or other infection was hospital-acquired. For pneumonia 25.3% had the nosocomial infection code. If all of these were related to the pneumonia diagnosis, an estimated residual 1794 events would have been community-acquired pneumonia (annual incidence 441/100000 adults). Among older age categories, where the incidence of aLRTD was highest, NP-LRTI incidence was similar to pneumonia incidence, with an approximate 1:1 ratio of NP-LRTI to pneumonia cases. However, among adults under age 50 years, there were approximately twice as many NP-LRTI cases observed as pneumonia cases. Incidence calculations using annualized prospective review results were broadly comparable with retrospective analysis of ICD-10 data (Table 3).

JICZ ONL

1

2	
3 4	193
5 6	194
7 8	195
9 10	196
10 11 12	197
13 14	198
15 16	
17 18	199
19	200
20 21 22	201
22 23 24	202
25 26	203
27 28	204
29 30	205
31 32	206
33 34 35	207
35 36 37	208
38 39 40	209
41 42 43	210
44 45 46	211
47 48	212
49 50	213
51 52	214
53 54 55	215
55 56 57	216
57 58 59 60	217
00	

193	Discussion:
194	This is the first UK study to assess aLRTD incidence comprehensively. We conducted an analysis of 12-
195	months of hospital admissions by ICD-10 diagnosis code data and a 21-day prospective review at a
196	large academic hospital in southwest England. With both approaches, we found a high annual
197	incidence of aLRTD (>1700 per 100000; 1.7%), pneumonia (~0.6%), NP-LRTI without pneumonia
198	(>0.7%), and HF (>0.4%). Incidences increased sharply in a non-linear manner as age increased above
199	65 years for all aLRTD categories. These results suggest rates are probably significantly higher than
200	previous disease estimates from the UK (Table 4) but comparable with many results globally, [19, 20]
201	with important consequences for healthcare resources. For example, a recent review highlighted that
202	pneumonia incidences ranged from 1000 to 2500 per 100000 (1–2.5%) among persons aged 65–74
203	years in Spain, Germany, France, Japan and the US, which are comparable to the >1250 per 100000
204	(1.3%) reported here. Some of the potential sources of underestimation for other UK incidence studies
205	(Table 4) include: case source and denominator mismatch; use of first position in ICD-code analysis
206	only; inclusion of enrolled subjects in consent-based prospective studies only; requiring specific
207	symptoms and chest x-ray confirmation in order to be classified as pneumonia/aLRTD; and, lastly, the
208	rising incidence of aLRTD.
209	
210	Comparison with published literature
211	No studies have reported aLRTD incidence comprehensively in UK hospitalized patients within the last
212	20 years. However, eight publications report incidence of ≥ 1 aLRTD subgroup. Seven publications
213	reported community-acquired pneumonia (CAP) incidence (three from Nottingham, UK). For
214	pneumonia, our incidence estimates were three to four-fold higher than other UK inpatient incidence

estimates (Table 4) but comparable to estimates from other countries. [19, 20] Only two UK studies

from approximately 20 years ago reported NP-LRTI incidence (one with both CAP and NP-LRTIs; Table

4), and only one provided an inpatient estimate. [21] NP-LRTI incidence was approximately 2-fold

lower than that calculated here, taking into account inclusion of CAP and other NP-LRTI in their
estimates. [21, 22] The one UK study reporting HF incidence had methodological differences (i.e.,
inclusion of outpatients and limiting to initial HF diagnosis) and estimates could not be compared. [23]
Close examination of the existing literature methods yielded multiple sources for potential
underestimation.

First, for incidence studies that were not countrywide, identifying an appropriate denominator is challenging. Like many other inpatient settings worldwide, UK hospitals' catchment areas for acute treatment are principally driven by geography, but the proportion of any area's residents expected to use the hospital becomes less clear as distance from the hospital increases because catchment areas and populations of different hospitals may overlap. Defining hospital catchment populations based solely on census data cannot account for this variability. Including all geographic areas using the hospital to any extent results in population denominator overestimation and underestimated incidence. Here, we addressed this by calculating population denominators based on hospital utilization behavior from referring General Practices.

Second, other studies used fewer codes in their ICD code analysis: all limited their analyses to events where the diagnostic code was in the first position (Table 4; case definition column), potentially excluding admissions in which pneumonia/NP-LRTI complicated other underlying respiratory diseases, including COPD and asthma. Limiting to first position has been shown to reduce sensitivity for pneumonia events by about 30% (66%–72% sensitive). [22, 24] Conversely, the recent British Thoracic Society (BTS) audit on CAP found ~27% of pneumonia events identified by ICD code (J12-18) had no new CXR infiltrates. [6] Even accounting for this potential over coding practice, our estimates remain well above other published UK estimates.

240 Third, for other prospective studies, exclusion of events where patients did not consent to
 241 participation or were not identified by study surveillance processes (often conducted predominately
 242 during business hours) can introduce underestimation. Further, other prospective pneumonia studies

BMJ Open

specifically required documentation of specific symptoms, radiological findings, and treatments, [25]
potentially excluding those without these features documented in medical records. In our prospective
review, approximately 11% did not display typical signs and symptoms of pneumonia and could have
been excluded by that requirement. Requiring CXR confirmation has been shown to reduce incidence
estimates for pneumonia, [20] although all pneumonia events in our prospective review were
radiologically confirmed.

Fourth, trends over time may also contribute to our estimates being higher than previous reports. Our
study's estimates are recent, and rising incidence of pneumonia has been documented in all studies
that have reported such trends. [25-27]

Finally, this study included, in part, hospital-acquired pneumonias (HAP), which were excluded from estimates calculated in some other studies (Table 4). The retrospective analysis may have included more nosocomial infection than the prospective review, as the latter was focused on evaluation of patients at admission for aLRTD and would not have reliably captured events that developed during hospitalization. 25.3% pneumonia events included a nosocomial infection code, but this code could relate to any nosocomial infection during that hospitalization. If all these cases were assumed to be hospital-acquired pneumonia, our estimates community-acquired pneumonia incidence would still be well above prior UK estimates: 441/100000 (≥ 18 years).

While not impacting all-cause aLRTD incidence estimates discussed above, during the prospective review, we found low rates of microbial investigation which prevented us from generating pathogen-specific incidence estimates. Only 52% of patients with radiologically-confirmed pneumonia underwent microbiological testing during hospitalization, with even lower rates in other aLRTD subgroups (41% NP-LRTI and 14% HF). Microbiological testing occurred less frequently as age increased, particularly in NP-LRTI patients. It is possible that, because aLRTD hospitalizations are substantially more common among older persons, less etiologic investigation is performed. Furthermore, clinicians may elect to treat elderly patients with a more pragmatic and less invasive

approach. Management guidelines do not require specific pathogen identification to inform treatment
choice. Presence only of atypical features on presentation (in this series, 13% NP-LRTI and 11%
pneumonia cases) may also reduce the likelihood of timely microbiological testing. Low rates of
microbiological testing, and consequently of confirmed microbiological diagnosis, may represent a
source of underestimation of pathogen-specific disease incidence in patient groups (i.e., testing bias),
particularly in elderly patient groups.

275 Strengths and Limitations of This Study

This study has many strengths. First, this study used two analytical methods at the same site over a comparable period, to calculate incidence using both prospective and retrospective approaches. Second, the case burden of aLRTD and its subgroups was pre-defined and included patients with atypical presentations but with clinical and/or radiological diagnoses, who may otherwise have been excluded from analysis. Additionally, we calculated incidence using a denominator derived from GP records, providing increased accuracy compared to population calculations based on census data.

However, the study also had some limitations. This was a single-center study, with a predominantly Caucasian cohort; therefore, the findings might not be generalizable to other populations both within the UK and in other countries. Different healthcare systems may affect patient treatment preference, and as the NHS provides care which is free at the point of access, the hospitalization rates seen in this study may be different in fee or insurance based healthcare system. Similarly, physician treatment preferences may affect hospitalization rates, and we have not explored these in this analysis. The ICD-10 coding data analysis was limited to codes within the first five positions, and therefore may have excluded some cases where other diagnoses were placed higher in the diagnostic coding hierarchy. Furthermore, we could not determine how many cases of the 28.1% ICD-10 cases also coded with nosocomial infection had hospital-acquired respiratory infection rather than other nosocomial infections.

Page 17 of 35

BMJ Open

Although the denominator used to calculate incidence was derived from GP records, this was still an estimate as there is no precisely defined denominator hospital catchment. We were unable to exclude patients from outside the local CCGs in the retrospective analysis, due to the way ICD-10 data was obtained. However, these patients were excluded from the prospective review and the incidence calculated was comparable, suggesting any effect that patients attending North Bristol NHS Trust from outside the local CCGs have on incidence estimates is minimal. This may be because any effect of travelling or health-seeking behavior is bi-directional: whilst some patients admitted to Southmead hospital were from outside the local area, it is also true that patients with aLRTD within the relevant CCGs would have been admitted to other hospitals. We also acknowledge the 21-day prospective review period was relatively short, not repeated and may not be fully representative of clinical practice and cases throughout the year. This study was conducted before the emergence of COVID-19, and we think these data will be useful in one of two ways in the context of COVID-19: (1) either COVID-19 will become endemic, and the data will reflect the first year before a new normal, or (2) COVID-19 will abate and it will provide an anchor for understanding incidence during a respiratory viral pandemic'

In conclusion, we found similarly high estimates of LRTD incidence using two different approaches, and these estimates were higher than those obtained previously in the UK. Determining if there is a real increase in incidence, or if this estimate is larger due to more accurate methodology including a more accurate denominator will require ongoing comprehensive surveillance. Nonetheless, combining all types of LRTD highlights the high burden for this important and potentially life-threatening disease group. Incidence assessments require close assessments of potential areas of under ascertainment, including unidentified or unenrolled cases in prospective studies, reduced positions or number of ICD-10 codes included for retrospective studies, and population denominator mismatch for all study types. Our prospective review findings highlight the need to consider atypical clinical presentations for pneumonia and the lack of routine microbiological investigation in many

 318 aLRTD patients required for pathogen-specific aLRTD incidence calculation. Future research should 319 include a fully prospective assessment of aLRTD incidence with comprehensive diagnostic testing 320 across multiple respiratory seasons, to ensure accurate capture of all aLRTD events, particularly in the 321 elderly. Such research should be undertaken given the high and rising aLRTD burden to enable 322 appropriate healthcare planning and identification of interventions which may reduce disease burden.

α. ing and identifica

1		
2 3 4	324	Acknowledgements
5 6	325	We would like to acknowledge the assistance of Qi Yan, PhD (Pfizer, Inc.) who provided
7 8	326	indispensable medical writing and literature review support for this manuscript and Harvey Walsh
9 10 11	327	Health who performed the hospital denominator calculation used here. For the denominator
12 13	328	analysis, Hospital Episode Statistics (HES) Data were re-used with the permission of NHS Digital via
14 15	329	Harvey Walsh Limited.
16 17	330	
18	331	Data Sharing
19 20	332	No additional data available
21 22		Data Sharing No additional data available
23 24		
25 26		
27		
28 29		
30 31		
32 33		
34		
35 36		
37 38		
39 40		
41		
42 43		
44 45		
46		
47 48		
49 50		
51		
52 53		
54 55		
56		
57 58		
59 60		

2			
3 4	333	Refere	
5	334		1. Gibson, G.J., et al., Respiratory health and disease in Europe: the new European Lung
6	335		<i>White Book</i> . Eur Respir J, 2013. 42 (3): p. 559-63.
7	336	2.	Cilloniz, C., et al., Impact of age and comorbidity on cause and outcome in community-acquired
8	337		<i>pneumonia.</i> Chest, 2013. 144 (3): p. 999-1007.
9	338	3.	Torres, A., et al., Burden of pneumococcal community-acquired pneumonia in adults across
10	339		Europe: A literature review. Respir Med, 2018. 137 : p. 6-13.
11	340	4.	European Lung White Book. Pneumonia. April 25, 2021]; Available from:
12	341		https://www.erswhitebook.org/chapters/acute-lower-respiratory-
13 14	342		infections/pneumonia/#:~:text=pneumonia%20(VAP)
14	343		,Incidence,000%20cases%20are%20expected%20annually.
16	344	5.	British Lung Foundation. Pneumonia Statistics. April 25, 2021]; Available from:
17	345		https://statistics.blf.org.uk/pneumonia.
18	346	6.	Lim, W. and H. Lawrence, British Thoracic Society. National Audit Report: Adult Community
19	347		Acquired Pneumonia Audit 2018-2019. National Audit Period: 1 December 2018 – 31 January
20	348		2019. 2019.
21	349	7.	Millett, E.R.C., et al., Incidence of community-acquired lower respiratory tract infections and
22	350		pneumonia among older adults in the United Kingdom: a population-based study. PloS one,
23	351		2013. 8 (9): p. e75131-e75131.
24 25	352	8.	Branche, A.R. and A.R. Falsey, Respiratory Syncytial Virus Infection in Older Adults: An Under-
26	353		Recognized Problem. Drugs & Aging, 2015. 32 (4): p. 261-269.
27	354	9.	Falsey, A.R. and E.E. Walsh, Respiratory syncytial virus infection in elderly adults. Drugs &
28	355		aging, 2005. 22 (7): p. 577-587.
29	356	10.	Maughan, B.C., et al., False-negative chest radiographs in emergency department diagnosis of
30	357		pneumonia. R I Med J (2013), 2014. 97 (8): p. 20-3.
31	358	11.	Self, W.H., et al., High discordance of chest x-ray and computed tomography for detection of
32	359		pulmonary opacities in ED patients: implications for diagnosing pneumonia. Am J Emerg Med,
33	360		2013. 31 (2): p. 401-5.
34 35	361	12.	Cilloniz, C., et al., Microbial aetiology of community-acquired pneumonia and its relation to
36	362		severity. Thorax, 2011. 66(4): p. 340-6.
37	363	13.	Jain, S., et al., Community-Acquired Pneumonia Requiring Hospitalization. N Engl J Med, 2015.
38	364		373 (24): p. 2382.
39	365	14.	Mainor, A.J., et al., ICD-10 Coding Will Challenge Researchers: Caution and Collaboration may
40	366		Reduce Measurement Error and Improve Comparability Over Time. Med Care, 2019. 57(7): p.
41	367		e42-e46.
42	368	15.	Burns, E.M., et al., Systematic review of discharge coding accuracy. J Public Health (Oxf), 2012.
43 44	369		34 (1): p. 138-48.
44	370	16.	Henig, O. and K.S. Kaye, Bacterial Pneumonia in Older Adults. Infect Dis Clin North Am, 2017.
46	371		31 (4): p. 689-713.
47	372	17.	Fine, M.J., et al., Prognosis and outcomes of patients with community-acquired pneumonia. A
48	373		meta-analysis. JAMA, 1996. 275 (2): p. 134-41.
49	374	18.	Campling, J., et al., A novel approach to calculate disease incidence for hospital-based health
50	375		events in England. The Lancet, 2021. 398 : p. S30.
51	376	19.	Chalmers, J., et al., Community-acquired pneumonia in the United Kingdom: a call to action.
52	377		Pneumonia (Nathan), 2017. 9 : p. 15.
53	378	20.	Shi, T., et al., Global and Regional Burden of Hospital Admissions for Pneumonia in Older
54 55	379		Adults: A Systematic Review and Meta-Analysis. J Infect Dis, 2020. 222 (Suppl 7): p. S570-S576.
56	380	21.	Lovering, A.M., et al., <i>Epidemiology and resource utilization for patients hospitalized for lower</i>
57	381		respiratory tract infection. Clin Microbiol Infect, 2001. 7(12): p. 666-70.
58			
59			
60			

1			
2 3 4	382 383	22.	Yu, O., et al., Classification algorithms to improve the accuracy of identifying patients hospitalized with community-acquired pneumonia using administrative data. Epidemiology
5 6	384		and Infection, 2011. 139 (9): p. 1296-1306.
7	385	23.	Uijl, A., et al., Risk factors for incident heart failure in age- and sex-specific strata: a population-
8	386		based cohort using linked electronic health records. Eur J Heart Fail, 2019. 21 (10): p. 1197-
9 10	387 388	24.	1206. van de Garde, E.M.W., et al., International classification of diseases codes showed modest
11	389	21.	sensitivity for detecting community-acquired pneumonia. Journal of Clinical Epidemiology,
12	390		2007. 60 (8): p. 834-838.
13 14	391	25.	Pick, H., et al., Pneumococcal serotype trends, surveillance and risk factors in UK adult
15	392 393	26.	<i>pneumonia, 2013–18.</i> Thorax, 2020. 75 (1): p. 38. Elston, J.W.T., et al., <i>Increasing incidence of invasive pneumococcal disease and pneumonia</i>
16 17	393 394	20.	despite improved vaccination uptake: surveillance in Hull and East Yorkshire, UK, 2002–2009.
18	395		Epidemiology and Infection, 2012. 140 (7): p. 1252-1266.
19	396	27.	Thorrington, D., et al., Elucidating the impact of the pneumococcal conjugate vaccine
20 21	397 208		programme on pneumonia, sepsis and otitis media hospital admissions in England using a
22	398		composite control. BMC Medicine, 2018. 16(1): p. 13.
23 24	399		composite control. BMC Medicine, 2018. 16(1): p. 13.
24 25	400		
26	400		
27 28			
29			
30			
31 32			
33			
34 35			
36			
37			
38 39			
40			
41 42			
42			
44			
45 46			
47			
48 49			
49 50			
51			
52 53			
54			
55 56			
56 57			
58			
59 60			
00			

Table 1: Demographic Characteristics of Patients admitted with aLRTD for 1 Year ICD-10 code Retrospective Analysis and 21-day Prospective Review

Period -- 2018-2019

Characteristic	Pneumonia		NP-LRTI		Heart Failure		Other LRTD	All LRTD	
Study	Prospective review	Retrospective analysis	Prospective review	Retrospective analysis	Prospective review	Retrospective analysis	Retrospective Review Only	Prospective review	Retrospective analysis
N	152	2402	188	3005	77	1633	1071	410	7727
Gender, females	61 (40)	1078 (45)	99 (53)	1482 (49)	39 (51)	731 (45)	489 (46)	194 (47)	3780 (49)
Age	Age								
Median (IQR), y	80 (67-86)	81 (66-88)	70 (46-87)	69 (45-87)	87 (72-90)	87 (70-90)	74 (53-82)	80 (64-88)	81 (65-90)
18-24	4 (3)	72 (3)	9 (5)	151 (5)	0 (0)	0 (0)	26 (2)	13 (3)	249 (3)
25-34	2 (2)	48 (2)	12 (6)	183 (6)	0 (0)	3 (0)	33 (3)	14 (3)	267 (3)
35-44	6 (4)	97 (4)	14 (7)	209 (7)	2 (3)	10 (1)	59 (6)	22 (5)	375 (5)
45-54	8 (5)	118 (5)	11 (6)	183 (6)	0 (0)	22 (1)	112 (10)	19 (5)	435 (6)
55-64	18 (12)	293 (12)	19 (10)	305 (10)	8 (10)	158 (10)	210 (20)	45 (11)	966 (13)
65-74	34 (22)	501 (21)	32 (17)	549 (18)	10 (15)	199 (12)	223 (21)	75 (18)	1472 (19)
75-84	44 (28)	667 (28)	40 (21)	621 (21)	20 (30)	498 (31)	205 (19)	100 (24)	1991 (26)
≥85	38 (26)	606 (25)	51 (27)	704 (23)	37 (55)	742 (45)	203 (19)	123 (30)	2255 (29)

 Table 2. Clinical Characteristics and Investigations of Patients admitted with aLRTD over 21-day

 Prospective Review Period in August-September 2020

Characteristic	Pneumonia n=152 (%)	NP-LRTI n=188 (%)	Heart Failure n=77 (%)	All LRTD n=410 (%)	
GP	56 (37)	72 (39)	30 (39)	158 (39)	
A&E department	93 (61)	100 (54)	45 (58)	238 (58)	
Transfer from another unit	2 (1)	13 (7)	0 (0)	15 (4)	
Other	1 (1)	1 (1)	2 (3)	4 (1)	
Referral Source					
Typical features ⁺	136 (89)	163 (87)	63 (82)	355 (87)	
Atypical features	16 (11)	25 (13)	14 (18)	55 (13)	
- collapse/falls	11 (7)	12 (6)	0 (0)	23 (6)	
- confusion	0 (0)	7 (4)	4 (5)	10 (2)	
- drowsiness	1 (1)	1 (1)	2 (3)	4 (1)	
- off legs/generally unwell	5 (3)	5 (3)	8 (10)	18 (4)	
LRTD Signs and symptoms on re	eferral to AMU				
Biochemistry	152 (100)	185 (99)	77 (100)	419 (100)	
Haematology	152 (100)	185 (99)	77 (100)	419 (100)	
Radiology	152 (100)	185 (99)	77 (100)	419 (100)	
Investigations Performed		·			
Testing by Age Group	6				
All patients	79/152 (52)*	77/188 (41)	11/77 (14)	167 (41)	
18-24	3/4 (75)	6/9 (66)	0/0 (0)	9/13 (69)	
25-34	0/0 (0)	6/12 (50)	0/0 (0)	6/12 (50)	
35-44	5/6 (83)	10/14 (71)	2/2 (100)	17/22 (77)	
45-54	6/8 (75)	6/11 (55)	0/0 (0)	13/19 (68)	
55-64	11/18 (61)	12/19 (63)	5/8 (63)	31/45 (69)	
65-74	15/34 (44)	12/32 (38)	1/10 (10)	28/75 (37)	
75-84	21/43 (49)	10/40 (25)	2/20 (10)	33/100 (33)	
≥85	18/39 (46)	15/51 (19)	1/37 (3)	34/124 (27)	
Test performed			~		
Blood culture	79 (52)	70 (37)	5 (6)	150 (37)	
Urine culture	66 (43)	77 (41)	11 (14)	150 (37)	
Sputum culture	27 (18)*	7 (4)	2 (3)	35 (9)	
BinaxNOW [®] Pn UAT ‡	29 (19)*	6 (3)	0 (0)	35 (9)	
Respiratory virus PCR	16 (11)*	11 (6)	1 (1)	28 (7)	
Pleural fluid culture	3 (2)	0 (0)	1 (1)	4 (1)	

A&E, Accident and Emergency department; GP, general practitioner; LRTD, lower respiratory tract disease; NP-LRTI, non-pneumonic lower respiratory tract infection; IQR, interquartile range; Pn UAT, pneumococcal urinary antigen test; PCR, polymerase chain reaction.

* *P*<0.05.

Typical symptoms included cough, breathlessness, increased or discolored sputum production, wheeze, pleurisy, peripheral oedema, hemoptysis, reduced exercise tolerance and/or fever.
BinaxNOW Pn UAT was only performed in accordance with NICE/BTS guidelines.

Table 3: Incidence of aLRTD resulting in hospital admission based on prospective and retrospective approaches by age group and condition, North Bristol National Health Service Trust- United Kingdom 2018-2019.

			Age	Groups		
	All Adults	18-49 y	50-64 y	65-74 y	75-84 y	≥85 y
Population in 2018	406481	226920	91534	45705	29487	1283
Retrospective Analysis of	a Year's ICD-10) codes				
Annual cases – N (row %)						
All aLRTD	7,727	1,130 (14)	1,103 (14)	1,684 (22)	2,053 (27)	1,757 (2
Pneumonia	2,402	264 (11)	288 (12)	589 (25)	720 (30)	541 (2
NP-LRTI	3,005	576 (19)	410 (14)	572 (19)	662 (22)	785 (2
Other LRTD	1,071	246 (23)	268 (25)	226 (21)	200 (19)	131 (1
Heart Failure	1,633	48 (3)	189 (12)	397 (24)	485 (30)	514 (3
LRTI/Pneumonia Ratio	1.3	2.2	1.4	1.0	0.9	1.5
Incidence (per 100,000)						
All aLRTD	1,901	497	1,205	3,684	6,962	13,689
Pneumonia	591	116	315	1,289	2,442	4,215
NP-LRTI	739	254	448	1,252	2,245	6,116
Other LRTD	263	108	293	494	678	1,021
Heart Failure	402	21	206	869	1,645	4,005
21-day Prospective Review	w (annualized)					
Annualized cases – N (row %)						
All aLRTD	7,885	1,038	962	1,692	2,231	1,962
Pneumonia	2,621	224	397	776	690	534
NP-LRTI	3,857	796	531	653	1,061	816
Heart Failure	2,000	51	205	308	641	795
LRTI/Pneumonia Ratio	1.5	3.6	1.3	0.8	1.5	1.5
Incidence (per 100,000)						
All aLRTD	1,940	458	1,050	3,703	7,565	15,283
Pneumonia	645	99	433	1,698	2,339	4,164
NP-LRTI	944	351	580	1,429	3,599	6,360
Heart Failure	492	23	224	673	2,174	6,193

LRTI = lower respiratory tract infection; LRTD = lower respiratory tract disease.

Pneumonia category includes community and healthcare acquired. For retrospective ICD-10 based cohort, the following mutually exclusive hierarchy was used to define pneumonia, LRTI, and other LRTD; heart failure event could overlap with other categories.

"Other LRTD" contains LRTD events that could not definitively be placed in one of the other respiratory disease categories.

1 2 3

4

5

 BMJ Open

Table 4: Literature review of aLRTD incidence in hospit	talized adults, United Kingdom
---	--------------------------------

Study	Study Years	Location (Facility)	Event Setting	Age	Case Definition ^b	Key inclusion	Denominator Source	Overall Incidence	Age Breakdown (years)	Incidence per 100,000 by age ^d	Comments
Community -	-acquired Pne	umonia									
Current	2018 -	Bristol	Inpatients	≥18 y	Clinical signs/symptoms with	Hospital-	Based on number of persons	648	18 – 49	116	Retrospective
Study	2019	(Southmead Hospital)	only		radiological change in keeping with infection (prospective review portion)	acquired pneumonia	I ≥18 years registered in referring GP practices. For practices with	I	50 –64	315	analysis includes 1 st 5 positions
		nospitaly			AND	(HAP)	split referral patterns, number		65 –74	1,289	5 posicions
					Retrospective ICD-10 code analysis (1 st	included	adjusted for percent of	591	75 –84	2,442	
					5 positions): J12-J18, J85, and J86		admissions that came to Southmead.	001			
	T	1				I		Γ	≥85	4,215	
Elston 2012,	2002 – 2009	Hull and East Yorkshire	Inpatients only	≥16 y	ICD-10 codes (1 st position only): J18.0, J18.9, J13X, J18.1, and J15X	HAP included	Mid-year population estimates for Hull (city) and EroY	143 (2002)	15 –64	48.8 – 84.1	Fewer ICD-10 codes included
Epidemiol Infect	2009	Hospitals ^c	Only		J16.5, J15A, J16.1, allu J15A	included	(Surrounding County) from Office for National Statistics	207 (2009)	≥65	543 –	than other analyses; Y95
iniect										781	Nosocomial infection included.
Millet	1997 –	UK	Both	≥65 y	Read and ICD 10 codes; no specified	HAP	Mid-year UK population	799	65 –69	281	Incidence
2013, J Clin Epidemiol	2011		inpatients and		codes provided. For ICD-10, used first diagnosis code for first episode of	Excluded	estimates from Office for National Statistics		70 –74	431	estimates converted to per
			outpatients	l	hospitalization only.				75 –79	694	100,000 person- years
									80 –84 y	1,205	yeard
									85 –89	2,184	
									≥90	4,194	
Pick 2020,	2013 -	Nottingham	Inpatients	≥16 y	Inclusion criteria: one or more	HAP	Mid-year estimates for the	96.3	16 –49	27.3	Only
Thorax ^a	2014	(2 large university hospitals)	only	I	symptom suggestive of LRTI (defined as cough, increasing dyspnea, sputum production and fever), with evidence of	Excluded	Greater Nottingham area from the Office for National Statistics, including local population data	I	50 –64	80.2	consented/enrolled subjects included in estimates
		nospitais)			acute infiltrates consistent with		stratified by age group		65 –74	181.3	Required CXR -
					respiratory infection on admission				75 –84	400.6	confirmation but
					radiography, and treated for a diagnosis of CAP Exclusion criteria:				75 04	400.0	not all LRTI patients had CXR
					hospitalization within 10 days of index				≥85	707.5	Census-derived
	2017 –				admission, a diagnosis of tuberculosis or post-obstructive pneumonia.			158.4	16 –49	29.9	denominator that may not have fully
	2018	I						I	50 –64	146.9	matched catchment area.

	2013 – 2018							120.4	65 -74 75 -84 ≥85 	310.4 559.5 1522.6	Required specific symptoms and evidence of treatment and some CAP events may not have had this information
Thorrington 2019, BMC	2004 – 2005	England	Inpatients only	≥65 y	ICD 10 codes (1 st position only): J18 (pneumonia of unspecified causative	HAP Included	Mid-year population estimates for England for 2004 to 2015	NA	≥65	829	documented Incidence is per 100,000 person-
Med	2014 – 2015				organism)		from Office for National Statistics		≥65	1787	years. Fewer ICD- 10 codes included than other analyse
Trotter 2008, EID	1997 – 1998	England	Inpatients only	≥65 y	ICD 10 codes (1 st position only): J12 – J18	HAP Included	Mid-year population estimates for England for 1997 to 2004	NA	65 –74	263	Incidence estimates
			,				from the Office for National		75 –84	684	converted to
							Statistics		≥85	1599	100,000 population
	2004 -								65 - 74	355	_
	2005	I							75 –84	877	
Lower Resni	ratory Tract I	Infection		-		Pneumonia			≥85	2218	
Lower Respir Current	ratory Tract I 2018 –	nfection Bristol	Inpatients	 ≥18 y	Clinical signs/symptoms of heart failure	Pneumonia Excludes all	Based on number of persons	802			
	1	Bristol (Southmead	Inpatients only	-	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological	L	≥18 years registered in referring	802	≥85	2218	
Current	2018 -	Bristol		-	Clinical signs/symptoms of heart failure	Excludes all		802	≥85 18-49	2218	
Current	2018 -	Bristol (Southmead		-	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis:	Excludes all	≥18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of	802	≥85 18 -49 50 -64	2218 254 448	
Current	2018 -	Bristol (Southmead		-	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42,	Excludes all	≥18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to		≥85 18 -49 50 -64 65 -74	2218 254 448 1,252	
Current	2018 -	Bristol (Southmead		-	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis:	Excludes all	≥18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of	802	≥85 18 -49 50 -64	2218 254 448	
Current	2018 -	Bristol (Southmead		-	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42,	Excludes all	≥18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to		≥85 18 -49 50 -64 65 -74	2218 254 448 1,252	
Current Study Lovering	2018 - 2019 1994 -	Bristol (Southmead Hospital) Bristol	only	-	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42, J44, J45, and J46 LRTI episodes from four groups by ICD	Excludes all Pneumonia	>18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to Southmead.		≥85 18 -49 50 -64 65 -74 75 -84	2218 254 448 1,252 2,442	Incidence
Current Study	2018 - 2019	Bristol (Southmead Hospital) Bristol (Southmead	only	≥18 γ	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42, J44, J45, and J46 LRTI episodes from four groups by ICD 9/10 codes: (1) CAP; (2) chest infection	Excludes all Pneumonia Includes Community-	≥18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to Southmead.	739	≥85 18 -49 50 -64 65 -74 75 -84 ≥85	2218 254 448 1,252 2,442 6,116	converted to per
Current Study Lovering 2001, Clinical Micro. &	2018 - 2019 1994 -	Bristol (Southmead Hospital) Bristol	only	≥18 γ	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42, J44, J45, and J46 LRTI episodes from four groups by ICD 9/10 codes: (1) CAP; (2) chest infection or acute exacerbation in presence of asthma; (3) chest infection or acute	Excludes all Pneumonia	>18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to Southmead.	739	≥85 18 -49 50 -64 65 -74 75 -84 ≥85 16 -39	2218 254 448 1,252 2,442 6,116 151	converted to per
Current Study Lovering 2001, Clinical	2018 - 2019 1994 -	Bristol (Southmead Hospital) Bristol (Southmead	only	≥18 γ	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42, J44, J45, and J46 LRTI episodes from four groups by ICD 9/10 codes: (1) CAP; (2) chest infection or acute exacerbation in presence of asthma; (3) chest infection or acute exacerbation in presence of COPD; or	Excludes all Pneumonia Includes Community- acquired	>18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to Southmead.	739	≥85 18 -49 50 -64 65 -74 75 -84 ≥85 16 -39 40 -49	2218 254 448 1,252 2,442 6,116 151 175	converted to per 100,000 population Study involved single hospital an
Current Study Lovering 2001, Clinical Micro. &	2018 - 2019 1994 -	Bristol (Southmead Hospital) Bristol (Southmead	only	≥18 γ	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42, J44, J45, and J46 LRTI episodes from four groups by ICD 9/10 codes: (1) CAP; (2) chest infection or acute exacerbation in presence of asthma; (3) chest infection or acute	Excludes all Pneumonia Includes Community- acquired	>18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to Southmead.	739	≥85 18 -49 50 -64 65 -74 75 -84 ≥85 16 -39 40 -49 50 -59	2218 254 448 1,252 2,442 6,116 151 175 294 1,086	converted to per 100,000 populati Study involved
Current Study Lovering 2001, Clinical Micro. &	2018 - 2019 1994 -	Bristol (Southmead Hospital) Bristol (Southmead	only	≥18 γ	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42, J44, J45, and J46 LRTI episodes from four groups by ICD 9/10 codes: (1) CAP; (2) chest infection or acute exacerbation in presence of asthma; (3) chest infection or acute exacerbation in presence of COPD; or (4) bronchitis with no radiological	Excludes all Pneumonia Includes Community- acquired	>18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to Southmead.	739	≥85 18 -49 50 -64 65 -74 75 -84 ≥85 16 -39 40 -49 50 -59 60 -69	2218 254 448 1,252 2,442 6,116 151 175 294	converted to per 100,000 populati Study involved single hospital an no mention of

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

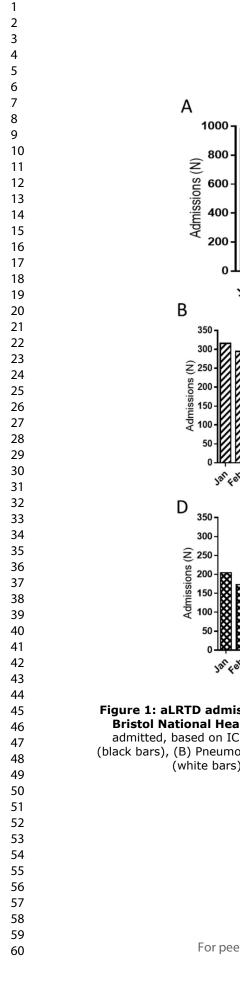
2013, J Clin	2011		inpatients		codes provided. For ICD-10, used first	Community-	estimates from Office for		70 –74	10,740	converted to pe
Epidemiol			and outpatients		diagnosis code for inpatient episode only.	acquired Pneumonia	National Statistics. (Patients were not considered at risk for		75 –79	12,607	100,000 persor years
			outpatients		only.	Theumonia	community-acquired LRTI during		80 – 84	15,137	years
							an LRTI illness-episode, during a			-	
							HES hospitalization, or for 14		85 –89	18,791	
						HAP	days after any HES		≥90	26,287	
						Excluded	hospitalization or CPRD hospital				
							code. This person-time was				
							excluded from denominator.)				
						All or First					
Heart Failure	1					Episode					
Current	2018-2019	Bristol	Inpatients	≥18 y	Clinical signs/symptoms of heart failure	All	Based on number of persons	328	18 – 49	21	
Study	1	l (Southmead	l only		or elevated pro-NT BNP or radiological	I	≥18 years registered in referring		50 –64	206	
		Hospital)			change		GP practices. For practices with		50-04	200	
							split referral patterns, number		65 –74	869	
					AND		adjusted for percent of admissions that came to	402	75 –84	1,645	
					Determenting ICD 10 and a malurize		Southmead.		205	4.005	
					Retrospective ICD-10 code analysis: 1110; 1130; 1132; 150		Southinead.		≥85	4,005	
					1110, 1130, 1132, 150						
Uijl 2019,	2000 -	UK	Both	≥55 v	4 sources of HER were linked: CPRD	First	Not Reported	Not	55 –64, M	360	Incidence
Eur J Heart	2010		inpatients		primary care records, HES secondary	episode at		Reported			converted to p
Fail			and		care hospital charges, Myocardial	55 years or		-	55 –64, F	190	100,000 perso
			outpatients		Ischaemia National Audit Project	older					years
					(MINAP) disease registry, and ONS	counted			65 –74, M	1,360	Included first
					national death registry. HES ICD-10				65 –74, F	920	episode of HF
					codes: Heart failure: 1110, 1130, 1132,				>75, M	3,440	(inpatient or
					I260, I50 and I21. Individuals were				-	-	outpatient) at
					excluded if they presented a history of				>75, F	2,800	55 and up, so
					HF before their index date in CPRD, HES or MINAP.						repeat episode not included.
					TES UT WIINAP.						not included.

^b Add text names for all listed ICD codes in this footnote or appendix.

^c Included hospitals were Hull Royal Infirmary, Castle Hill Hospital, Princess Royal Hospital, Scarborough District General Hospital, Bridlington & District Hospital, York Teaching Hospital, Scunthorpe General Hospital, Goole & District Hospital.

^d For the current study, only age-group estimates from the retrospective analysis were included in this table, but these were closely comparable to the annualized incidence estimates based on the prospective review. See Table 3 for full results.

Figure Legends:


Figure 1: aLRTD admissions identified by Retrospective ICD-10 diagnostic code analysis at North Bristol National Health Service Trust— United Kingdom 2018–2019.

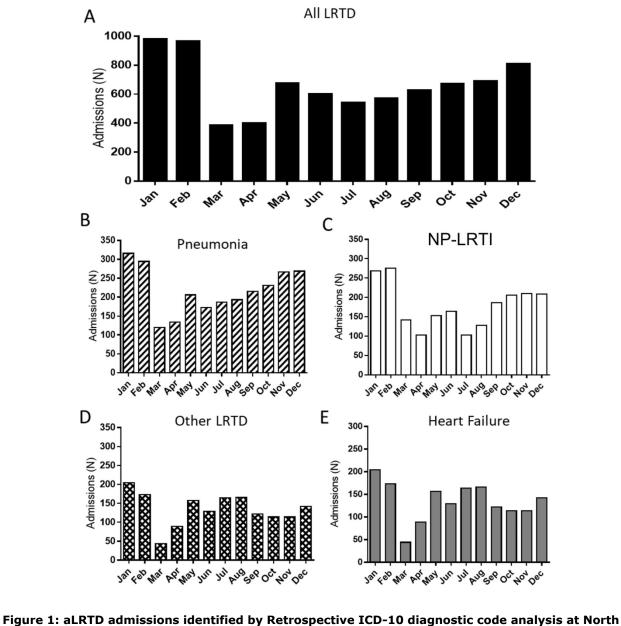

Monthly number of patients admitted, based on ICD-10 coding analysis, with (A) all acute Lower Respiratory Tract Disease (aLRTD) (black bars), (B) Pneumonia (slashed bars), (C) Non-pneumonic Lower Respiratory Tract Infection (NP-LRTI) (white bars), (D) Other LRTD (cross-hash bars), and (E) Heart Failure (grey bars).

Figure 2: Flow diagram of the Prospective Review

 BMJ Open

For peer review only For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Bristol National Health Service Trust— United Kingdom 2018–2019. Monthly number of patients admitted, based on ICD-10 coding analysis, with (A) all acute Lower Respiratory Tract Disease (aLRTD) (black bars), (B) Pneumonia (slashed bars), (C) Non-pneumonic Lower Respiratory Tract Infection (NP-LRTI) (white bars), (D) Other LRTD (cross-hash bars), and (E) Heart Failure (grey bars).

169x207mm (300 x 300 DPI)

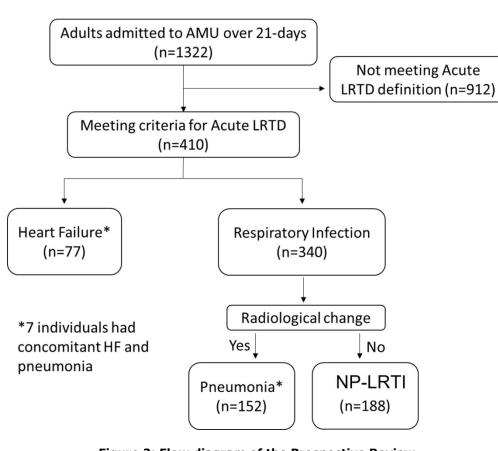


Figure 2: Flow diagram of the Prospective Review

149x123mm (300 x 300 DPI)

Supplementary Data 1: ICD-10 codes used for patient identification for Retrospective
Analysis

ICD- 10 code	Definition	Pneumonia	NP-LRTI	HF	Other aLRTD
J09	Influenza due to identified zoonotic or pandemic influenza virus		X		
J10	Influenza due to identified seasonal influenza virus		X		
J11	Influenza, virus not identified		X		
J12	Viral pneumonia, not elsewhere classified	Х			
J13	Pneumonia due to <i>Streptococcus</i> pneumoniae	Х			
J14	Pneumonia due to Haemophilus influenzae	Х			
J15	Bacterial pneumonia, not elsewhere classified	Х			
J16	Pneumonia due to other infectious organisms, not elsewhere classified	X			
J17	Pneumonia in diseases classified elsewhere	X			
J18	Pneumonia, organism unspecified	X			
J20	Acute bronchitis		Х		
J21	Acute bronchiolitis		X		
J22	Unspecified acute lower respiratory infection		X		
J40	Bronchitis, not specified as acute or chronic		Х		
J41	Simple and mucopurulent chronic bronchitis		X		
J42	Unspecified chronic bronchitis		X		
J43	Emphysema				X
J44	Other chronic obstructive pulmonary disease (including J44.0 chronic		J44.0 only		X (J44.0)

1	
2	
3	
Λ	
4	
4 5 6 7	
6	
-	
/	
8	
7 8 9 10	
9	
9 10	
11	
12	
13	
14 15	
14	
15	
16	
17	
16 17 18	
18	
19	
20	
20	
21	
22	
22	
20 21 22 23 24 25 26 27 28 29 30	
24	
25	
25	
26	
27	
20	
28	
29	
30	
50	
31	
32	
33	
33	
34 35	
35	
22	
36 37	
37	
38	
39	
40	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
59	
60	

	obstructive pulmonary disease with				
	acute lower respiratory infection)				
J45	Asthma				Х
J46	Status asthmaticus				Х
J47	Bronchiectasis				Х
J85	Abscess of lung and mediastinum		X		
J86	Pyothorax		X		
J90	Pleural effusion, not elsewhere classified				Х
J91	Pleural effusion in conditions classified elsewhere				Х
J95	Postprocedural respiratory disorders, not elsewhere classified				Х
J96	Respiratory failure, not elsewhere classified				Х
J98	Other respiratory disorders				Х
J99	Respiratory disorders in diseases classified elsewhere	2.			X
I110	Hypertensive heart disease with heart failure	0		X	
I130	Hypertensive heart and chronic kidney disease with heart failure and stage 1 through stage 4 chronic kidney disease	2		X	
I132	Hypertensive heart and chronic kidney disease with heart failure and with stage 5 chronic kidney disease, or end stage renal disease		1	x	
150	Heart failure			X	

Supplementary Data 2: Case Definitions

Condition	Definition	Reference
Acute Lower Respiratory Tract Disease (aLRTD)	Acute lower respiratory tract disease (aLRTD) encompasses pneumonia, non-pneumonic lower respiratory tract infection (LRTI), acute bronchitis, exacerbation of underlying respiratory disease including asthma and chronic obstructive pulmonary disease (COPD), and cardiac failure with respiratory symptoms.	
	Pneumothorax, pulmonary embolism, progression or new diagnosis of primary or secondary lung malignancy were excluded from aLRTD.	
Pneumonia	 Pneumonia was defined as infection affecting the airways (below the level of the larynx), with either: (1) an acute illness with radiographic shadowing which was at least segmental or present in more than one lobe and was not known to be previously present or due to other causes (2) in the absence of radiological investigation, clinical confirmation of pneumonic disease in the opinion of the treating physician 	Lim WS, Baudouin SV, George RC, <i>et al</i> ; Pneumonia Guidelines Committee of the BTS Standards of Care Committee. BTS guidelines for the management of community acquired pneumonia in adults: update 2009. Thorax. 2009 Oct;64 Suppl 3:iii1-55.
Non-Radiologically Proven Lower Respiratory Tract Infection (NP-LRTI)	An infection that affects the airways (below the level of the larynx) including the trachea and alveoli, with neither the presence of radiological change nor a clinical diagnosis of pneumonia from the treating physician, i.e. non-pneumonic infection in the lungs.	Anderson W, Winter J. Managing LRTI in adults in the community. Practitioner. 2009 Nov;253(1723):21-5, 2-3. PMID: 20043506.
Cardiac/Heart Failure (HF)	A clinical syndrome with symptoms and/or signs caused by a structural and/or functional cardiac abnormality and corroborated by elevated natriuretic peptide levels and or objective evidence of pulmonary or systemic congestion.	Bozkurt, Biykem et al.Universal Definition and Classification of Heart Failure. Journal of Cardiac Failure, Volume 27, Issue 4, 387 – 413.
Other aLRTD	aLRTD which was neither pneumonia, NP-LRTI nor HF was classified as 'Other aLRTD'. This therefore includes non-infective exacerbations of chronic respiratory disease such as asthma, COPD and bronchiectasis	

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	3
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	3
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5-6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods	-	and Tree effectives, and South the Level of Management	-
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7-9
5		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	7-9
1	-	methods of selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	8
		confounders, and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	7-8
measurement	-	of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	15-1
Study size	10	Explain how the study size was arrived at	7-8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	8-9
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	NA
		(<i>d</i>) <i>Cohort study</i> —If applicable, explain how loss to follow-up was	NA
		addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and	
		controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking	
		account of sampling strategy	

Continued on next page

2
3
4
- -
5
6
7 8
7 8 9
9
10
11
12
12
14
14
15
16
17
18
10
13 14 15 16 17 18 19
20
20 21
22
22 23
23 24 25 26 27 28
24
25
26
27
20
20
29
30
31
32
32 33
33
34 35 36 37 38
35
36
27
57
38
39
40
41
42
43
44
45
46
40 47
48
49
50
51
53
54
55
56
50
57
58
59
60
00

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	10,
		eligible, examined for eligibility, confirmed eligible, included in the study,	21-
		completing follow-up, and analysed	24
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	24
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	21-
data		information on exposures and potential confounders	24
		(b) Indicate number of participants with missing data for each variable of interest	NA
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	10-
			11,
			21-
			24
		Case-control study—Report numbers in each exposure category, or summary	NA
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	NA
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	11
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	NA
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	10,
		sensitivity analyses	21-
			25
Discussion			
Key results	18	Summarise key results with reference to study objectives	12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	15
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	12-
		multiplicity of analyses, results from similar studies, and other relevant evidence	16
Generalisability	21	Discuss the generalisability (external validity) of the study results	12-
			16

Other information

 Funding
 22
 Give the source of funding and the role of the funders for the present study and, if
 1

 applicable, for the original study on which the present article is based
 1

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

The incidence of acute lower respiratory tract disease hospitalizations, including pneumonia, among adults in Bristol, UK, 2019, estimated using both a prospective and retrospective methodology

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-057464.R2
Article Type:	Original research
Date Submitted by the Author:	27-May-2022
Complete List of Authors:	Hyams, Catherine; University of Bristol, Academic Respiratory Unit; University of Bristol, Bristol Vaccine Centre Begier, Elizabeth; Pfizer Inc Garcia Gonzalez, Maria; University of Bristol; Southmead Hospital, Academic Respiratory Unit Southern, Jo; Pfizer Ltd Campling, James; Pfizer Ltd Gray, Sharon; Pfizer Inc Oliver, Jennifer; University of Bristol, Schools of Cellular and Molecular Medicine and Population Health Sciences Gessner, Bradford; Pfizer Inc Finn, Adam; University of Bristol, Bristol Vaccine Centre
Primary Subject Heading :	Respiratory medicine
Secondary Subject Heading:	Infectious diseases, Epidemiology
Keywords:	Heart failure < CARDIOLOGY, Respiratory infections < THORACIC MEDICINE, Epidemiology < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Title: The incidence of acute lower respiratory tract disease hospitalizations, including pneumonia,

among adults in Bristol, UK, 2019, estimated using both a prospective and retrospective

methodology

Authors: Catherine Hyams^{1,2,3}, Elizabeth Begier⁴, Maria Garcia Gonzalez^{1,2}, Jo Southern⁵, James Campling⁵, Sharon Gray⁴, Jennifer Oliver¹, Bradford D. Gessner⁴, Adam Finn¹

Affiliations:

¹ Bristol Vaccine Centre, Schools of Cellular and Molecular Medicine and Population Health Sciences, University of Bristol, Bristol, BS2 8AE, United Kingdom

² Academic Respiratory Unit, Learning and Research Building, Southmead Hospital, Bristol, UK, BS10 5NB

³ Acute Medical Unit, Southmead Hospital, Bristol, UK, BS10 5NB

⁴ Vaccines Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA

⁵ Vaccines Medical Affairs, Pfizer Ltd, Tadworth, UK, KT20 7NS

Corresponding author:	 Catherine Hyams, MBBS BSc(Hons) PhD Population Health Sciences, University of Bristol, Bristol, BS2 8AE, United Kingdom catherine.hyams@nbt.nhs.uk Catherine.hyams@bristol.ac.uk Maria Garcia Gonzalez qa18884@bristol.ac.uk
Running Title:	Incidence of acute lower respiratory tract disease in adults
Keywords:	Pneumonia, respiratory infection, lower respiratory tract infection, heart failure
Funding:	CH was funded by the National Institute for Health Research (NIHR) [NIHR

Academic Clinical Fellowship (ACF-2015-25-002]. The views expressed are

those of the author(s) and not necessarily those of the NIHR or the

BMJ Open

2		
4		Department of Health and Social Care. The remainder of the study funding
5		was from Dirac inc $(M/2) \in (28)(-1)$
6		was from Pfizer, Inc (WI255886-1).
7		
8 9	Competing Interests:	EB, JS, JC, SG, and BG are full time employees of Pfizer Vaccines and hold
10		
11		stock or stock options. CH is Principal Investigator of the Avon CAP study
12		
13		which is an investigator-led University of Bristol study funded by Pfizer and
14 15		has movie up to see a superstant from the NULD in an Assidentia Clinical
16		has previously received support from the NIHR in an Academic Clinical
17		Fellowship. AF is a member of the Joint Committee on Vaccination and
18		Tenowship. At is a member of the source committee on vaccination and
19		Immunization (JCVI) and chair of the World Health Organization European
20 21		
22		Technical Advisory Group of Experts on Immunization (ETAGE) committee. In
23		
24		addition to receiving funding from Pfizer as Chief Investigator of this study,
25		
26 27		he leads another project investigating transmission of respiratory bacteria in
28		
29		families jointly funded by Pfizer and the Gates Foundation. The other
30		
31		authors have no relevant conflicts of interest to declare.
32 33		
33 34	Word count:	2997/4000

Summary (38/40 words): Using both retrospective and prospective methodologies, we found a high annual incidence of acute lower respiratory disease (>1700 per 100000; 1.7%) in and around Bristol, UK: pneumonia (~0.6%), lower respiratory tract infection without pneumonia (>0.7%), and heart failure (>0.3%).

Author Contributions: CH, EB, MGG, JS, BDG and AF generated the research questions and analysis plan CH, EB, MGG, JS, JC, SG and BDG undertook and contributed to the data analysis. AF oversaw the research and data collection which was undertaken by CH and MGG. All authors contributed to the preparation of the manuscript. **BMJ** Open

1 Abstract (278/300):

To determine the disease burden of acute lower respiratory tract disease (aLRTD) and its subsets

4 (pneumonia, lower respiratory tract infection [LRTI], heart failure) in hospitalized adults in Bristol, UK.

5 Setting

- 6 Single-centre, secondary care hospital, Bristol UK
- 7 Design

8 We estimated aLRTD hospitalizations incidence in adults (≥18 years) in Bristol, UK using two 9 approaches. First, retrospective ICD-10 code analysis (first five positions/hospitalization) identified 10 aLRTD events over a 12-month period (March2018–Feb2019). Secondly, during a 21-day prospective 11 review (19Aug–9Sept2019), aLRTD admissions were identified, categorized by diagnosis, and 12 subsequently annualized. Hospital catchment denominators were calculated using linked general 13 practice and hospitalization data, with each practice's denominator contribution calculated based on 14 practice population and percent of the practices' hospitalizations admitted to the study hospital.

15 Participants

Prospective review: 1322 adults screened; 410 identified with aLRTD. Retrospective review: 7727 adult
admissions.

18 Primary and Secondary outcome measures

19 The incidence of aLRTD and its subsets in the adult population of Southmead Hospital, Bristol UK.

20 Results

Based on ICD-10 code analysis, annual incidences per 100000 population were: aLRTD, 1901;
 pneumonia, 591; LRTI, 739; heart failure, 402. aLRTD incidence was highest among those ≥65-years:
 65–74 (3684 per 100000 adults), 75–84 (6962 per 100000 adults), and ≥85 (11430 per 100000 adults).

BMJ Open

3 4	24	During the prospective review, 410/1322 (31%) hospitalized adults had aLRTD signs/symptoms, and
5 6 7	25	annualized incidences closely replicated retrospective analysis results.
8 9 10	26	Conclusions
11 12	27	aLRTD disease burden was high, increasing sharply with age. aLRTD incidence is probably higher than
13 14	28	estimated previously due to criteria specifying respiratory-specific symptoms or radiological change,
15 16 17	29	usage of only the first diagnosis code, and mismatch between case count sources and population
17 18 19	30	denominators. This may have significant consequences for healthcare planning, including usage of
20 21	31	current and future vaccinations against respiratory infection.
22 23	32	
24		
25 26	33	
27 28	34	Strengths and Limitations of This Study
29 30	35	• We used two analytical methods at the same site over a comparable period, to calculate
31 32	36	incidence using both prospective and retrospective approaches.
33 34 35	37	• The case burden of aLRTD and its subgroups was pre-defined and included patients with
35 36 37	38	atypical presentations
38 39	39	• We calculated incidence using a denominator derived from GP records, providing increased
40 41	40	accuracy compared to population calculations based on census data.
42 43 44	41	• This was a single-center study, with a predominantly Caucasian cohort; therefore, the findings
45 46	42	might not be generalizable to other populations.
47 48	43	• The ICD-10 coding data analysis was limited to codes within the first five positions, and
49 50	44	therefore may have excluded some cases where other diagnoses were placed higher in the
51 52 53	45	diagnostic coding hierarchy.
54 55	46	
56 57		
58		
59 60		

47 Introduction

Acute lower respiratory tract disease (aLRTD) encompasses pneumonia, non-pneumonic lower respiratory tract infection (NP-LRTI), acute bronchitis, exacerbation of underlying respiratory diseases (including asthma and chronic obstructive pulmonary disease [COPD]), and acute heart failure (HF) events resulting in respiratory symptoms (e.g. breathlessness). Before the COVID-19 pandemic, European healthcare costs for pneumonia alone in adults were estimated at €10 billion annually, including €5.7 billion for inpatient care. [1] Pneumonia incidence in Europe varies by country and intra-country region, age, socioeconomic status, and gender; [2-4] however, in all studies pneumonia incidence in adults increases sharply with age. [3] Pneumonia affects an estimated 0.5% to 1% of UK adults each year [5, 6]. Overall LRTI incidence is considerably higher with ~15% of UK adults aged ≥65 years experiencing an event each year.[7] Whilst HF is not typically clinically included as an acute respiratory illness, HF with respiratory symptoms may be caused by respiratory viral infection, such as respiratory syncytial virus (RSV), either acutely or 3-4 weeks after the primary infection [8, 9].

However, aLRTD incidence may be considerably higher than previously reported, given that published literature has documented several reasons why previous estimates may have been erroneously low [1]. Estimates of aLRTD based on pneumonia defined as radiologically demonstrated alveolar infiltrates, may underestimate true disease burden as chest radiography (CXR) is an imperfect gold-standard. [10, 11] Immunosuppressed, elderly or dehydrated patients are likely to be under-represented if respiratory infection is defined by radiologically demonstrated changes. [10, 11] Microbiological investigations for pneumonia are undertaken variably and identify a causative pathogen in 50% of cases at most [12, 13]; hence, the disease is probably under-reported when confirmed microbiological diagnosis is required. Furthermore, Respiratory Syncytial Virus (RSV) infection has recently been recognized as an important respiratory pathogen later in life, [9] with severe disease occurring in patient groups in whom the diagnosis is likely to be under-recognized (e.g.

BMJ Open

the elderly or those with underlying cardiac conditions). [8] Studies of clinical coding data are retrospective and subject to recognized limitations associated with this methodology [14, 15]. Older patients with pneumonia often have atypical presenting signs and symptoms, which may lead to missed or incorrect admission diagnoses. [16] Pneumonia may occur secondary to, or be an underlying cause of, the main presenting complaint, particularly in patients with cerebrovascular accidents (CVA), HF, COPD exacerbations or altered consciousness levels. [17] In these scenarios, pneumonia may not be the primary hospitalization diagnosis code and may not even be coded as an associated diagnosis.

There are many studies examining the incidence of acute respiratory illness in children; however, data on respiratory illness in adults in the UK is lacking. Given the paucity of data supporting accurate aLRTD incidence rates and its disease subsets in adults, we undertook to assess aLRTD incidence by two approaches (retrospective and prospective) in Bristol, UK, seeking to determine the disease burden of hospitalized aLRTD and its subgroups more accurately.

iez oni

3	
4 5	
6	
/ 8	
9	
10 11	
12	
13 14	
15	
16 17	
18	
19 20	
20	
22 23	
23 24	
25 26	
21 22 23 24 25 26 27	
28	
29 30	
30 31 32	
33	
34 35	
36	
37 38	
39	
40 41	
42	
43 44	
45	
46 47	
48	
49 50	
51	
52 53	
54	
55 56	
57	
58 59	
60	

86

Methods

87 Study Design This study was conducted at a large secondary care institution in UK (North Bristol NHS Trust) with 88 89 specialist Respiratory Services (interstitial lung disease, pleural disease). Two approaches were undertaken to estimate aLRTD incidence: (1) "retrospective analysis" of aLRTD International 90 91 Classification of Diseases Tenth Revision (ICD-10) diagnostic codes for an entire year; and, (2) 21-day 92 observational "prospective review" of aLRTD hospital admissions. 93 Ethics 94 This study was approved by North Bristol NHS Trust Research Audit Ethics Committee (CA52218). Data were anonymized before the authors accessed them for the purpose of this study. 95

96 Patient and Public Involvement

97 No patient involved.

98 Retrospective Analysis

99 For the retrospective analysis, all adult inpatient admissions (≥18 years) obtained from Hospital 100 Episode Statistic (HES) to the study hospital during March 2018–February 2019 with aLRTD ICD-10 101 diagnostic codes (Supplementary data 1) in any of the first 5 positions were identified and categorized 102 into aLRTD subgroups: pneumonia, NP-LRTI, other LRTD, and HF (Supplementary data 2). A mutually 103 exclusive hierarchy was used (pneumonia, NP-LRTI, then other LRTD) although HF diagnoses could co-104 occur with other categories. "Other LRTD" included acute respiratory events that could not definitively 105 be placed in another category. Only the first 5 ICD-10 codes were available for analysis.

106 Prospective Review

Adult patients (≥18 years) resident within Bristol, North Somerset, and South Gloucestershire Clinical
 Commissioning Group (CCG) referred to the Acute Medical Unit (AMU) at North Bristol NHS Trust

BMJ Open

during 19th August –9th September 2019 were included in an audit on acute respiratory illness. This time period was selected because it was felt to represent a period when there were an average number of adults hospitalised with aLRTD. A respiratory physician (CH) reviewed presenting features and investigation results for each admitted patient to determine whether aLRTD was present. Further medical record review was undertaken if patients had: new/worsening breathlessness, cough or sputum production; new or worsening peripheral oedema; pleurisy; clinical examination findings consistent with respiratory infection or HF; or fever attributable to suspected respiratory infection. Patients with non-respiratory diagnoses were excluded. There were no patient refusals for either approach.

118 Prospective Review Outcome measures

aLRTD was considered confirmed in individuals with: new/worsening respiratory symptoms, with or without fever; sepsis, delirium or raised inflammatory markers attributable to likely respiratory infection in admitting clinical team's opinion; radiological change in keeping with infection (e.g. consolidation); and/or final diagnosis of NP-LRTI, pneumonia or infective exacerbation of a chronic respiratory condition. A pneumonia diagnosis was assigned if radiological changes likely due to infection were described by the reporting radiologist. An NP-LRTI diagnosis was assigned if aLRTD signs and symptoms likely to be due to infection were present without demonstrated radiological change. A HF diagnosis was assigned in presence of: new/worsening breathlessness and bi-basal crepitations, cardiac wheeze or new/worsening bilateral pitting oedema; elevated pro-NT BNP (≥450pg/mL); radiologist-reported radiographic changes consistent with cardiac failure; or a final consultant physician diagnosis of HF, cardiac failure or left-ventricular failure. When present, ≥1 diagnosis was selected.

For both retrospective and prospective studies, pneumonia included both community and healthcare
 setting acquired cases; although, the prospective review only captured admitting diagnoses and
 pneumonias occurring later during hospitalization were not included.

134 Incidence calculations

 Annual incidence per 100000 persons was calculated for both retrospective and prospective studies.
Case counts from prospective review were annualized (i.e., case counts by diagnosis and overall were
divided by the percentage of annual admissions for these diagnosis groups that occurred in this 21day period in the retrospective analysis).

139 Incidence Denominators

To calculate appropriate population denominators for incidence calculations, aLRTD hospital admission event data were linked to aggregated GP practice patient registration data within the NHS Bristol, North Somerset, and South Gloucestershire CCG for 2017–2019. Only 4% of patients sought care at North Bristol NHS Trust hospital from outside these local CCGs, despite presence of specialist respiratory services. In the UK, GP registration is available free of charge for all, regardless of residential status. For GP practices within these same CCGs, the proportion of their aLRTD admissions occurring at North Bristol NHS Trust was multiplied by their patient registration count in 2019 by age group, to get each practice's contribution to the denominator (e.g. if 50% aLRTD admissions were at North Bristol among persons 50–64 years, the practice would contribute half of their patients 50–64 years to the denominator). Further details of this methodology have been described previously. [18]

151 Statistical analysis

Patient characteristics were tabulated by aLRTD diagnosis. Categorical variables were presented as counts with percentages. Continuous data are presented with means and standard deviations (SD) if normally distributed and medians and interquartile range (IQR) if not normally distributed. Patient groups difference were evaluated using the Friedman test with Wilcoxon signed-rank test.

2		
3 4	157	Results
5 6	158	Retrospective analysis
7 8	159	Over a 12-month period, we identified 7727 hospital admissions for aLRTD: 3005 NP-LRTI admissions,
9	139	
10 11	160	2402 pneumonia, 1633 HF and 1071 other LRTD (Table 1). aLRTD admissions were lowest in March
12 13	161	and April and highest December through February (Figure 1A), overall and for all aLRTD subgroups
14 15 16	162	(P<0.05) (Figure 1B-D). Overall, 28.1% (2244) cases were identified as being potentially hospital-
17 18	163	acquired infection based on co-occurring ICD-10 code 'Y95 Nosocomial Infection'.
19 20	164	
21 22		
23 24	165	Prospective review
25 26	166	Among 1322 eligible adult patients referred to AMU over the 21-day review period (Figure 2), 410
27 28	167	patients had signs or symptoms of aLRTD: 188 (46%) NP-LRTI; 152 (37%) pneumonia, and 77 (19%) HF.
29 30 31	168	Seven patients had both decompensated HF and a respiratory infection at hospital admission. On
32 33	169	admission, >10% of aLRTD patients did not have respiratory symptoms: 16 (11%) pneumonia, 25 (13%)
34 35	170	NP-LRTI, and 18 (14%) HF (Table 2).
36 37 38	171	Almost all adults admitted with aLRTD underwent routine biochemistry, hematology, and radiological
39 40	172	investigation (99.9%, n=409). In contrast, only 150 (37%) patients with aLRTD had microbiological
41 42	173	testing performed: blood cultures (n=149, 36%) and urine cultures (n=143, 35%). Pneumonia patients
43 44 45	174	more commonly underwent microbiological investigation than NP-LRTI patients (P<0.05) with highest
46 47	175	disparity in rates of sputum culture, urinary antigens, and respiratory viral PCR (Table 2). All cardiac
48 49	176	failure patients who underwent microbiological investigation had concomitant respiratory infection
50 51 52	177	(Table 2). Overall, a microbiological diagnosis was found in 11 (3%) cases, highlighting the low
53 54	178	frequency of definitive pathogen identification in aLRTD. Younger patients underwent microbiological
55 56	179	testing more frequently than the elderly for all aLRTD categories (Table 2).
57 58 59 60	180	

181 Disease incidence

Retrospective analysis yielded an overall aLRTD incidence of 1901 per 100000. Disease incidence rose with increasing age (Table 3), both overall and for all disease subgroups; incidences per 100000 among adults aged ≥85 years were: 11430 (aLRTD), 6116 (NP-LRTI), 4215 (pneumonia) and 4005 (HF). Overall, 28.1% aLRTD hospitalizations also included an ICD-10 discharge code for 'nosocomial infection', suggesting the aLRTD event or other infection was hospital-acquired. For pneumonia 25.3% had the nosocomial infection code. If all of these were related to the pneumonia diagnosis, an estimated residual 1794 events would have been community-acquired pneumonia (annual incidence 441/100000 adults). Among older age categories, where the incidence of aLRTD was highest, NP-LRTI incidence was similar to pneumonia incidence, with an approximate 1:1 ratio of NP-LRTI to pneumonia cases. However, among adults under age 50 years, there were approximately twice as many NP-LRTI cases observed as pneumonia cases. Incidence calculations using annualized prospective review results were broadly comparable with retrospective analysis of ICD-10 data (Table 3).

J.C.Z.ONJ

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13 14	
14 15	
16	
16 17	
18	
19	
19 20	
20 21 22 23	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 24	
34 35	
32	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55 56	
56 57	
57 58	
58 59	
59 60	
50	

	194	Discussion:
	195	This is the first UK study to assess aLRTD incidence comprehensively. We conducted an analysis of 12-
	196	months of hospital admissions by ICD-10 diagnosis code data and a 21-day prospective review at a
0	197	large academic hospital in southwest England. With both approaches, we found a high annual
2 3	198	incidence of aLRTD (>1700 per 100000; 1.7%), pneumonia (~0.6%), NP-LRTI without pneumonia
4 5	199	(>0.7%), and HF (>0.4%). Incidences increased sharply in a non-linear manner as age increased above
6 7	200	65 years for all aLRTD categories. These results suggest rates are probably significantly higher than
8 9 0	201	previous disease estimates from the UK (Table 4) but comparable with many results globally, [19, 20]
1 2	202	with important consequences for healthcare resources. For example, a recent review highlighted that
3	203	pneumonia incidences ranged from 1000 to 2500 per 100000 (1–2.5%) among persons aged 65–74
5 6	204	years in Spain, Germany, France, Japan and the US, which are comparable to the >1250 per 100000
7 8	205	(1.3%) reported here. Some of the potential sources of underestimation for other UK incidence studies
9 0 1	206	(Table 4) include: case source and denominator mismatch; use of first position in ICD-code analysis
2	207	only; inclusion of enrolled subjects in consent-based prospective studies only; requiring specific
4 5	208	symptoms and chest x-ray confirmation in order to be classified as pneumonia/aLRTD; and, lastly, the
6 7	209	rising incidence of aLRTD.

210

211 *Comparison with published literature*

No studies have reported aLRTD incidence comprehensively in UK hospitalized patients within the last
20 years. However, eight publications report incidence of ≥1 aLRTD subgroup. Seven publications
reported community-acquired pneumonia (CAP) incidence (three from Nottingham, UK). For
pneumonia, our incidence estimates were three to four-fold higher than other UK inpatient incidence
estimates (Table 4) but comparable to estimates from other countries. [19, 20] Only two UK studies
from approximately 20 years ago reported NP-LRTI incidence (one with both CAP and NP-LRTIs; Table
and only one provided an inpatient estimate. [21] NP-LRTI incidence was approximately 2-fold

BMJ Open

lower than that calculated here, taking into account inclusion of CAP and other NP-LRTI in their
estimates. [21, 22] The one UK study reporting HF incidence had methodological differences (i.e.,
inclusion of outpatients and limiting to initial HF diagnosis) and estimates could not be compared. [23]
Close examination of the existing literature methods yielded multiple sources for potential
underestimation.

First, for incidence studies that were not countrywide, identifying an appropriate denominator is challenging. Like many other inpatient settings worldwide, UK hospitals' catchment areas for acute treatment are principally driven by geography, but the proportion of any area's residents expected to use the hospital becomes less clear as distance from the hospital increases because catchment areas and populations of different hospitals may overlap. Defining hospital catchment populations based solely on census data cannot account for this variability. Including all geographic areas using the hospital to any extent results in population denominator overestimation and underestimated incidence. Here, we addressed this by calculating population denominators based on hospital utilization behavior from referring General Practices.

Second, other studies used fewer codes in their ICD code analysis: all limited their analyses to events where the diagnostic code was in the first position (Table 4; case definition column), potentially excluding admissions in which pneumonia/NP-LRTI complicated other underlying respiratory diseases, including COPD and asthma. Limiting to first position has been shown to reduce sensitivity for pneumonia events by about 30% (66%–72% sensitive). [22, 24] Conversely, the recent British Thoracic Society (BTS) audit on CAP found ~27% of pneumonia events identified by ICD code (J12-18) had no new CXR infiltrates. [6] Even accounting for this potential over coding practice, our estimates remain well above other published UK estimates.

Third, for other prospective studies, exclusion of events where patients did not consent to
 participation or were not identified by study surveillance processes (often conducted predominately
 during business hours) can introduce underestimation. Further, other prospective pneumonia studies

BMJ Open

specifically required documentation of specific symptoms, radiological findings, and treatments, [25]
potentially excluding those without these features documented in medical records. In our prospective
review, approximately 11% did not display typical signs and symptoms of pneumonia and could have
been excluded by that requirement. Requiring CXR confirmation has been shown to reduce incidence
estimates for pneumonia, [20] although all pneumonia events in our prospective review were
radiologically confirmed.

Fourth, trends over time may also contribute to our estimates being higher than previous reports. Our
study's estimates are recent, and rising incidence of pneumonia has been documented in all studies
that have reported such trends. [25-27]

Finally, this study included, in part, hospital-acquired pneumonias (HAP), which were excluded from estimates calculated in some other studies (Table 4). The retrospective analysis may have included more nosocomial infection than the prospective review, as the latter was focused on evaluation of patients at admission for aLRTD and would not have reliably captured events that developed during hospitalization. 25.3% pneumonia events included a nosocomial infection code, but this code could relate to any nosocomial infection during that hospitalization. If all these cases were assumed to be hospital-acquired pneumonia, our estimates community-acquired pneumonia incidence would still be well above prior UK estimates: 441/100000 (≥ 18 years).

While not impacting all-cause aLRTD incidence estimates discussed above, during the prospective review, we found low rates of microbial investigation which prevented us from generating pathogen-specific incidence estimates. Only 52% of patients with radiologically-confirmed pneumonia underwent microbiological testing during hospitalization, with even lower rates in other aLRTD subgroups (41% NP-LRTI and 14% HF). Microbiological testing occurred less frequently as age increased, particularly in NP-LRTI patients. It is possible that, because aLRTD hospitalizations are substantially more common among older persons, less etiologic investigation is performed. Furthermore, clinicians may elect to treat elderly patients with a more pragmatic and less invasive

BMJ Open

approach. Management guidelines do not require specific pathogen identification to inform treatment
choice. Presence only of atypical features on presentation (in this series, 13% NP-LRTI and 11%
pneumonia cases) may also reduce the likelihood of timely microbiological testing. Low rates of
microbiological testing, and consequently of confirmed microbiological diagnosis, may represent a
source of underestimation of pathogen-specific disease incidence in patient groups (i.e., testing bias),
particularly in elderly patient groups.

276 Strengths and Limitations of This Study

This study has many strengths. First, this study used two analytical methods at the same site over a comparable period, to calculate incidence using both prospective and retrospective approaches. Second, the case burden of aLRTD and its subgroups was pre-defined and included patients with atypical presentations but with clinical and/or radiological diagnoses, who may otherwise have been excluded from analysis. Additionally, we calculated incidence using a denominator derived from GP records, providing increased accuracy compared to population calculations based on census data.

However, the study also had some limitations. This was a single-center study, with a predominantly Caucasian cohort; therefore, the findings might not be generalizable to other populations both within the UK and in other countries. Different healthcare systems may affect patient treatment preference, and as the NHS provides care which is free at the point of access, the hospitalization rates seen in this study may be different in fee or insurance based healthcare system. Similarly, physician treatment preferences may affect hospitalization rates, and we have not explored these in this analysis. The ICD-10 coding data analysis was limited to codes within the first five positions, and therefore may have excluded some cases where other diagnoses were placed higher in the diagnostic coding hierarchy. Furthermore, we could not determine how many cases of the 28.1% ICD-10 cases also coded with nosocomial infection had hospital-acquired respiratory infection rather than other nosocomial infections.

Page 17 of 35

BMJ Open

Although the denominator used to calculate incidence was derived from GP records, this was still an estimate as there is no precisely defined denominator hospital catchment. We were unable to exclude patients from outside the local CCGs in the retrospective analysis, due to the way ICD-10 data was obtained. However, these patients were excluded from the prospective review and the incidence calculated was comparable, suggesting any effect that patients attending North Bristol NHS Trust from outside the local CCGs have on incidence estimates is minimal. This may be because any effect of travelling or health-seeking behavior is bi-directional: whilst some patients admitted to Southmead hospital were from outside the local area, it is also true that patients with aLRTD within the relevant CCGs would have been admitted to other hospitals. We also acknowledge the 21-day prospective review period was relatively short, not repeated and may not be fully representative of clinical practice and cases throughout the year. This study was conducted before the emergence of COVID-19, and we think these data will be useful in one of two ways in the context of COVID-19: (1) either COVID-19 will become endemic, and the data will reflect the first year before a new normal, or (2) COVID-19 will abate and it will provide an anchor for understanding incidence during a respiratory viral pandemic'

In conclusion, we found similarly high estimates of LRTD incidence using two different approaches, and these estimates were higher than those obtained previously in the UK. Determining if there is a real increase in incidence, or if this estimate is larger due to more accurate methodology including a more accurate denominator will require ongoing comprehensive surveillance. Nonetheless, combining all types of LRTD highlights the high burden for this important and potentially life-threatening disease group. Incidence assessments require close assessments of potential areas of under ascertainment, including unidentified or unenrolled cases in prospective studies, reduced positions or number of ICD-10 codes included for retrospective studies, and population denominator mismatch for all study types. Our prospective review findings highlight the need to consider atypical clinical presentations for pneumonia and the lack of routine microbiological investigation in many

BMJ Open

 319 aLRTD patients required for pathogen-specific aLRTD incidence calculation. Future research should 320 include a fully prospective assessment of aLRTD incidence with comprehensive diagnostic testing 321 across multiple respiratory seasons, to ensure accurate capture of all aLRTD events, particularly in the 322 elderly. Such research should be undertaken given the high and rising aLRTD burden to enable 323 appropriate healthcare planning and identification of interventions which may reduce disease burden.

<text>

1		
2 3 4	325	Acknowledgements
5	326	We would like to acknowledge the assistance of Qi Yan, PhD (Pfizer, Inc.) who provided
7 8	327	indispensable medical writing and literature review support for this manuscript and Harvey Walsh
9 10 11	328	Health who performed the hospital denominator calculation used here. For the denominator
11 12 13	329	analysis, Hospital Episode Statistics (HES) Data were re-used with the permission of NHS Digital via
14 15	330	Harvey Walsh Limited.
16 17	331	
18 19	332	Data Sharing
20 21	333	No additional data available
22		
23 24		
25 26		
27 28		
29		
30 31		
32 33		
34		
35 36		
37 38		
39		
40 41		
42 43		
44		
45 46		
47 48		
49		
50 51		
52 53		
54		
55 56		
57		
58 59		
60		

2	_		
3 4	334	Refer	ences
5	335		1. Gibson, G.J., et al., Respiratory health and disease in Europe: the new European Lung
6	336		<i>White Book.</i> Eur Respir J, 2013. 42 (3): p. 559-63.
7	337	2.	Cilloniz, C., et al., Impact of age and comorbidity on cause and outcome in community-acquired
8	338		<i>pneumonia.</i> Chest, 2013. 144 (3): p. 999-1007.
9	339	3.	Torres, A., et al., Burden of pneumococcal community-acquired pneumonia in adults across
10	340		Europe: A literature review. Respir Med, 2018. 137 : p. 6-13.
11	341	4.	European Lung White Book. Pneumonia. April 25, 2021]; Available from:
12	342		https://www.erswhitebook.org/chapters/acute-lower-respiratory-
13	343		infections/pneumonia/#:~:text=pneumonia%20(VAP)
14	344		Incidence,000%20cases%20are%20expected%20annually.
15	345	5.	British Lung Foundation. Pneumonia Statistics. April 25, 2021]; Available from:
16 17	346	-	https://statistics.blf.org.uk/pneumonia
17	347	6.	Lim, W. and H. Lawrence, British Thoracic Society. National Audit Report: Adult Community
19	348	0.	Acquired Pneumonia Audit 2018-2019. National Audit Period: 1 December 2018 – 31 January
20	349		2019. 2019.
21	350	7.	Millett, E.R.C., et al., Incidence of community-acquired lower respiratory tract infections and
22	351	7.	pneumonia among older adults in the United Kingdom: a population-based study. PloS one,
23	352		2013. 8 (9): p. e75131-e75131.
24	353	8.	Branche, A.R. and A.R. Falsey, <i>Respiratory Syncytial Virus Infection in Older Adults: An Under-</i>
25		о.	
26	354 255	0	Recognized Problem. Drugs & Aging, 2015. 32 (4): p. 261-269.
27	355	9.	Falsey, A.R. and E.E. Walsh, <i>Respiratory syncytial virus infection in elderly adults</i> . Drugs &
28	356	10	aging, 2005. 22 (7): p. 577-587.
29 30	357	10.	Maughan, B.C., et al., False-negative chest radiographs in emergency department diagnosis of
31	358		pneumonia. R I Med J (2013), 2014. 97 (8): p. 20-3.
32	359	11.	Self, W.H., et al., <i>High discordance of chest x-ray and computed tomography for detection of</i>
33	360		pulmonary opacities in ED patients: implications for diagnosing pneumonia. Am J Emerg Med,
34	361		2013. 31 (2): p. 401-5.
35	362	12.	Cilloniz, C., et al., Microbial aetiology of community-acquired pneumonia and its relation to
36	363		severity. Thorax, 2011. 66(4): p. 340-6.
37	364	13.	Jain, S., et al., Community-Acquired Pneumonia Requiring Hospitalization. N Engl J Med, 2015.
38	365		373 (24): p. 2382.
39	366	14.	Mainor, A.J., et al., ICD-10 Coding Will Challenge Researchers: Caution and Collaboration may
40	367		Reduce Measurement Error and Improve Comparability Over Time. Med Care, 2019. 57(7): p.
41	368		e42-e46.
42 43	369	15.	Burns, E.M., et al., Systematic review of discharge coding accuracy. J Public Health (Oxf), 2012.
44	370		34 (1): p. 138-48.
45	371	16.	Henig, O. and K.S. Kaye, Bacterial Pneumonia in Older Adults. Infect Dis Clin North Am, 2017.
46	372		31 (4): p. 689-713.
47	373	17.	Fine, M.J., et al., Prognosis and outcomes of patients with community-acquired pneumonia. A
48	374		<i>meta-analysis.</i> JAMA, 1996. 275 (2): p. 134-41.
49	375	18.	Campling, J., et al., A novel approach to calculate disease incidence for hospital-based health
50	376		events in England. The Lancet, 2021. 398 : p. S30.
51	377	19.	Chalmers, J., et al., Community-acquired pneumonia in the United Kingdom: a call to action.
52	378		Pneumonia (Nathan), 2017. 9 : p. 15.
53 54	379	20.	Shi, T., et al., Global and Regional Burden of Hospital Admissions for Pneumonia in Older
54 55	380		Adults: A Systematic Review and Meta-Analysis. J Infect Dis, 2020. 222(Suppl 7): p. S570-S576.
56	381	21.	Lovering, A.M., et al., <i>Epidemiology and resource utilization for patients hospitalized for lower</i>
57	382		respiratory tract infection. Clin Microbiol Infect, 2001. 7 (12): p. 666-70.
58			, , . ,
59			
60			

1 2			
- 3 4 5	383 384	22.	Yu, O., et al., Classification algorithms to improve the accuracy of identifying patients hospitalized with community-acquired pneumonia using administrative data. Epidemiology
6	385 386	23.	and Infection, 2011. 139 (9): p. 1296-1306. Uijl, A., et al., <i>Risk factors for incident heart failure in age- and sex-specific strata: a population-</i>
7 8	387	201	based cohort using linked electronic health records. Eur J Heart Fail, 2019. 21 (10): p. 1197-
9	388		1206.
10 11	389 390	24.	van de Garde, E.M.W., et al., International classification of diseases codes showed modest sensitivity for detecting community-acquired pneumonia. Journal of Clinical Epidemiology,
12	390 391		2007. 60 (8): p. 834-838.
13 14	392	25.	Pick, H., et al., Pneumococcal serotype trends, surveillance and risk factors in UK adult
14	393	•	<i>pneumonia, 2013–18</i> . Thorax, 2020. 75 (1): p. 38.
16	394 395	26.	Elston, J.W.T., et al., Increasing incidence of invasive pneumococcal disease and pneumonia despite improved vaccination uptake: surveillance in Hull and East Yorkshire, UK, 2002–2009.
17 18	396		Epidemiology and Infection, 2012. 140 (7): p. 1252-1266.
19	397	27.	Thorrington, D., et al., Elucidating the impact of the pneumococcal conjugate vaccine
20	398		programme on pneumonia, sepsis and otitis media hospital admissions in England using a
21 22	399		composite control. BMC Medicine, 2018. 16 (1): p. 13.
23	400		
24 25	401		
26	401		
27 28			
20 29			
30			
31 32			
33			
34 35			
35 36			
37			
38 39			
40			
41			
42 43			
44			
45 46			
40 47			
48			
49 50			
51			
52 53			
55 54			
55			
56 57			
58			
59			
60			

BMJ Open

Table 1: Demographic Characteristics of Patients admitted with aLRTD for 1 Year ICD-10 code Retrospective Analysis and 21-day Prospective Review

Period -- 2018-2019

Characteristic	Pneumonia		NP-LRTI		Heart Failure		Other LRTD	All LRTD	
Study	Prospective review	Retrospective analysis	Prospective review	Retrospective analysis	Prospective review	Retrospective analysis	Retrospective Review Only	Prospective review	Retrospective analysis
N	152	2402	188	3005	77	1633	1071	410	7727
Gender, females	61 (40)	1078 (45)	99 (53)	1482 (49)	39 (51)	731 (45)	489 (46)	194 (47)	3780 (49)
Age	I				I	I		1	
Median (IQR), y	80 (67-86)	81 (66-88)	70 (46-87)	69 (45-87)	87 (72-90)	87 (70-90)	74 (53-82)	80 (64-88)	81 (65-90)
18-24	4 (3)	72 (3)	9 (5)	151 (5)	0 (0)	0 (0)	26 (2)	13 (3)	249 (3)
25-34	2 (2)	48 (2)	12 (6)	183 (6)	0 (0)	3 (0)	33 (3)	14 (3)	267 (3)
35-44	6 (4)	97 (4)	14 (7)	209 (7)	2 (3)	10 (1)	59 (6)	22 (5)	375 (5)
45-54	8 (5)	118 (5)	11 (6)	183 (6)	0 (0)	22 (1)	112 (10)	19 (5)	435 (6)
55-64	18 (12)	293 (12)	19 (10)	305 (10)	8 (10)	158 (10)	210 (20)	45 (11)	966 (13)
65-74	34 (22)	501 (21)	32 (17)	549 (18)	10 (15)	199 (12)	223 (21)	75 (18)	1472 (19)
75-84	44 (28)	667 (28)	40 (21)	621 (21)	20 (30)	498 (31)	205 (19)	100 (24)	1991 (26)
≥85	38 (26)	606 (25)	51 (27)	704 (23)	37 (55)	742 (45)	203 (19)	123 (30)	2255 (29)

 Table 2. Clinical Characteristics and Investigations of Patients admitted with aLRTD over 21-day

 Prospective Review Period in August-September 2020

Characteristic	Pneumonia n=152 (%)	NP-LRTI n=188 (%)	Heart Failure n=77 (%)	All LRTD n=410 (%)	
GP	56 (37)	72 (39)	30 (39)	158 (39)	
A&E department	93 (61)	100 (54)	45 (58)	238 (58)	
Transfer from another unit	2 (1)	13 (7)	0 (0)	15 (4)	
Other	1 (1)	1 (1)	2 (3)	4 (1)	
Referral Source					
Typical features ⁺	136 (89)	163 (87)	63 (82)	355 (87)	
Atypical features	16 (11)	25 (13)	14 (18)	55 (13)	
- collapse/falls	11 (7)	12 (6)	0 (0)	23 (6)	
- confusion	0 (0)	7 (4)	4 (5)	10 (2)	
- drowsiness	1 (1)	1 (1)	2 (3)	4 (1)	
- off legs/generally unwell	5 (3)	5 (3)	8 (10)	18 (4)	
LRTD Signs and symptoms on re	eferral to AMU				
Biochemistry	152 (100)	185 (99)	77 (100)	419 (100)	
Haematology	152 (100)	185 (99)	77 (100)	419 (100)	
Radiology	152 (100)	185 (99)	77 (100)	419 (100)	
Investigations Performed		·			
Testing by Age Group	6				
All patients	79/152 (52)*	77/188 (41)	11/77 (14)	167 (41)	
18-24	3/4 (75)	6/9 (66)	0/0 (0)	9/13 (69)	
25-34	0/0 (0)	6/12 (50)	0/0 (0)	6/12 (50)	
35-44	5/6 (83)	10/14 (71)	2/2 (100)	17/22 (77)	
45-54	6/8 (75)	6/11 (55)	0/0 (0)	13/19 (68)	
55-64	11/18 (61)	12/19 (63)	5/8 (63)	31/45 (69)	
65-74	15/34 (44)	12/32 (38)	1/10 (10)	28/75 (37)	
75-84	21/43 (49)	10/40 (25)	2/20 (10)	33/100 (33)	
≥85	18/39 (46)	15/51 (19)	1/37 (3)	34/124 (27)	
Test performed			~		
Blood culture	79 (52)	70 (37)	5 (6)	150 (37)	
Urine culture	66 (43)	77 (41)	11 (14)	150 (37)	
Sputum culture	27 (18)*	7 (4)	2 (3)	35 (9)	
BinaxNOW [®] Pn UAT ‡	29 (19)*	6 (3)	0 (0)	35 (9)	
Respiratory virus PCR	16 (11)*	11 (6)	1 (1)	28 (7)	
Pleural fluid culture	3 (2)	0 (0)	1 (1)	4 (1)	

A&E, Accident and Emergency department; GP, general practitioner; LRTD, lower respiratory tract disease; NP-LRTI, non-pneumonic lower respiratory tract infection; IQR, interquartile range; Pn UAT, pneumococcal urinary antigen test; PCR, polymerase chain reaction.

* *P*<0.05.

Typical symptoms included cough, breathlessness, increased or discolored sputum production, wheeze, pleurisy, peripheral oedema, hemoptysis, reduced exercise tolerance and/or fever.
BinaxNOW Pn UAT was only performed in accordance with NICE/BTS guidelines.

Table 3: Incidence of aLRTD resulting in hospital admission based on prospective and retrospective approaches by age group and condition, North Bristol National Health Service Trust- United Kingdom 2018-2019.

			Age	Groups		
	All Adults	18-49 y	50-64 y	65-74 y	75-84 y	≥85 y
Population in 2018	406481	226920	91534	45705	29487	1283
Retrospective Analysis of	a Year's ICD-10) codes				
Annual cases – N (row %)						
All aLRTD	7,727	1,130 (14)	1,103 (14)	1,684 (22)	2,053 (27)	1,757 (2
Pneumonia	2,402	264 (11)	288 (12)	589 (25)	720 (30)	541 (2
NP-LRTI	3,005	576 (19)	410 (14)	572 (19)	662 (22)	785 (2
Other LRTD	1,071	246 (23)	268 (25)	226 (21)	200 (19)	131 (1
Heart Failure	1,633	48 (3)	189 (12)	397 (24)	485 (30)	514 (3
LRTI/Pneumonia Ratio	1.3	2.2	1.4	1.0	0.9	1.5
Incidence (per 100,000)						
All aLRTD	1,901	497	1,205	3,684	6,962	13,689
Pneumonia	591	116	315	1,289	2,442	4,215
NP-LRTI	739	254	448	1,252	2,245	6,116
Other LRTD	263	108	293	494	678	1,021
Heart Failure	402	21	206	869	1,645	4,005
21-day Prospective Review	w (annualized)					
Annualized cases – N (row %)						
All aLRTD	7,885	1,038	962	1,692	2,231	1,962
Pneumonia	2,621	224	397	776	690	534
NP-LRTI	3,857	796	531	653	1,061	816
Heart Failure	2,000	51	205	308	641	795
LRTI/Pneumonia Ratio	1.5	3.6	1.3	0.8	1.5	1.5
Incidence (per 100,000)						
All aLRTD	1,940	458	1,050	3,703	7,565	15,283
Pneumonia	645	99	433	1,698	2,339	4,164
NP-LRTI	944	351	580	1,429	3,599	6,360
Heart Failure	492	23	224	673	2,174	6,193

LRTI = lower respiratory tract infection; LRTD = lower respiratory tract disease.

Pneumonia category includes community and healthcare acquired. For retrospective ICD-10 based cohort, the following mutually exclusive hierarchy was used to define pneumonia, LRTI, and other LRTD; heart failure event could overlap with other categories.

"Other LRTD" contains LRTD events that could not definitively be placed in one of the other respiratory disease categories.

1 2 3

4

5

 BMJ Open

Table 4: Literature review of aLRTD incidence in hospit	talized adults, United Kingdom
---	--------------------------------

Study	Study Years	Location (Facility)	Event Setting	Age	Case Definition ^b	Key inclusion	Denominator Source	Overall Incidence	Age Breakdown (years)	Incidence per 100,000 by age ^d	Comments
Community -	-acquired Pne	umonia									
Current	2018 -	Bristol	Inpatients	≥18 y	Clinical signs/symptoms with	Hospital-	Based on number of persons	648	18 – 49	116	Retrospective
Study	2019	(Southmead Hospital)	only		radiological change in keeping with infection (prospective review portion)	acquired pneumonia	I ≥18 years registered in referring GP practices. For practices with	I	50 –64	315	analysis includes 1 st 5 positions
		nospitaly			AND	(HAP)	split referral patterns, number		65 –74	1,289	5 posicions
					Retrospective ICD-10 code analysis (1 st	included	adjusted for percent of	591	75 –84	2,442	
					5 positions): J12-J18, J85, and J86		admissions that came to Southmead.	001			
	T	1				I		Γ	≥85	4,215	
Elston 2012,	2002 – 2009	Hull and East Yorkshire	Inpatients only	≥16 y	ICD-10 codes (1 st position only): J18.0, J18.9, J13X, J18.1, and J15X	HAP included	Mid-year population estimates for Hull (city) and EroY	143 (2002)	15 –64	48.8 – 84.1	Fewer ICD-10 codes included
Epidemiol Infect	2009	Hospitals ^c	Only		J16.5, J15A, J16.1, allu J15A	included	(Surrounding County) from Office for National Statistics	207 (2009)	≥65	543 –	than other analyses; Y95
iniect										781	Nosocomial infection included.
Millet	1997 –	UK	Both	≥65 y	Read and ICD 10 codes; no specified	HAP	Mid-year UK population	799	65 –69	281	Incidence
2013, J Clin Epidemiol	2011		inpatients and		codes provided. For ICD-10, used first diagnosis code for first episode of	Excluded	estimates from Office for National Statistics		70 –74	431	estimates converted to per
			outpatients	l	hospitalization only.				75 –79	694	100,000 person- years
									80 –84 y	1,205	yeard
									85 –89	2,184	
									≥90	4,194	
Pick 2020,	2013 -	Nottingham	Inpatients	≥16 y	Inclusion criteria: one or more	HAP	Mid-year estimates for the	96.3	16 –49	27.3	Only
Thorax ^a	2014	(2 large university hospitals)	only	I	symptom suggestive of LRTI (defined as cough, increasing dyspnea, sputum production and fever), with evidence of	Excluded	 Greater Nottingham area from the Office for National Statistics, including local population data 	I	50 –64	80.2	consented/enrolled subjects included in estimates
		nospitais)			acute infiltrates consistent with		stratified by age group		65 –74	181.3	Required CXR -
					respiratory infection on admission				75 –84	400.6	confirmation but
					radiography, and treated for a diagnosis of CAP Exclusion criteria:				75 04	400.0	not all LRTI patients had CXR
					hospitalization within 10 days of index				≥85	707.5	Census-derived
	2017 –				admission, a diagnosis of tuberculosis or post-obstructive pneumonia.			158.4	16 –49	29.9	denominator that may not have fully
	2018	I						I	50 –64	146.9	matched catchment area.

BMJ Open

	2013 – 2018							120.4	65 -74 75 -84 ≥85 	310.4 559.5 1522.6	Required specific symptoms and evidence of treatment and some CAP events may not have had this information
Thorrington 2019, BMC	2004 – 2005	England	Inpatients only	≥65 y	ICD 10 codes (1 st position only): J18 (pneumonia of unspecified causative	HAP Included	Mid-year population estimates for England for 2004 to 2015	NA	≥65	829	documented Incidence is per 100,000 person-
Med	2014 – 2015				organism)		from Office for National Statistics		≥65	1787	years. Fewer ICD- 10 codes included than other analyse
Trotter 2008, EID	1997 – 1998	England	Inpatients only	≥65 y	ICD 10 codes (1 st position only): J12 – J18	HAP Included	Mid-year population estimates for England for 1997 to 2004	NA	65 –74	263	Incidence estimates
			,				from the Office for National		75 –84	684	converted to
							Statistics		≥85	1599	100,000 population
	2004 -								65 - 74	355	_
	2005	I							75 –84	877	
Lower Resni	ratory Tract I	Infection		-		Pneumonia			≥85	2218	
Lower Respir Current	ratory Tract I 2018 –	nfection Bristol	Inpatients	 ≥18 y	Clinical signs/symptoms of heart failure	Pneumonia Excludes all	Based on number of persons	802			
	1	Bristol (Southmead	Inpatients only	-	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological	L	≥18 years registered in referring	802	≥85	2218	
Current	2018 -	Bristol		-	Clinical signs/symptoms of heart failure	Excludes all		802	≥85 18-49	2218	
Current	2018 -	Bristol (Southmead		-	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis:	Excludes all	≥18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of	802	≥85 18 -49 50 -64	2218 254 448	
Current	2018 -	Bristol (Southmead		-	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42,	Excludes all	≥18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to		≥85 18 -49 50 -64 65 -74	2218 254 448 1,252	
Current	2018 -	Bristol (Southmead		-	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis:	Excludes all	≥18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of	802	≥85 18 -49 50 -64	2218 254 448	
Current	2018 -	Bristol (Southmead		-	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42,	Excludes all	≥18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to		≥85 18 -49 50 -64 65 -74	2218 254 448 1,252	
Current Study Lovering	2018 - 2019 1994 -	Bristol (Southmead Hospital) Bristol	only	-	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42, J44, J45, and J46 LRTI episodes from four groups by ICD	Excludes all Pneumonia	>18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to Southmead.		≥85 18 -49 50 -64 65 -74 75 -84	2218 254 448 1,252 2,442	Incidence
Current Study	2018 - 2019	Bristol (Southmead Hospital) Bristol (Southmead	only	≥18 γ	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42, J44, J45, and J46 LRTI episodes from four groups by ICD 9/10 codes: (1) CAP; (2) chest infection	Excludes all Pneumonia Includes Community-	≥18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to Southmead.	739	≥85 18 -49 50 -64 65 -74 75 -84 ≥85	2218 254 448 1,252 2,442 6,116	converted to per
Current Study Lovering 2001, Clinical Micro. &	2018 - 2019 1994 -	Bristol (Southmead Hospital) Bristol	only	≥18 γ	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42, J44, J45, and J46 LRTI episodes from four groups by ICD 9/10 codes: (1) CAP; (2) chest infection or acute exacerbation in presence of asthma; (3) chest infection or acute	Excludes all Pneumonia	>18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to Southmead.	739	≥85 18 -49 50 -64 65 -74 75 -84 ≥85 16 -39	2218 254 448 1,252 2,442 6,116 151	converted to per
Current Study Lovering 2001, Clinical	2018 - 2019 1994 -	Bristol (Southmead Hospital) Bristol (Southmead	only	≥18 γ	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42, J44, J45, and J46 LRTI episodes from four groups by ICD 9/10 codes: (1) CAP; (2) chest infection or acute exacerbation in presence of asthma; (3) chest infection or acute exacerbation in presence of COPD; or	Excludes all Pneumonia Includes Community- acquired	>18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to Southmead.	739	≥85 18 -49 50 -64 65 -74 75 -84 ≥85 16 -39 40 -49	2218 254 448 1,252 2,442 6,116 151 175	converted to per 100,000 population Study involved single hospital an
Current Study Lovering 2001, Clinical Micro. &	2018 - 2019 1994 -	Bristol (Southmead Hospital) Bristol (Southmead	only	≥18 γ	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42, J44, J45, and J46 LRTI episodes from four groups by ICD 9/10 codes: (1) CAP; (2) chest infection or acute exacerbation in presence of asthma; (3) chest infection or acute	Excludes all Pneumonia Includes Community- acquired	>18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to Southmead.	739	≥85 18 -49 50 -64 65 -74 75 -84 ≥85 16 -39 40 -49 50 -59	2218 254 448 1,252 2,442 6,116 151 175 294 1,086	converted to per 100,000 populati Study involved
Current Study Lovering 2001, Clinical Micro. &	2018 - 2019 1994 -	Bristol (Southmead Hospital) Bristol (Southmead	only	≥18 γ	Clinical signs/symptoms of heart failure or elevated pro-NT BNP or radiological change AND Retrospective ICD-10 code analysis: J09, J10, J11; J20, J21, J22, J40, J41, J42, J44, J45, and J46 LRTI episodes from four groups by ICD 9/10 codes: (1) CAP; (2) chest infection or acute exacerbation in presence of asthma; (3) chest infection or acute exacerbation in presence of COPD; or (4) bronchitis with no radiological	Excludes all Pneumonia Includes Community- acquired	>18 years registered in referring GP practices. For practices with split referral patterns, number adjusted for percent of admissions that came to Southmead.	739	≥85 18 -49 50 -64 65 -74 75 -84 ≥85 16 -39 40 -49 50 -59 60 -69	2218 254 448 1,252 2,442 6,116 151 175 294	converted to per 100,000 populati Study involved single hospital an no mention of

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

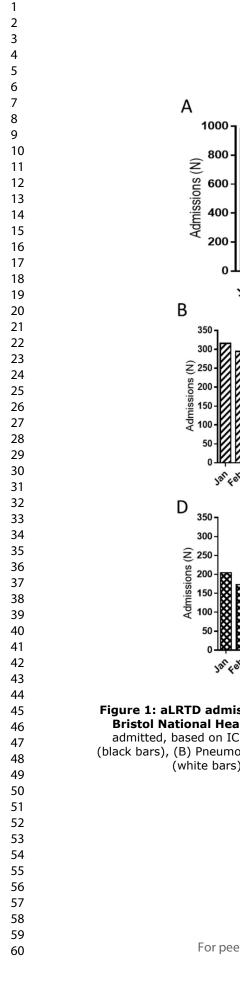
2013, J Clin	2011		inpatients		codes provided. For ICD-10, used first	Community-	estimates from Office for		70 –74	10,740	converted to pe
Epidemiol			and outpatients		diagnosis code for inpatient episode only.	acquired Pneumonia	National Statistics. (Patients were not considered at risk for		75 –79	12,607	100,000 persor years
			outpatients		only.	Theumonia	community-acquired LRTI during		80 – 84	15,137	years
							an LRTI illness-episode, during a			-	
							HES hospitalization, or for 14		85 –89	18,791	
						HAP	days after any HES		≥90	26,287	
						Excluded	hospitalization or CPRD hospital				
							code. This person-time was				
							excluded from denominator.)				
						All or First					
Heart Failure	1					Episode					
Current	2018-2019	Bristol	Inpatients	≥18 y	Clinical signs/symptoms of heart failure	All	Based on number of persons	328	18 – 49	21	
Study	1	l (Southmead	l only		or elevated pro-NT BNP or radiological	I	≥18 years registered in referring		50 –64	206	
		Hospital)			change		GP practices. For practices with		50-04	200	
							split referral patterns, number		65 –74	869	
					AND		adjusted for percent of admissions that came to	402	75 –84	1,645	
					Determenting ICD 10 and a malurize		Southmead.		205	4.005	
					Retrospective ICD-10 code analysis: 1110; 1130; 1132; 150		Southinead.		≥85	4,005	
					1110, 1130, 1132, 150						
Uijl 2019,	2000 -	UK	Both	≥55 v	4 sources of HER were linked: CPRD	First	Not Reported	Not	55 –64, M	360	Incidence
Eur J Heart	2010		inpatients		primary care records, HES secondary	episode at		Reported			converted to p
Fail			and		care hospital charges, Myocardial	55 years or		-	55 –64, F	190	100,000 perso
			outpatients		Ischaemia National Audit Project	older					years
					(MINAP) disease registry, and ONS	counted			65 –74, M	1,360	Included first
					national death registry. HES ICD-10				65 –74, F	920	episode of HF
					codes: Heart failure: 1110, 1130, 1132,				>75, M	3,440	(inpatient or
					I260, I50 and I21. Individuals were				-	-	outpatient) at
					excluded if they presented a history of				>75, F	2,800	55 and up, so
					HF before their index date in CPRD, HES or MINAP.						repeat episode not included.
					TES UT WIINAP.						not included.

^b Add text names for all listed ICD codes in this footnote or appendix.

^c Included hospitals were Hull Royal Infirmary, Castle Hill Hospital, Princess Royal Hospital, Scarborough District General Hospital, Bridlington & District Hospital, York Teaching Hospital, Scunthorpe General Hospital, Goole & District Hospital.

^d For the current study, only age-group estimates from the retrospective analysis were included in this table, but these were closely comparable to the annualized incidence estimates based on the prospective review. See Table 3 for full results.

Figure Legends:


Figure 1: aLRTD admissions identified by Retrospective ICD-10 diagnostic code analysis at North Bristol National Health Service Trust— United Kingdom 2018–2019.

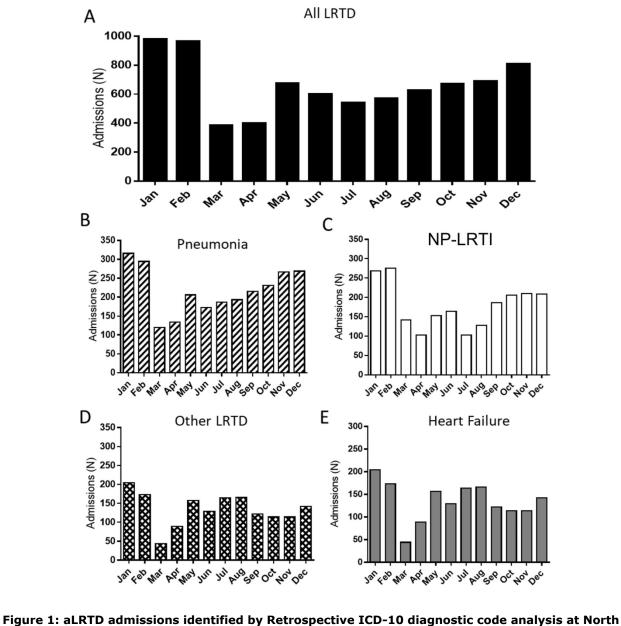

Monthly number of patients admitted, based on ICD-10 coding analysis, with (A) all acute Lower Respiratory Tract Disease (aLRTD) (black bars), (B) Pneumonia (slashed bars), (C) Non-pneumonic Lower Respiratory Tract Infection (NP-LRTI) (white bars), (D) Other LRTD (cross-hash bars), and (E) ,1) Heart Failure (grey bars).

Figure 2: Flow diagram of the Prospective Review

 BMJ Open

For peer review only For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Bristol National Health Service Trust— United Kingdom 2018–2019. Monthly number of patients admitted, based on ICD-10 coding analysis, with (A) all acute Lower Respiratory Tract Disease (aLRTD) (black bars), (B) Pneumonia (slashed bars), (C) Non-pneumonic Lower Respiratory Tract Infection (NP-LRTI) (white bars), (D) Other LRTD (cross-hash bars), and (E) Heart Failure (grey bars).

169x207mm (300 x 300 DPI)

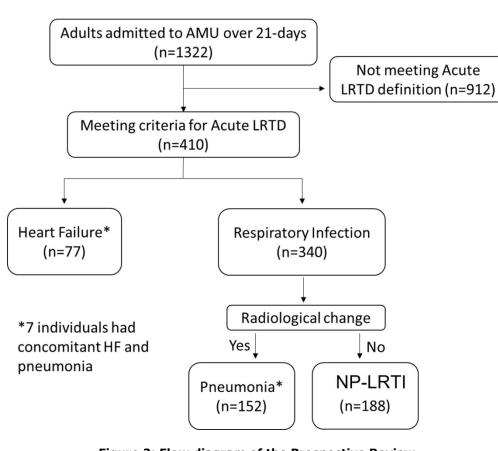


Figure 2: Flow diagram of the Prospective Review

149x123mm (300 x 300 DPI)

Supplementary Data 1: ICD-10 codes used for patient identification for Retrospective
Analysis

ICD- 10 code	Definition	Pneumonia	NP-LRTI	HF	Other aLRTD
J09	Influenza due to identified zoonotic or pandemic influenza virus		X		
J10	Influenza due to identified seasonal influenza virus		X		
J11	Influenza, virus not identified		X		
J12	Viral pneumonia, not elsewhere classified	Х			
J13	Pneumonia due to <i>Streptococcus</i> pneumoniae	Х			
J14	Pneumonia due to Haemophilus influenzae	Х			
J15	Bacterial pneumonia, not elsewhere classified	Х			
J16	Pneumonia due to other infectious organisms, not elsewhere classified	X			
J17	Pneumonia in diseases classified elsewhere	X			
J18	Pneumonia, organism unspecified	X			
J20	Acute bronchitis		Х		
J21	Acute bronchiolitis		X		
J22	Unspecified acute lower respiratory infection		X		
J40	Bronchitis, not specified as acute or chronic		Х		
J41	Simple and mucopurulent chronic bronchitis		X		
J42	Unspecified chronic bronchitis		X		
J43	Emphysema				X
J44	Other chronic obstructive pulmonary disease (including J44.0 chronic		J44.0 only		X (J44.0)

1	
2	
3	
Λ	
4	
4 5 6 7	
6	
-	
/	
8	
/ 8 9 10	
9	
9 10	
11	
12	
13	
14 15	
14	
15	
16	
17	
16 17 18	
18	
19	
20	
20	
21	
22	
22	
20 21 22 23 24 25 26 27 28 29 30	
24	
25	
25	
26	
27	
20	
28	
29	
30	
50	
31	
32	
33	
33	
34 35	
35	
22	
36 37	
37	
38	
39	
40	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
59	
60	

	obstructive pulmonary disease with				
	acute lower respiratory infection)				
J45	Asthma				Х
J46	Status asthmaticus				Х
J47	Bronchiectasis				Х
J85	Abscess of lung and mediastinum		X		
J86	Pyothorax		X		
J90	Pleural effusion, not elsewhere classified				Х
J91	Pleural effusion in conditions classified elsewhere				Х
J95	Postprocedural respiratory disorders, not elsewhere classified				Х
J96	Respiratory failure, not elsewhere classified				Х
J98	Other respiratory disorders				Х
J99	Respiratory disorders in diseases classified elsewhere	2.			X
I110	Hypertensive heart disease with heart failure	0		X	
I130	Hypertensive heart and chronic kidney disease with heart failure and stage 1 through stage 4 chronic kidney disease	2		X	
I132	Hypertensive heart and chronic kidney disease with heart failure and with stage 5 chronic kidney disease, or end stage renal disease		1	x	
150	Heart failure			X	

Supplementary Data 2: Case Definitions

Condition	Definition	Reference
Acute Lower Respiratory Tract Disease (aLRTD)	Acute lower respiratory tract disease (aLRTD) encompasses pneumonia, non-pneumonic lower respiratory tract infection (LRTI), acute bronchitis, exacerbation of underlying respiratory disease including asthma and chronic obstructive pulmonary disease (COPD), and cardiac failure with respiratory symptoms.	
	Pneumothorax, pulmonary embolism, progression or new diagnosis of primary or secondary lung malignancy were excluded from aLRTD.	
Pneumonia	 Pneumonia was defined as infection affecting the airways (below the level of the larynx), with either: (1) an acute illness with radiographic shadowing which was at least segmental or present in more than one lobe and was not known to be previously present or due to other causes (2) in the absence of radiological investigation, clinical confirmation of pneumonic disease in the opinion of the treating physician 	Lim WS, Baudouin SV, George RC, <i>et al</i> ; Pneumonia Guidelines Committee of the BTS Standards of Care Committee. BTS guidelines for the management of community acquired pneumonia in adults: update 2009. Thorax. 2009 Oct;64 Suppl 3:iii1-55.
Non-Radiologically Proven Lower Respiratory Tract Infection (NP-LRTI)	An infection that affects the airways (below the level of the larynx) including the trachea and alveoli, with neither the presence of radiological change nor a clinical diagnosis of pneumonia from the treating physician, i.e. non-pneumonic infection in the lungs.	Anderson W, Winter J. Managing LRTI in adults in the community. Practitioner. 2009 Nov;253(1723):21-5, 2-3. PMID: 20043506.
Cardiac/Heart Failure (HF)	A clinical syndrome with symptoms and/or signs caused by a structural and/or functional cardiac abnormality and corroborated by elevated natriuretic peptide levels and or objective evidence of pulmonary or systemic congestion.	Bozkurt, Biykem et al.Universal Definition and Classification of Heart Failure. Journal of Cardiac Failure, Volume 27, Issue 4, 387 – 413.
Other aLRTD	aLRTD which was neither pneumonia, NP-LRTI nor HF was classified as 'Other aLRTD'. This therefore includes non-infective exacerbations of chronic respiratory disease such as asthma, COPD and bronchiectasis	

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	3
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	3
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5-6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods	-	and Tree effectives, and South the Level of Management	-
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7-9
5		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	7-9
1	-	methods of selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	8
		confounders, and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	7-8
measurement	-	of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	15-1
Study size	10	Explain how the study size was arrived at	7-8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	8-9
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	NA
		(<i>d</i>) <i>Cohort study</i> —If applicable, explain how loss to follow-up was	NA
		addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and	
		controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking	
		account of sampling strategy	

Continued on next page

2
3
4
- -
5
6
7 8
7 8 9
9
10
11
12
12
14
14
15
16
17
18
10
13 14 15 16 17 18 19
20
20 21
22
22 23
23 24 25 26 27 28
24
25
26
27
20
20
29
30
31
32
32 33
33
34 35 36 37 38
35
36
27
57
38
39
40
41
42
43
44
45
46
40 47
48
49
50
51
53
54
55
56
50
57
58
59
60
00

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	10,
		eligible, examined for eligibility, confirmed eligible, included in the study,	21-
		completing follow-up, and analysed	24
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	24
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	21-
data		information on exposures and potential confounders	24
		(b) Indicate number of participants with missing data for each variable of interest	NA
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	10-
			11,
			21-
			24
		Case-control study—Report numbers in each exposure category, or summary	NA
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	NA
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	11
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	NA
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	10,
		sensitivity analyses	21-
			25
Discussion			
Key results	18	Summarise key results with reference to study objectives	12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	15
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	12-
		multiplicity of analyses, results from similar studies, and other relevant evidence	16
Generalisability	21	Discuss the generalisability (external validity) of the study results	12-
			16

Other information

 Funding
 22
 Give the source of funding and the role of the funders for the present study and, if
 1

 applicable, for the original study on which the present article is based
 1

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.