Prebiotic catalytic peptide ligation yields proteinogenic peptides by intramolecular amide catalyzed hydrolysis facilitating regioselective lysine ligation in neutral water.

Jyoti Singh^{‡1}, Daniel Whitaker^{‡1}, Benjamin Thoma¹, Saidul Islam^{1,2}, Callum S. Foden¹, Abil E. Aliev¹, Tom D. Sheppard¹, and Matthew W. Powner^{*1}

¹Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK ²Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK

Contents

General	.4
Catalyst screening for the coupling of N-acetylglycine nitrile ${f 1}$ with alanine ${f 2}_{A}$.5
Coupling of 1 with L-alanine 2_{A} catalyzed by $\mathbf{6a}$ at room temperature	.6
Coupling of 1 with L-alanine 2_{A} catalyzed by $\mathbf{6b}$ at room temperature	10
Coupling of 1 with L-alanine $2_{\mathtt{A}}$ catalyzed by $\mathbf{6c}$ at room temperature	12
Coupling of 1 with L-alanine 2_{A} catalyzed by 6d at room temperature	14
Coupling of 1 with L-alanine 2_{A} catalyzed by $\mathbf{6e}$ at room temperature	15
Coupling of 1 with L-alanine 2_{A} catalyzed by $\mathbf{6f}$ at room temperature	16
Coupling of 1 with L-alanine 2_{A} catalyzed by $\mathbf{6g}$ at room temperature	18
Coupling of 1 with L-alanine 2_{A} catalyzed by $\mathbf{6h}$ at room temperature	22
Coupling of N-acetylglycine nitrile 1 with α -amino acids 2 at pH 8.5 and room temperature	25
Coupling of ${f 1}$ with L-alanine ${f 2}_{A}$ at pH 8.5 and room temperature	26
Coupling of ${f 1}$ with L-aspartic acid ${f 2}_{ m D}$ at pH 8.5 and room temperature	28
Coupling of 1 with L-arginine 2_{R} at pH 8.5 and room temperature	30
Coupling of ${f 1}$ with L-asparagine ${f 2}_{N}$ at pH 8.5 and room temperature	32
Coupling of 1 with L-glutamic acid 2_{E} at pH 8.5 and room temperature	34
Coupling of 1 with L-glutamine $2_{\mathbf{Q}}$ at pH 8.5 and room temperature	36
Coupling of 1 with glycine 2_{G} at pH 8.5 and room temperature	38
Coupling of 1 with L-histidine 2_{H} at pH 8.5 and room temperature	40
Coupling of 1 with L-isoleucine 2 $_{\rm I}$ at pH 8.5 and room temperature	42
Coupling of ${f 1}$ with L-leucine ${f 2}_L$ at pH 8.5 and room temperature	44
Coupling of 1 with L-lysine $2_{\mathbf{K}}$ at pH 8.5 and room temperature	46
Coupling of ${f 1}$ with DL-methionine ${f 2}_{M}$ at pH 8.5 and room temperature	48
Coupling of ${f 1}$ with L-phenylalanine ${f 2}_F$ at pH 8.5 and room temperature	50
Coupling of ${f 1}$ with L-proline ${f 2}_P$ at pH 8.5 and room temperature	52
Coupling of ${f 1}$ with L-serine ${f 2}_{S}$ at pH 8.5 and room temperature	54
Coupling of ${f 1}$ with L-tryptophan ${f 2}_w$ at pH 8.5 and room temperature	56
Coupling of 1 with L-threonine 2_{T} at pH 8.5 and room temperature	58
Coupling of 1 with L-valine 2_{v} at pH 8.5 and room temperature	60
Competitive coupling of ${f 1}$ with glycine ${f 2}_{G}$ and ammonium chloride	51
Coupling of N-acetylglycine nitrile 1 with α -amino amides 2' at pH 8.5 and room temperature	53
Coupling of N-acetylglycine nitrile ${f 1}$ with L-alaninamide ${f 2_A}'$ at pH 8.5 and room temperature . (54
Coupling of N-acetylglycine nitrile ${f 1}$ with L-aspartic acid amide ${f 2}_{D}$ at pH 8.5 and room temperature	66

	Coupling of N-acetylglycine nitrile 1 with L-arginine amide $2_R'$ at pH 8.5 and room temperature
	Coupling of N-acetylglycine nitrile 1 with L-asparagine amide $2_N'$ at pH 8.5 and room temperature
	Coupling of N-acetylglycine nitrile 1 with L-glutamic acid amide 2_{ϵ} at pH 8.5 and room temperature75
	Coupling of N-acetylglycine nitrile 1 with L-glutamine amide 2 _Q ' at pH 8.5 and room temperature
	Coupling of N-acetylglycine nitrile 1 with glycinamide 2_{G} at pH 8.5 and room temperature80
	Coupling of N-acetylglycine nitrile 1 with L-histidine amide 2 _H ' at pH 8.5 and room temperature83
	Coupling of N-acetylglycine nitrile 1 with L-isoleucinamide 2 ¹ at pH 8.5 and room temperature
	Coupling of N-acetylglycine nitrile 1 with L-leucinamide 2 ¹ at pH 8.5 and room temperature88
	Coupling of N-acetylglycine nitrile 1 with DL-methionine amide 2_M 'at pH 8.5 and room temperature91
	Coupling of N-acetylglycine nitrile 1 with L-phenylalaninamide 2 _F ' at pH 8.5 and room temperature
	Coupling of N-acetylglycine nitrile 1 with L-prolinamide 2_{P} at pH 8.5 and room temperature96
	Coupling of N-acetylglycine nitrile ${f 1}$ with L-serinamide ${f 2}_{s}{f \prime}$ at pH 8.5 and room temperature98
	Coupling of N-acetylglycine nitrile ${\bf 1}$ with L-tryptophan amide ${\bf 2}_w{}^{\prime}$ at pH 8.5 and room temperature
	Coupling of N-acetylglycine nitrile 1 with L-tyrosinamide 2 _Y ' at pH 8.5 and room temperature
	Coupling of N-acetylglycine nitrile 1 with L-threoninamide 2 _T ' at pH 8.5 and room temperature 106
	Coupling of N-acetylglycine nitrile ${f 1}$ with L-valinamide ${f 2_V}'$ at pH 8.5 and room temperature 109
Cou	pling of 1 with peptide fragments catalyzed by 6b 112
	Coupling of 1 with L-alanylglycyl-L-alanine 2 _{AGA}
	Coupling of ${f 1}$ with L-alanyl-glycine ${f 2}_{AG}$
Pre	parative synthesis of amidines 3' 119
Isol	ation of 3 _A
Hyd	Irolysis of authentic amidines 3' 130
	Hydrolysis of ${f 3}_{f A}'$ at pH 7 in phosphate buffer (100 mM)130
	Hydrolysis of 3 _A ' at pH 7131
	Hydrolysis of 3 _A ' at pH 9132
	Hydrolysis of 3 _A ' at pH 10133
	Hydrolysis of 3 ₆ ' at pH 9134

Hydrolysis of ${f 3_G}'$ at pH 9 in the presence of 3-mercaptopropionic acid ${f 6b}$ 135
Hydrolysis of $3_{\mathbf{G}}$ at pH 9 in the presence of L-alanine ($2_{\mathtt{A}}$)136
Hydrolysis of $3_{\mathbf{G}}'$ at pH 9 in the presence of L-alaninamide ($2_{\mathtt{A}}'$)137
Hydrolysis of 3 _A 138
Hydrolysis of 3 _A at pH 7138
Hydrolysis of 3 _A at pH 9139
α -selective ligation of lysine-peptides
Coupling of N-acetylglycine nitrile ${f 1}$ with L-lysinamide ${f 2}_{\kappa}{m \prime}$ at pH 8.5 and room temperature140
Coupling of N-acetylglycine nitrile ${f 1}$ with L-lysinamide ${f 2}_{K}{f \prime}$ at pH 9.0, 80 °C142
Coupling of N-acetylglycine nitrile ${f 1}$ with L-lysinamide ${f 2}_{\kappa}{f \prime}$ at pH 7.0, 80°C144
Coupling of N-acetylglycine nitrile ${f 1}$ with L-lysylglycine ${f 2}_{{\sf KG}}$ at pH 7.0, 80 °C145
Coupling of N-acetylglycine nitrile ${f 1}$ with L-lysyl-L-lysine ${f 2}_{{\sf K}{\sf K}}$ at pH 7.0, 80 °C147
Coupling of N-acetylglycine nitrile 1 with O-methyl serinamide 2 _{Mes} ' catalyzed by 6b

General

¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker NMR spectrometers AVANCE Neo 700, AVANCE III 600 and AVANCE III 400, equipped with a Bruker room temperature 5 mm multinuclear gradient probe (700 MHz), 5 mm DCH cryoprobe (600 MHz) and a gradient probe (400 MHz). Unless otherwise stated ¹³C NMR spectra were acquired with broadband ¹H-decoupling. All chemical shifts (δ) are reported in parts per million (ppm) relative to residual solvent peaks, and ¹H and ¹³C chemical shifts relative to TMS were calibrated using the residual solvent peak (residual solvent peaks: $(\delta H/ppm) D_2O - 4.75$; $CDCl_3 - 7.26$; $CD_3OD - 3.31$). Nuclear assignments were made using 2D NMR homo- and heteronuclear correlation spectroscopy (¹H-¹H COSY; ¹H- 13 C HSQC; 1 H $^{-13}$ C HMBC). Where noted, solvent suppression pulse sequence with presaturation and spoil gradients was used to obtain ¹H NMR spectra (noesygppr1d, Bruker) and ¹H-¹³C HMBC NMR spectra (hmbcgplpndprqf, Bruker). Coupling constants are reported in Hertz (Hz). Spin multiplicities are indicated by symbols: s (singlet); d (doublet); t (triplet); q (quartet); qn (quintet); spt (septet); oct octet), m (multiplet); obs. (obscured/coincidental signals), or a combination of these. Spectra were recorded at 298 K. Reagents and solvents were obtained and used without further purification, unless specified, from the following commercial sources: Alfa Aesar, Acros Organics, Apollo Scientific, BDH, Sigma Aldrich, Fluorochem, MerckMillipore, Fisher Scientific, VWR International, Carbosynth, Manchester Organics, Lancaster, Molekula, Honeywell, TCI and Santa Cruz Biotechnology. Deionized water was obtained from an Elga Option 3 purification system. Infrared spectra (IR) were recorded on a Shimadzu IR Tracer 100 FT-IR spectrometer as a solid or neat oil/liquid. Absorption maxima are reported in wavenumber (cm⁻¹). Mass spectra and accurate mass measurements were recorded on a Waters LCT Premier QTOF connected to a Waters Autosampler Manager 2777C, Thermo Finnigan MAT900, and an Agilent LC connected to an Agilent 6510 QTOF mass spectrometer at the Department of Chemistry, University College London. Solution pH values were measured using a Mettler Toledo Seven Compact pH meter with a Mettler Toledo InLab semi-micro pH probe, or a Corning 430 pH meter with a Fisherbrand FB68801 semi-micro pH probe. The readings for D₂O solutions are reported as pD, and corrected as measured pH + 0.4.¹ The readings for H₂O and H₂O/D₂O (9:1) solutions are reported uncorrected.

Catalyst screening for the coupling of N-acetylglycine nitrile 1 with alanine 2A

Figure S1: Formation of Ac-Gly^N-Ala-OH 3_A by thiol-catalyzed (Catalyst–SH; 30 mol%) coupling of N-acetyl glycine nitrile, 1 (200 mM) and L-Ala, 2_A (200 - 240 mM).

Coupling of 1 with L-alanine 2_A catalyzed by 6a at room temperature

N-Acetylglycine nitrile (1, 200 mM), L-alanine (2_A , 200 mM), and L-N-acetyl cysteine (6a, 30 mol%, 60 mM) were dissolved in H₂O/D₂O (9:1, 0.8 mL) along with methyl sulfonyl methane (MSM; 14 mM) as internal standard. The pH of the solution was adjusted to the desired value with 4 M HCl/NaOH, the solution volume was increased to 1 mL and NMR spectra were obtained periodically.

Figure S2: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2_A, 200 mM) and L-N-acetyl cysteine (6_a, 60 mM), with MSM (14 mM) as an internal standard, at pH 7, room temperature.

Entry	time / h	1 / %	$2_{\rm A} \ / \ \%$	3 _A / %	7 / %
1	1	91	92	1	2
2	7	88	89	6	3
3	12	83	84	11	3
4	25	69	72	25	4
5	37	58	60	37	4
6	49	47	50	46	4
7	61	40	42	54	4
8	73	34	36	61	5
9	97	25	27	69	5
10	121	19	22	74	5
11	145	16	18	77	6

 Table S1. Yields over time for the reaction between N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2A, 200 mM) and L-N-acetyl cysteine (6a, 60 mM) at pH 7.0, room temperature.

Ei	ntry	time / h	1 / %	$2_{\rm A}$ / %	3 _A / %	7 / %
	1	1	96	107	0	3
	2	7	90	104	6	6
	3	12	83	100	10	9
	4	25	69	93	18	16
	5	37	57	86	23	21
	6	49	48	81	28	26
	7	61	41	78	32	29
	8	73	34	74	35	33
	9	97	25	70	39	38
	10	121	18	66	43	42
	11	145	13	64	45	45

 Table S2. Yields over time for the reaction between N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2_A, 200 mM) and L-N-acetyl cysteine (6a, 60 mM) in phosphate buffer (500 mM) at pH 7.0, room temperature.

Entry	time / h	1 / %	2 _A / %	3 _A / %	7 / %
1	1	84	96	5	2
2	7	67	77	22	2
3	12	56	65	35	3
4	25	39	45	53	2
5	37	30	36	63	3
6	49	24	30	69	3
7	61	20	25	71	4
8	73	17	22	75	4
9	97	13	19	77	5
10	121	11	17	79	6
11	145	9	16	81	7

Table S3. Yields over time for the reaction between N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2A, 200 mM) and L-N-acetyl cysteine (6a, 60 mM) at pH 8.5, room temperature.

Entry	time / h	1 / %	2 _A / %	3 _A / %	7 / %
1	1	84	96	5	2
2	7	67	77	22	2
3	12	56	65	35	3
4	25	39	45	53	2
5	37	30	36	63	3
6	49	24	30	69	3
7	61	20	25	71	4
8	73	17	22	75	4
9	97	13	19	77	5
10	121	11	17	79	6
11	145	9	16	81	7

 Table S4. Yields over time for the reaction between N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2_A , 200 mM) and L-N-acetyl cysteine (6a, 60 mM) at pH 9.0, room temperature.

Entry	time / h	1 / %	2 _A / %	3 _A / %	7 / %
1	2	84	95	2	2
2	7	76	86	9	2
3	12	71	82	14	3
4	25	61	73	21	5
5	37	55	69	26	7
6	49	49	66	28	10
7	61	43	61	28	12
8	73	39	60	29	14
9	97	33	56	27	20
10	121	28	55	27	24

 Table S5. Yields over time for the reaction between N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2_A , 200 mM) and L-N-acetyl cysteine (6a, 60 mM) at pH 10.0, room temperature.

Coupling of 1 with L-alanine 2_A catalyzed by 6b at room temperature

N-Acetylglycine nitrile (1, 200 mM), L-alanine (2_A , 220 mM), and 3-mercaptopropionic acid (**6b**, 30 mol%, 60 mM) and MSM (100 mM) as internal standard were dissolved in H₂O/D₂O (9:1, 0.8 mL). The pH of the solution was adjusted to the desired value with 4 M HCl/NaOH, the solution volume was increased to 1 mL and NMR spectra were obtained periodically.

			🔺 HS 🔪	Соон		_	
	N + H ₂	Ne OH	6b 3	30 mol% 5 - 10, r.t.		ОН + И	NH ₂
	1 ♦	2 _A ■			3 _A •		7 _x
Entry	Time /h	pH = 5 $3_A / \%$	pH = 7 $3_A / \%$	pH = 7, 1 M Pi, $3_A / \%$	pH = 8.5 1 M borate, $3_A / \%$	pH = 9 1 M borate, $3_A / \%$	pH = 10 $3_A / \%$
1	1	0	0	0	25	32	17
2	6	0	4	3	57	61	32
3	12	0	7	6	73	78	38
4	24	0	14	11	87	88	43
5	36	0	21	16	91	91	41
6	48	0	29	20	93	90	38
7	60	0	38	24	94	90	34
8	72	0	44	27	94	89	30
9	96	0	59	33	93	87	25
10	108	0	64	35	92	-	20
11	120	0	71	36	92	-	-
12	144	-	82	39.5	91	-	-
13	192	-	88	45.3	90	-	-
14	230	-	94	50	-	-	-

Table S6: Coupling of N-acetyl glycine nitrile (1) with L-alanine (2A) catalyzed by 3-mercaptopropionic acid (6b) at various pH at room temperature

Figure S3: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.4-4.5 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2_A, 220 mM) and 3-mercaptopropanoic acid (6b, 60 mM), with MSM (100 mM) as an internal standard, at pH 7, room temperature.

Entry	Time / h	3 _A / %
1	1	25
2	6	52
3	12	72
4	24	86
5	36	90
6	48	92
7	60	92

Table \$7. Coupling of N-acetyl glycine nitrile (1) with L-alanine (2_A) catalyzed by 3-mercaptopropionic acid (6b)at pH = 8.5, at room temperature

Figure S4: ¹H NMR (600 MHz, H₂O/D₂O 9:1, *noesygppr1d*, 1.4-4.5 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2_A, 220 mM) and 3-mercaptopropanoic acid (6b, 60 mM), with MSM (100 mM) as an internal standard, at pH 8.5, room temperature.

Coupling of 1 with L-alanine 2_A catalyzed by 6c at room temperature

N-Acetylglycine nitrile (1, 200 mM), L-alanine (2_A , 220 mM), and thioglycolic acid (6c, 30 mol%, 60 mM) and MSM (4 mM) as internal standard were dissolved in H₂O/D₂O (9:1, 0.8 mL). The pH of the solution was adjusted to the desired value with 4 M HCl/NaOH, the solution volume was increased to 1 mL and NMR spectra were obtained periodically.

Figure S5: ¹H NMR (700 MHz, H₂O/D₂O 9:1, *noesygppr1d*, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2_A, 200 mM) and thioglycolic acid (6c, 60 mM), with MSM (4 mM) as an internal standard, at pH 7.0, room temperature.

Entry	time / h	1 / %	2 _A / %	3 _A / %	7 / %
1	4	92	92	5	3
2	9	88	88	11	3
3	15	81	82	18	3
4	26	67	70	33	4
5	36	57	61	44	4
6	48	43	48	59	5
7	74	20	26	82	6
8	120	8	14	90	7

Table S8. Yields over time for the reaction between N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2_A, 200 mM) and thioglycolic acid (6c, 60 mM) at pH 7.0, room temperature.

N-Acetylglycine nitrile (1, 200 mM), L-alanine (2_A , 220 mM), and thioglycolic acid (6c, 30 mol%, 60 mM) and MSM (100 mM) as internal standard were dissolved in H₂O/D₂O (9:1, 0.8 mL). The pH of the solution was adjusted to the desired value with 4 M HCl/NaOH, the solution volume was increased to 1 mL and NMR spectra were obtained periodically.

Entry	Time / h	pH = 5.3 $3_A / \%$	$pH = 8.5, 3_A / \%$	pH = 8.5 1 M borate, $3_A / \frac{9}{6}$	$pH = 9.5, 3_A / \%$	pH = 10 $3_A / \%$
1	1	0	21	23.5	-	12
2	12	0	71	74	65	42.3
3	20	0	80	-	-	-
4	24	0	83	85	68	47
5	30	0	84.5	88	-	-
6	36	0	85	89	67.3	-
7	48	0	87	92	62	43.3
8	60	0	88.5	93	58	-
9	72	0	87	93	56	36.5
10	96	0	86	91	50	28
11	120	0	84.8	90	46	24.6

Table S9. Yields over time for the reaction between N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2_A, 200 mM) and thioglycolic acid (6c, 60 mM) at various pH, room temperature.

Figure S6: ¹H NMR (700 MHz, H₂O/D₂O 9:1, *noesygppr1d*, 1.3-4.5 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2_A, 200 mM) and thioglycolic acid (6c, 60 mM), with MSM (100 mM) as an internal standard, at pH 8.5, room temperature.

Coupling of 1 with L-alanine 2_A catalyzed by 6d at room temperature

N-Acetylglycine nitrile (1, 200 mM), L-alanine (2_A , 220 mM), and 4-mercaptophenylacetic acid (6d, 30 mol%, 60 mM) and MSM (100 mM) as an internal standard were dissolved in H₂O/D₂O (9:1, 0.8 mL). The pH of the solution was adjusted to the desired value with 4 M HCl/NaOH, the solution volume was increased to 1 mL and NMR spectra were obtained periodically.

Entry	Time / h	pH = 7	pH =8.5	
·		3 A / %	3 A / %	
1	1	0	0	
2	12	7	2	
3	24	12	3	
4	36	17	4	
5	48	21	7	
7	72	30	9	
8	96	36	12	
9	120	43	13	
10	144	48	16	
11	168	50	18	

Table S10: Coupling of N-acetyl glycine nitrile (1) with L-alanine (2_A) catalyzed by 4-mercaptophenylacetic acid (6d) at pH = 7 and pH = 8.5 at room temperature

Figure S7: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.1-7.5 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2A, 220 mM) and 4-mercaptophenylacetic acid (6d, 60 mM), with MSM (100 mM) as an internal standard, at pH 8.5, room temperature.

Coupling of 1 with L-alanine 2_A catalyzed by 6e at room temperature

N-Acetylglycine nitrile (1, 200 mM), L-alanine (2_A , 220 mM), and *N*,*N*-dimethyl cysteamine (6e, 30 mol%, 60 mM) and MSM (100 mM) as an internal standard were dissolved in H₂O/D₂O (9:1, 0.8 mL). The pH of the solution was adjusted to the desired value with 4 M HCl/NaOH, the solution volume was increased to 1 mL and NMR spectra were obtained periodically.

Entry	Time //h	pH = 7 $3_{A} / \%$	pH = 8.5 $3_{\text{A}} / \%$
1	1	2	10
2	12	12	19.3
3	24	22	32
4	36	28	41
5	48	35	50
7	72	41	57
8	96	48	61
9	120	52	65

Table S11: Coupling of N-acetyl glycine nitrile (1) with L-alanine (2a) catalyzed by N_rN -dimethyl cysteamine (6e) at pH = 7 and pH = 8.5 at room temperature

Figure S8: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.4-4.2 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2_A, 220 mM) and N,N-dimethyl cysteamine (6e, 60 mM), with MSM (100 mM) as an internal standard, at pH 8.5, room temperature.

Coupling of 1 with L-alanine 2_A catalyzed by 6f at room temperature

N-Acetylglycine nitrile (1, 200 mM), L-alanine (2_A , 220 mM), and thiolactic acid (6f, 30 mol%, 60 mM) and MSM (100 mM) as an internal standard were dissolved in H₂O/D₂O (9:1, 0.8 mL). The pH of the solution was adjusted to the desired value with 4 M HCl/NaOH, the solution volume was increased to 1 mL and NMR spectra were obtained periodically.

	Entry	Time //h	3 _A /%
Ì	1	1	1
	2	12	4.3
	3	24	8.3
	4	36	11
	5	48	14
	7	72	20
	8	96	25
	9	120	29

Table S12. Coupling of N-acetyl glycine nitrile (1) with L-alanine (2a) catalyzed by 2-mercaptopropionic acid (6f) at pH = 7, at room temperature

Figure S9: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.4-4.3 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2_A, 220 mM) and 2-mercaptopropionic acid (6f, 60 mM), with MSM (100 mM) as an internal standard at pH 7, room temperature.

Entry	Time /h	3 _A /%
1	1	8
2	12	34
3	24	49
4	36	60
5	48	67
7	72	73
8	96	77
9	120	79

Table S13: Coupling of N-acetyl glycine nitrile (1) with L-alanine (2_A) catalyzed by 2-mercaptopropionic acid (6f) at pH = 8.5, at room temperature

Figure S10: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.4-4.3 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2_A, 220 mM) and 2-mercaptopropionoic acid (6f, 60 mM), with MSM (100 mM) as an internal standard, at pH 8.5, room temperature.

Coupling of 1 with L-alanine 2_A catalyzed by 6g at room temperature

N-Acetylglycine nitrile (1, 200 mM), L-alanine (2_A , 220 mM), and dithiothreitol (6g, 30 mol%, 60 mM) and MSM (100 mM) as internal standard were dissolved in H₂O/D₂O (9:1, 0.8 mL). The pH of the solution was adjusted to the desired value with 4 M HCl/NaOH, the solution volume was increased to 1 mL and NMR spectra were obtained periodically.

¹H NMR (600 MHz, H₂O/D₂O 9:1) *cis-4-Hydroxy-3-mercaptotetrahydrothiophene*, **13** (**■**): 2.77 (1H, t, J = 10.3 Hz, -SCHHCHSH), 2.87 (1H, dd, J = 11.7, 2.8 Hz, -SCHHCHOH), 3.09 (1H, dd, J = 11.7, 2.8 Hz, -SCHHCHOH), 3.16 (1H, dd, J = 10.3, 6.6 Hz, -SCHHCHSH), 3.38 (1H, ddd, J = 10.0, 6.8, 3.3 Hz, -SCHHCHSH), 4.41 – 4.34 (1H, m, -SCHHCHOH). The data is consistent with literature characterisation of **15.**²

Entry	Time /h	3 _A / %	7 / %	12 / %
1	6	35	10	5
2	12	50	15	8
3	24	58	19	9
4	36	60	20	9.5
5	72	65	22	9.5
7	96	68	23	7.6
8	120	68	23	7.6

Table S14. Coupling of N-acetyl glycine nitrile (1) with L-alanine (2_A) catalyzed by dithiothreitol (6g) at pH = 7, at room temperature

Entry	Time /h	3 _A / %	7 / %	10 / %
1	1	12	4.5	0
2	12	50	17	6
3	24	61	21	7
4	36	65	23	6
5	72	68	24	6
7	96	68	24	6.3
8	120	69	25	6

Table S15. Coupling of N-acetyl glycine nitrile (1) with alanine (2A) catalyzed by dithiothreitol (6g) at pH = 8.5, at room temperature

Figure S11: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.4-4.3 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2_A, 240 mM) and dithiothreitol (6g, 60 mM), with MSM (100 mM) as an internal standard, at pH 8.5, room temperature.

Thiol-Catalyst

4-Mercaptophenylacetic acid

'nμ

∕ _{SH}	HS
	6f

66 N,N-Dimethylcysteamine

Thiolactic acid

6g 1,4-Dithiothreitol

SH

6h 2-Mercaptoethanol

Entry	thiol catalyst	рН	max yield / h	3 _A / %	7 / %
1	6a	7	196	84	5
2	6b	7	196	88	4
3	6c	7	120	92	4
4	6d	7	168	50	3
5	6e	7	120	52	23
6	6f	7	120	29	5
7	6g	7	36	70	19
8	6a	8.5	120	84	7
9	6b	8.5	48	92	4
10	6c	8.5	48	87	4
11	6d	8.5	168	18	2
12	6e	8.5	120	65	11
13	6f	8.5	96	78	7
14	6g	8.5	48	70	23

Table S16. Comparison of final yields for coupling of 1 and 2_A catalyzed by different thiols.

Figure S12: The effect of different thiol catalysts on selectivity in the reaction between 1 and 2a. Ratios of hydration: ligation are taken at the point of maximum yield for each reaction (see Table S16).

With 6g as catalyst, despite showing fast and relatively high yielding formation of 3A, an unusually high yield of the hydration product 7 was observed, alongside disappearance of the ¹H NMR signals for 6g at 2.7 ppm. The product derived from **6g** is consistent with literature data for substituted tetrahydrothiophene **13**. We propose that formation of this species occurs alongside hydration, via a mechanism such as the one shown in figure **S12** which proceeds through thioimidate formation, S-to-O acyl transfer, substitution of the resulting isoamide via formation of a 3-membered thiirane formation adjacent thiol, and finally nucleophilic attack by the second thiol to form a more stable 5-membered ring.

To probe this mechanism further we investigated a simpler thiol, 2-mercaptoethanol **6h**. This thiol has the same 1,2 thiol-alcohol substitution pattern which should allow it to form a thiirane via this mechanism, but lacks the second thiol so thiirane should be visible by NMR.

Figure \$13. Proposed mechanism for dithiothreitol 6g-mediated hydration N-acetyl Glycine nitrile 1 leading to formation of 13 and 7

Coupling of 1 with L-alanine 2_A catalyzed by 6h at room temperature

N-Acetylglycine nitrile (**1**, 200 mM), L-alanine (**2**_A, 220 mM), and 2-mercaptoethanol (**6**_h, 30 mol%, 60 mM) were dissolved in H_2O/D_2O (9:1, 0.8 mL) along with MSM (14 mM) as internal standard. The pH of the solution was adjusted to the desired value with 4 M HCl/NaOH, the solution volume was increased to 1 mL and NMR spectra were obtained periodically.

Table S17. Yields over time for the reaction between N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2A, 200 mM) and 2-mercaptoethanol (6h, 60 mM) at pH 7.0, room temperature. ^a At this time 6h was no longer visible by ¹H NMR (see Figure S14)

Figure S14: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2_A, 220 mM) and 2-mercaptoethanol (6h, 60 mM) with MSM (7 mM) as an internal standard, at pH 7.0, room temperature.

6h is not an effective catalyst for the coupling between **1** and **2**_A at pH 7. Instead, **6h** promotes hydration of **1** to yield **7**. **6h** is completely consumed (>99% by NMR spectroscopy) after 24 h. The formation of thiirane **14** (2.4 ppm) is observed, alongside further thiol-derived signals at 2.6-2.8 and 3.7-3.8 ppm. After full consumption of **6h** (24 h), ligation between **1** and **2**_A occurs, suggesting that the thiol-derived products of **6h** degradation are competent catalysts (see Table S6, entries 5-9).

To further demonstrate that hydration of **1** is linked to decomposition of **6h** via formation of thiirane **14** we investigated the reaction between **6h** and **1**.

Figure S15: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 50 mM) with 2-mercaptoethanol (6h, 50 mM) with MSM (7 mM) as an internal standard, at pH 7.0, room temperature. Formation of thiirane 14 was confirmed by spiking with an authentic sample (10 mM).

6h and **1** react to form the hydration product **7** and thiirane **14**, alongside further thiol-derived products that seem to derive from the addition of **6h** to **14**.

Coupling of N-acetylglycine nitrile 1 with a-amino acids 2 at pH 8.5 and room temperature

Amino acid	Yiel	d /%	HRMS-ESI for amidines 3		
2	3 •	5 🔻	Formula	Theoretical	Found
Gly, 2 _G	>95%		C ₆ H ₁₂ N ₃ O ₃ [M+H] ⁺	174.0874	174.0874
L-Ala, 2 _A	87%		C7H14N3O3 [M+H] +	188.1030	188.1027
L-Arg ^[a] , 2 _R	91%		$C_{10}H_{21}N_6O_3 \left[M+H\right]^+$	273.1670	273.1669
L-Asn ^[a] , 2_N	40% ^b	53%	$C_8H_{14}N_3O_5 [M+H]^+$	232.0928	232.0933
L-Asp, 2 _D	91%		$C_8H_{14}N_3O_5 [M+H]^+$	232.0928	232.0931
L-Gln ^[a] , 2_Q	90%		$C_9H_{17}N_4O_4 [M+H]^+$	245.1245	245.1244
L-Glu, 2 E	90%		C9H16N3O5 [M+H] +	246.1084	246.1086
L-His, 2 _H	93%		$C_{10}H_{16}N_5O_3 [M+H]^+$	254.1248	254.1249
L-Ile ^[a] , 2_I	86%		$C_{10}H_{20}N_3O_3[M{+}H]^+$	230.1499	230.1498
L-Leu, 2_L	84%		$C_{10}H_{20}N_3O_3[M{+}H]^+$	230.1499	230.1498
L-Lys ^{[a1} , 2 _K	>90%c		$C_{10}H_{21}N_4O_3[M{+}H]^+$	245.1068	245.1067
$\mathrm{DL} ext{-Met}, 2_M$	89%		$C_9H_{18}N_3O_3S \ [M+H]^+$	248.1063	248.1064
L-Phe, 2_F	86%		$C_{13}H_{18}N_3O_3 [M+H]^+$	264.1343	264.1343
L-Pro, 2 _P	83%		C9H16N3O3 [M+H]+	214.1187	214.1196
L-Ser, 2s		95%d	C7H12N2O5 [M+Na]+	227.0638	227.0643
L-Thr ^[a] , 2_T		93%o ^e	$C_8H_{15}N_2O_5 \ [M+H]^+$	219.0976	219.0979
L-Tr $p^{[a]}$, 2_W	83%f		$C_{15}H_{19}N_4O_3 \ [M+H]^+$	303.1452	303.1451
L-Val ^[a] , $2v$	93%		C9H18N3O3 [M+H]+	216.1343	216.1339

Table S18: Yields and ESI-HRMS data for 3-mercaptopropanoic acid (**6b**, 60 mM) \blacktriangle catalyzed formation of amidine **3** and peptide **5** \checkmark from the coupling of N-acetyl glycine nitrile (**1**, 200 mM) with amino acid **(2**, 1.0 - 1.3 equiv.) at pH 8.5, room temperature, after 24 h, unless stated otherwise.

^a Valine 2_V , isoleucine 2_I , arginine 2_R , lysine 2_K , glutamine 2_Q , tryptophan 2_W , threonine 2_T , and asparagine 2_N were poorly soluble in water, therefore each was dissolved with NaOH (1 equiv.) and then adjusted to pH 9 with HCl. An aliquot of pH 9 amino acid solution was used in each ligation reaction. The ligation reaction pH was adjusted to the desired pH at t = 0.

^b The reaction progress was monitored for 5 days to ensure that all in situ formed intermediates were hydrolysed to 5_N and 3_D . 8 is observed to form from 3_N , and was detected in the first NMR acquired (t = 12 h). Figure S22 depicts the progression of the reaction.

^c Combined yield for the N², N⁶, and N², N⁶-bis-acyl coupling products reported: (N²-(Ac-Gly^N)-Lys-OH, plus N², N⁶-bis(Ac-Gly^N)-Lys-OH (62%) and N⁶-(Ac-Gly^N)-Lys-OH plus N², N⁶-bis(Ac-Gly^N)-Lys-OH (32%). **Figure S37**

^d An intermediate oxazole, 2-(acetamidomethyl)-4,5-dihydrooxazole-4-carboxylic acid, **9**_s (55% at 24 h) was observed, after complete consumption of **1**, the reaction mixture was heated at 60°C for 12 h, and complete conversion of **9**_s to **5**_s was observed. **Figure S45**.

^e An intermediate oxazole, (2-(acetamidomethyl)-5-methyl-4,5-dihydrooxazole-4-carboxylic acid 9_T (67% at 24 h) was observed. The reaction mixture was incubated at 60°C for 12 h and hydrolysis of 9_T to 5_T was observed. Figure S49.

^f L-Tryptophan 2_W exhibits low solubility in water, therefore after dissolving all the substrates reaction mixture was heated for 10 mins (temperature approx. ~60°C). Afterwards reaction progress was followed by NMR at room temperature. No further attempts were made to optimise 2_W coupling.

Coupling of 1 with L-alanine 2_A at pH 8.5 and room temperature

Figure S16: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.4-4.3 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-alanine (2_A, 220 mM) and 3-mercaptopropanoic acid (6b, 60 mM), with MSM (100 mM) as an internal standard, at pH 8.5, room temperature.

¹H NMR (600 MHz, H₂O/D₂O 9:1) (2-acetamido-1-iminoethyl)-L-alanine, $\mathbf{3}_{\mathbf{A}}$ (•): δ_{H} 4.26 (1H, AB, J = 17.2 Hz, AcNHCHH), 4.22 (1H, AB, J = 17.2 Hz, AcNHCHH), 4.11 (1H, q, J = 7.1 Hz, CH(CH₃)), 2.10 (3H, s, H₃C(CO)), 1.46 (3H, d, J = 7.2 Hz, CH(CH₃)); L-alanine, $\mathbf{2}_{\mathbf{A}}$ (•): δ_{H} 3.78 (1H, q, J = 7.2 Hz, CH(CH₃)), 1.47 (3H, d, J = 7.2 Hz, CH(CH₃)); N-acetylglycinamide, **7** (**x**) (partial assignment): δ_{H} 3.89 (2H, d, CH₂).

Figure S17: ¹H–¹³C HMBC (¹H: 600 MHz [3.5-4.5 ppm], ¹³C: 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of **Ala**- α H-COOH in **3**_A at 4.11 ppm with two resonances at 177.5 and 164.5 ppm, which is characteristic of amidine bond formation of **2**_A.

Coupling of 1 with L-aspartic acid 2_D at pH 8.5 and room temperature

Figure S18: ¹H NMR (600 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (1, 200 mM) with L-aspartic acid (2_D , 260 mM) and 3-mercaptopropanoic acid (6_b , 60 mM) with MSM (100 mM) as an internal standard at pH 8.5 and room temperature.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) *(2-acetamido-1-iminoethyl)aspartic acid*, **3**_D (•): $\delta_{\rm H}$ 4.38 (1H, dd, *J* = 8.3, 3.7 Hz, Asp- α H-COOH), 4.26 (1H, AB, *J* = 17.3 Hz, AcNHCH*H*), 4.23 (1H, AB, *J* = 17.3 Hz, AcNHCH*H*), 2.84 (1H, ABX, *J* = 16.6, 3.7 Hz, CH(CH*H*COOH)COOH), 2.66 (1H, ABX, *J* = 16.6, 8.3 Hz, CH(CH*H*COOH)COOH), 2.10 (3H, s, *H*₃C(CO)); *L-aspartic acid*, **2**_D (•): $\delta_{\rm H}$ 3.87 (1H, dd, *J* = 9.0, 3.8 Hz, α H-COOH), 2.78 (1H, ABX, *J* = 17.2, 3.8 Hz, CH(CH*H*COOH)COOH), 2.62 (1H, dd, *J* = 17.1, 9.0 Hz, CH(CH*H*COOH)COOH); *N-acetylghycinamide*, **7** (**x**): $\delta_{\rm H}$ 3.94 (2H, s, CH₂).

Figure S19: ¹H–¹³C HMBC (¹H: 600 MHz [3.5-5.0 ppm], ¹³C: 176 MHz [160-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Asp**- α H-COOH in **3**_D at 4.37 ppm with two resonances at 175.6 and 165.4 ppm, which is characteristic of amidine bond formation of **2**_D.

Coupling of 1 with L-arginine 2_R at pH 8.5 and room temperature

Figure S20: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-arginine (2_R, 240 mM) 3-mercaptopropanoic acid (6b, 60 mM) with (100 mM) as an internal standard, at pH 8.5 and room temperature. $\mathbf{x} = N$ -acetylglycinamide, 7.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)arginine, $\mathbf{3}_{\mathbf{R}}$ (•) (partial assignment): δ_{H} 4.21 (1H, AB, J = 17.1 Hz, AcNHCHH), 4.19 (1H, AB, J = 17.1 Hz, AcNHCHH), 4.11 (1H, dd, J = 7.5, 4.7 Hz, Arg- α H-COOH), 3.17 (2H, t, J = 6.9 Hz, CH₂(guanidyl)), 2.06 (3H, s, H₃C(CO)), 1.94 (1H, m, CHHCH₂CH₂(guanidyl)), 1.83 (1H, m, CHHCH₂CH₂(guanidyl)), 1.57 (2H, m, CH₂CH₂CH₂(guanidyl)); *L-arginine*, $\mathbf{2}_{\mathbf{R}}$ (**■**) (partial assignment): δ_{H} 3.50 (1H, t, J = 5.6 Hz, α H-COOH), 3.17 (2H, t, J = 7.0 Hz, CH₂(guanidyl)); *N-acetylglycinamide*, **7** (**X**) (partial assignment): δ_{H} 3.88 (2H, s, CH₂).

Figure S21: ¹H–¹³C HMBC (¹H: 600 MHz [3.2-4.3 ppm], ¹³C: 176 MHz [145-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of **Arg**- α H-COOH in **3**_R at 4.11 ppm with two resonances at 176.2 and 164.7 ppm, which is characteristic of amidine bond formation of **2**_R.

Coupling of 1 with L-asparagine 2_N at pH 8.5 and room temperature

Figure S22: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0–5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-asparagine (2_N , 220 mM) and 3-mercaptopropanoic acid (MPA, 60 mM) with MSM (100 mM) as an internal standard at pH 8.5 and room temperature. $\neq 7 \equiv 12$.

Partial assignment for dihydropyrimidone **9** (\mathbf{v}): δ_H 4.30 (1H, m, Asn- α H-COOH), 4.15 (1H, AB, J = 17.2 Hz, AcNHCHH), 4.07 (1H, AB, J = 17.2 Hz, AcNHCHH), 2.11 (3H, s, H_3 C(CO)).

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) *N-Acetylglycylasparagine*, **5**_N (\checkmark): $\delta_{\rm H}$ 4.54 (1H, dd, *J* = 8.5, 4.8 Hz, Asn- α H-COOH), 3.94 (1H, AB, *J* = 17.1 Hz, AcNHCH*H*), 3.91 (1H, AB, *J* = 17.1 Hz, AcNHCH*H*), 2.80 (1H, ABX, *J* = 15.2, 4.8 Hz, CH(CHHCONH₂)COOH), 2.72 - 2.77 (1H, m, CH(CHHCONH₂)COOH), 2.09 (3H, s, *H*₃C(CO)); (*2-acetamido-1-iminoethyl)aspartic acid*, **2**_N (\bullet): $\delta_{\rm H}$ 4.40 (1H, dd, *J* = 8.1, 3.8 Hz, Asp- α H-COOH)), 4.29 (1H, AB, *J* = 17.2 Hz, AcNHCH*H*), 2.85 (1H, ABX, *J* = 16.7, 3.8 Hz, CH(CHHCOOH)COOH), 2.71-2.67 (1H, m, CH(CHHCOOH)COOH), 2.13 (3H, s, *H*₃C(CO)); *L-asparagine*, **2**_N (\bullet) (partial assignment): $\delta_{\rm H}$ 3.82 (1H, dd, *J* = 8.3, 4.6 Hz, α H-COOH); *N-acetylglycinamide*, **7** (\star): $\delta_{\rm H}$ 3.92 (2H, s, CH₂). **12** (\bullet) (partial assignment): $\delta_{\rm H}$ 4.24 (2H, s, CH₂). Dihydropyrimidone **9** (\checkmark): HRMS (ESI) m/z for [C₈H₁₂N₃O₄]⁺ : calcd 214.0822, found 214.0822.

Figure S23: ¹H–¹³C HMBC (¹H: 600 MHz [3.5-4.5 ppm], ¹³C: 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the Asn- α H-COOH in 5_N at 4.54 ppm with two resonances at 177.9 and 171.5 ppm, which is characteristic of peptide bond formation of 2_N and the ²J_{CH} and ³J_{CH} coupling of Asp- α H-COOH in 3_D at 4.40 ppm with two resonances at 175.7 and 164.7 ppm, which is characteristic of peptide bond formation amidine of 2_D.

Figure S24: HRMS (ESI) spectra for dihydropyrimidone intermediate 9.

Coupling of 1 with L-glutamic acid 2_E at pH 8.5 and room temperature

Figure S25: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.8-4.4 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-glutamic acid (2_E , 240 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (100 mM) as an internal standard at pH 8.5 and room temperature.

¹H NMR (600 MHz, H₂O/D₂O 9:1) (2-acetamido-1-iminoethyl)glutamic acid, $\mathbf{3}_{E}$ (•): δ_{H} 4.24 (2H, s, AcNHCH₂), 4.09 (1H, dd, J = 7.5, 4.9 Hz, Glu- α H-COOH), 2.13-2.25 (3H, m, CH₂CH₂COOH), 2.10 (3H, s, H₃C(CO)), 2.06-1.97 (1H, m, CH₂CH₂COOH); *L*-glutamic acid, $\mathbf{2}_{E}$ (•): δ_{H} 3.60 (1H, dd, J = 7.2, 5.2 Hz, α H-COOH), 2.31-2.22 (4H, m, CH₂CH₂COOH); *N*-acetylglycinamide, **7** (**X**) (partial assignment): δ_{H} 3.93 (2H, d, J = 2.7 Hz, CH₂).

Figure S26: ¹H–¹³C HMBC (¹H: 600 MHz [3.5-4.5 ppm], ¹³C: 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the Glu- α *H*-COOH in 3_E at 4.09 ppm with two resonances at 175.8 and 164.9 ppm, which is characteristic of amidine bond formation of **2**_E.
Coupling of 1 with L-glutamine 2_Q at pH 8.5 and room temperature

Figure S27: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.8-4.5 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-glutamine (2q, 250 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (100 mM) as an internal standard at pH 8.5 and room temperature.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)glutamine, $\mathbf{3}_{\mathbf{Q}}$ (•): δ_{H} 4.26 (2H, s, AcNHCH₂), 4.15 (1H, dd, J = 7.7, 4.7 Hz, Gln- α H-COOH), 2.40 - 2.33 (2H, m, CH₂CH₂CONH₂), 2.30 - 2.20 (1H, m, CHHCH₂CONH₂), 2.08 - 2.05 (1H, m, CHHCH₂CONH₂), 2.09 (3H, s, H₃C(CO)); L-glutamine, $\mathbf{2}_{\mathbf{Q}}$ (•): δ_{H} 3.44 (1H, t, J = 6.3 Hz, α H-COOH), 2.25-2.19 (2H, m, CH₂CH₂CONH₂), 2.01-1.89 (2H, m, CH₂CH₂CONH₂); Nacetylglycinamide, 7 (*) (partial assignment): δ_{H} 3.92 (2H, s, CH₂).

Figure S28: ¹H–¹³C HMBC (¹H: 600 MHz [3.5-4.5 ppm], ¹³C: 176 MHz [150-200 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Gln**- α H-COOH in **3**_Q at 4.14 ppm with two resonances at 175.4 and 164.2 ppm, which is characteristic of amidine bond formation of **2**_Q.

Coupling of 1 with glycine 2_G at pH 8.5 and room temperature

Figure S29: ¹H NMR (600 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.7-4.3 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with glycine (2_{G} , 240 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (100 mM) as an internal standard at pH 8.5 and room temperature.

¹H NMR (600 MHz, H₂O/D₂O) (2-acetamido-1-iminoethyl)glycine, $\mathbf{3}_{\mathbf{G}}$ (•): δ_{H} 4.25 (2H, s, AcNHCH₂), 3.91 (2H, s, CH₂COOH), 2.08 (3H, s, H₃C(CO)); glycine, $\mathbf{2}_{\mathbf{G}}$ (•): δ_{H} 3.49 (2H, s, CH₂).

Figure S30:¹H–¹³C HMBC (¹H: 600 MHz [3.80–4.50 ppm], ¹³C: 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of **Gly**- α H-COOH in **3**_G at 3.91 ppm with two resonances at 175.4 and 164.6 ppm, which is characteristic of amidine bond formation of **Gly**.

Coupling of 1 with L-histidine 2_H at pH 8.5 and room temperature

Figure S31: ¹H NMR (600 MHz, H_2O/D_2O 9:1, noesygppr1d, 2.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-histidine (2_H, 220 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (100 mM) as an internal standard at pH 8.5 and room temperature.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)histidine, **3**_H (•): $\delta_{\rm H}$ 7.64 (1H, s, ArH), 6.91 (1H, s, ArH), 4.33 (1H, dd, J = 8.1, 4.5 Hz, His- α H-COOH), 4.17 (2H, s, AcNHCH₂), 3.22 (1H, ABX, J = 15.1, 4.5 Hz, CH(CHHAr)), 3.09 (1H, ABX, J = 15.1, 8.1 Hz, CH(CHHAr)), 2.06 (3H, s, H₃C(CO)); *L*-histidine, **2**_H (•): $\delta_{\rm H}$ 7.70 (1H, s, ArH), 6.98 (1H, s, ArH), 3.74 (1H, ABX, J = 8.0, 4.9 Hz, α H-COOH), 2.91-2.87 (1H, m, CH(CHHAr)), 2.95 (1H, dd, J = 15.1, 8.0 Hz, CH(CHHAr)); *N*-acetylglycinamide, **7** (**X**) (partial assignment): $\delta_{\rm H}$ 3.89 (2H, s, CH₂).

Figure S32: ¹H–¹³C HMBC (¹H: 600 MHz [3.5–4.5 ppm], ¹³C: 176 MHz [110–185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **His**- α H-COOH in **3**_H at 4.33 ppm with two resonances at 175.2 and 164.7 ppm, which is characteristic of amidine bond formation of **2**_H.

Coupling of 1 with L-isoleucine 2_I at pH 8.5 and room temperature

Figure S33: ¹H NMR (600 MHz, H_2O/D_2O 9:1, noesygppr1d, 0.5–4.2 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-isoleucine (2₁, 230 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (100 mM) as an internal standard at pH 8.5 and room temperature.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)isolencine, **3**_I (•) (partial assignment): $\delta_{\rm H}$ 4.28 (1H, AB, J = 17.1 Hz, AcNHCH*H*), 4.23 (1H, AB, J = 17.1 Hz, AcNHCH*H*), 3.99 (1H, d, J = 5.8 Hz, Ile- α H-COOH), 2.08 (3H, s, H₃C(CO)), 2.04-1.97 (m, 1H, Ile- β CH(CH₃)CH₂CH₃), 1.50-1.40 (m, 1H, Ile-CH(CH₃)C*H*HCH₃), 1.26-1.14 (m, 1H, Ile-CH(CH₃)CH*H*CH₃), 0.95 (3H, d, J = 6.9 Hz, Ile- β CH(CH₃)CH₂CH₃), 0.90 (3H, t, J = 7.4 Hz, Ile-CH(CH₃)CH₂CH₃); *L-isoleucine*, **2**_I (•) (partial assignment): $\delta_{\rm H}$ 3.61 (1H, d, J = 4.1 Hz, α H-COOH); *N*-acetylglycinamide, 7 (*****) (partial assignment): $\delta_{\rm H}$ 3.90 (2H, s, CH₂).

Figure S34: ¹H–¹³C HMBC (¹H: 600 MHz [3.4–4.5 ppm], 13C: 176 MHz [150–185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Ile**- α H-COOH in **3**_I at 4.25 ppm with two resonances at 175.7 and 164.7 ppm, which is characteristic of amidine bond formation of **2**_I.

Coupling of 1 with L-leucine 2_L at pH 8.5 and room temperature

Figure S35: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 0.5-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-leucine (2_L , 220 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (100 mM) as an internal standard at pH 8.5 and room temperature. \Rightarrow = 7.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) *(2-acetamido-1-iminoethyl)leucine*, **3**_L (•) (partial assignment): $\delta_{\rm H}$ 4.24 (1H, AB, J = 17.1 Hz, AcNHCH*H*), 4.20 (1H, AB, J = 17.1 Hz, AcNHCH*H*), 4.10 (1H, dd, J = 9.8, 4.3 Hz, Leu- α H-COOH), 2.07 (3H, s, *H*₃C(CO)), 1.69-1.84 (2H, m; Leu-*CH*₂), 1.58-1.68 (1H, m; Leu-*CH*-(CH₃)₂), 0.94 (3H, d, J = 6.7 Hz, Leu-(CH₃)), 0.89 (3H, d, J = 6.5 Hz, Leu-(CH₃)) *L-leucine*, **2**_L (**■**) (partial assignment): $\delta_{\rm H}$ 3.62 (1H, dd, J = 8.8, 4.9 Hz, α H-COOH); *N-Acetylglycinamide*, **7** (**X**) (partial assignment): $\delta_{\rm H}$ 3.89 (2H, s, *CH*₂).

Figure S36: ¹H–¹³C HMBC (¹H: 600 MHz [3.5-4.5 ppm], ¹³C: 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Leu**- α H-COOH in **3**_L at 4.08 ppm with two resonances at 175.6 and 164.6 ppm, which is characteristic of amidine bond formation of **2**_L.

Combined yields: $3_{K1\alpha} + 3_{K1\alpha\epsilon} = 69\%$ (total α -amidine and bis-NH)

 $\mathbf{3}_{\mathbf{K1}\epsilon} + \mathbf{3}_{\mathbf{K1}\alpha\epsilon} = 36\%$ (Total ϵ -amidine and bis-NH)

Figure S37: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 0.5-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-lysine (2_{K} , 250 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (100 mM) as an internal standard at pH 8.5 and room temperature.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d):

 N^2 -(2-acetamido-1-iminoethyl)lysine, **3**_{KIα} (•) (partial assignment): δ_H 4.21 – 4.17 (2H, m, dd, overlapped, N^2 -AcNHCHH), 4.09 (1H, dd, J = 7.5, 4.7 Hz, Lys-αH-COOH), 2.93 – 3.01 (2H, m, N^6 -NH₂CH₂CH₂), 2.07 (3H, s, N^2 -H₃C(CO)).

N²,N⁶-*di*(2-acetamido-1-iminoethyl)lysine, 3_{K1ae} (**Δ**) (partial assignment): δ_{H} 4.25 – 4.14 (2H, m, N²-AcNHCHH), 4.11-4.07 (1H, m, overlapped, Lys-αH-COOH), 3.37 – 3.23 (2H, m, N⁶-CH₂CH₂), 2.07 (3H, s, N²-H₃C(CO)), 2.03 (3H, s, N⁶-H₃C(CO)).

N⁶-(2-acetamido-1-iminoethyl)hysine, **3**_{KI6}(▼) (partial assignment): δ_H 4.14 (2H, s, N⁶-AcNHCH₂), 3.63 (1H, t, J = 6.1 Hz, Lys-αH-COOH), 3.37-3.23 (2H, m, N⁶-CH₂CH₂), 2.03 (3H, s, N⁶-H₃C(CO)); L-hysine, Lys (■) (partial assignment): δ_H 3.63 (1H, t, J = 6.1 Hz, Lys-αH-COOH), 2.95 – 3.01 (2H, t, J = 7.9 Hz, N⁶-NH₂CH₂CH₂); N-Acetylghycinamide, 7 (×) (partial assignment): δ_H 3.86 (2H, s, CH₂).

Figure S38: ¹H–¹³C HMBC (¹H: 600 MHz [2.0–4.5 ppm], ¹³C: 176 MHz [150–185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the lysyl- α H-COOH and lysyl-N⁶-CH₂ in $\beta_{KTac}(\clubsuit)$, $\beta_{KTac}(\bigstar)$, $\beta_{KTac}(\bigstar)$ which are characteristic of amidine bond formations of 2_K.

Coupling of 1 with DL-methionine 2_M at pH 8.5 and room temperature

Figure S39: ¹H NMR (600 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.9-4.6 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with DL-methionine (2_M, 220 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (100 mM) as an internal standard pH 8.5 and room temperature.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)methionine, $\mathbf{3}_{\mathbf{M}}$ (•) (partial assignment): δ_{H} 4.28 (1H, dd, J = 8.5, 4.1 Hz, Met- α H-COOH), 4.24 (2H, s, AcNHCH₂), 2.63-2.58 (2H, m, CH₂SCH₃), 2.10 (3H, s, CH₂SCH₃), 2.09 (3H, s, H₃C(CO)); *DL-methionine*, $\mathbf{2}_{\mathbf{M}}$ (•) (partial assignment): δ_{H} 3.56 (1H, br. t., J = 5.9 Hz, α H-COOH), 2.49 (2H, m, CH₂SCH₃), 2.11 (3H, s, SCH₃); *N*-*Acetylglycinamide*, **7** (**×**) (partial assignment): δ_{H} 3.89 (2H, s, CH₂).

Figure S40: ¹H–¹³C HMBC (¹H: 600 MHz [3.5-4.5 ppm], ¹³C: 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Met**- α H-COOH in **3**_M at 4.28 ppm with two resonances at 176.7 and 165.5 ppm, which is characteristic of amidine bond formation of **2**_M.

Coupling of 1 with L-phenylalanine 2_F at pH 8.5 and room temperature

7.6 7.5 7.4 7.3 7.2 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 Chemical shift (ppm)

Figure S41: ¹H NMR (600 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.6-7.7 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-phenylalanine (2_F, 240 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (100 mM) at pH 8.5 and room temperature.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)phenylalanine, $\mathbf{3}_{\mathbf{F}}$ (•) (partial assignment): $\delta_{\mathbf{H}}$ 7.41-7.34 (2H, m, ArH), 7.33-7.27 (1H, m, ArH), 7.22 (2H, d, J = 8.5 Hz, ArH), 4.37 (1H, ABX, ddd, J = 8.1, 4.4, 1.4 Hz, Phe- α H-COOH), 4.10 (1H, AB, J = 17.3 Hz, AcNHCHH), 4.08 (1H, AB, J = 17.3 Hz, AcNHCHH), 3.30 (1H, ABX, J = 14.2, 4.4 Hz, CHCHHPh), 3.06 (1H, ABX, J = 14.2, 8.1 Hz, CHCHHPh), 2.00 (3H, s, H_3 C(CO)); $\mathbf{2}_{\mathbf{F}}$ (**■**) (partial assignment): $\delta_{\mathbf{H}}$ 7.38-7.34 (3H, m, ArH), 7.28 (2H, d, J = 7.2 Hz, ArH), 3.68 (1H, br. t, J = 6.2 Hz, α H-COOH); *N*-acetylglycinamide, **7** (**x**) (partial assignment): $\delta_{\mathbf{H}}$ 3.87 (2H, s, CH₂).

Figure S42: ¹H–¹³C HMBC (¹H: 600 MHz [3.5-4.5 ppm], ¹³C: 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Phe**- α H-COOH in **3**_F at 4.37 ppm with two resonances at 175.5 and 164.6 ppm, which is characteristic of amidine bond formation of **2**_F.

Coupling of 1 with L-proline 2_P at pH 8.5 and room temperature

Figure S43: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.8-4.6 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-proline (2_P, 230 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (100 mM) as an internal standard at pH 8.5 and room temperature.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)proline, mixture of rotamers [A:B, 63:37], **3**_P (*major rotamer*: A, •) (partial assignment): $\delta_{\rm H}$ 4.53 (1H, dd, J = 8.8, 2.5 Hz, Pro- α H-COOH), 4.29 (1H, AB, J = 17.3 Hz, AcNHCHH), 4.05 (1H, AB, J = 17.3 Hz, AcNHCHH), 3.67-3.63 (1H, m, NCHHCH₂CH₂), 3.56-3.52 (1H, m, NCHHCH₂CH₂), 2.08 (3H, s, H_3 C(CO)), (*minor rotamer*: B, •) (partial assignment): $\delta_{\rm H}$ 4.40 (1H, dd, J = 8.5 2.5 Hz, Pro- α H-COOH), 4.36 (1H, AB, J = 17.5 Hz, AcNHCHH), 4.29 (1H, AB, J = 17.5 Hz, AcNHCHH), 3.78-3.75 (1H, m, NCHHCH₂CH₂), 3.71-3.68 (1H, m, NCHHCH₂CH₂), 2.10 (3H, s, H_3 C(CO)); *L-proline*, **2**_P (**a**) (partial assignment): $\delta_{\rm H}$ 4.10 (1H, dd, J = 8.9, 6.6 Hz, α H-COOH), 3.40 (1H, dt, J = 11.6, 7.0 Hz, HNCHHCH₂CH₂), 3.31 (1H, dt, J = 11.6, 7.0 Hz, HNCHHCH₂CH₂); *N-acetylglycinamide*, **7** (**X**) (partial assignment): $\delta_{\rm H}$ 3.89 (2H, s, CH₂).

Figure S44: .¹H–¹³C HMBC (¹H: 600 MHz [3.5-4.5 ppm], ¹³C: 176 MHz [150-180 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic $^{2}J_{CH}$ coupling of the Gly-CH₂ AB systems in both rotamers of **3**_P at 4.37 and 4.34, 4.31 and 4.28, 4.30 and 4.29, and 4.06 and 4.03 ppm with two resonances at 163.2 and 162.7 ppm, which is characteristic of amidine bond formation of **2**_P.

Coupling of 1 with L-serine 2s at pH 8.5 and room temperature

Figure S45: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.8-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-serine (2s, 260 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (100 mM) as an internal standard at pH 8.5 and room temperature.

After 24 h the following species were observed:

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d): partial assignment for (2-acetamido-1-iminoethyl)serine, **3**₈ (•): $\delta_{\rm H}$ 4.24 (2H, s, br., AcNHC*H*₂), 4.20 (1H, ABX, *J* = 5.8, 3.4 Hz, Ser- α *H*-COOH), 4.00-3.97 (1H, obs., CHCHHOH), 3.94 (1H, ABX, *J* = 11.9, 3.4 Hz, CHC*H*HOH), 2.02 (3H, s, H₃C(CO)); partial assignment for (2-(acetamidomethyl)-4,5-dihydrooxazole-4-carboxylic acid **8**₈ (•): $\delta_{\rm H}$ 4.60-4.48 (2H, m, CHCHCOOH), 4.31 (1H, dd, *J* = 5.5, 4.8 Hz,

СН*Н*СНСООН), 4.05 (1H, d, *J* = 17.3, 1.4 Hz, AcNHCH*H*), 3.99 (1H, AB, *J* = 17.3 Hz, 1.4 Hz, AcNHC*H*H), 2.00 (3H, s, H₃C(CO)).

After complete consumption of 1 the reaction was heated at 60°C for 16 h, which resulted in the formation of 5s.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d): *N-Acetylglycylserine*, **5**₈ (\checkmark): $\delta_{\rm H}$ 4.27 (1H, t, J = 4.7 Hz, Ser- α H-COOH), 3.93 (2H, s, AcNHCH₂), 3.89-3.61 (2H, m, CHCH₂OH), 2.03 (3H, s, H₃C(CO)); L-serine, 2_s (■): δ_H 3.92-3.73-3.70 3.86 (2H, $CHCH_2OH$), (1H, br. t, J = Hz, αH-COOH); m, 4.4 *N-acetylglycinamide*, **7** (\mathbf{X}): (partial assignment) $\delta_{\rm H}$ 3.85 (2H, s, CH₂).

Figure S46: ¹H–¹³C HMBC (¹H: 700 MHz [3.7–4.4 ppm], ¹³C: 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the Ser- α H-COOH in 5_s at 4.27 ppm with two resonances at 176.6 and 171.7 ppm, which is characteristic of amide bond formation of 2_s.

Coupling of 1 with L-tryptophan 2_W at pH 8.5 and room temperature

Figure S47: ¹H NMR (600 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-8.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-tryptophan (2_W , 238 mM) and 3-mercaptopropanoic acid (**6b** 60 mM) with MSM (100 mM) as an internal standard at pH 8.5 and room temperature.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)tryptophan, $\mathbf{3}_{\mathbf{W}}$ (•): δ_{H} 7.65 (1H, d, J = 8.3 Hz, ArH), 7.48 (1H, d, J = 8.6 Hz, ArH), 7.21-7.25 (1H, m, ArH), 7.19 (1H, br, ArH), 7.15 (1H, t, J = 7.5 Hz, ArH), 4.39 (1H, ABX, J = 7.3, 4.7 Hz, Trp- α H-COOH), 3.94 (2H, s, AcNHCH₂), 3.43 (1H, ABX, J = 15.1, 4.7 Hz, CHCHHAr), 3.26 (1H, ABX, J = 15.1, 7.3 Hz, CHCHHAr), 1.88 (3H, s, H_3 C(CO)); *L-tryptophan*, $\mathbf{2}_{\mathbf{W}}$ (•): $\delta_{\mathbf{H}}$ 7.67 (1H, d, J = 8.1 Hz, ArH), 7.46 (1H, d, J = 8.1 Hz, ArH), 7.22 (1H, s, ArH), 7.21-7.19 (1H, m, ArH), 7.14-7.11 (1H, m, ArH), 3.83 (1H, ABX, J = 7.7, 4.9 Hz, α H-COOH), 3.32 (1H, dd, J = 15.1, 4.9 Hz, CHCHHAr), 3.17 (1H, ABX, J = 15.1, 7.7 Hz, CHCHHAr); *N-acetylglycinamide*, **7** (**X**) (partial assignment): $\delta_{\mathbf{H}}$ 3.84 (2H, s, CH₂).

Figure S48: ¹H–¹³C HMBC (¹H: 600 MHz [3.7–5.0 ppm], ¹³C: 176 MHz [140–200 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Trp**- α H-COOH in **3**w at 4.39 ppm with two resonances at 175.7 and 164.2 ppm, which is characteristic of amidine bond formation of **2**w.

Coupling of 1 with L-threonine 2_T at pH 8.5 and room temperature

Figure S49: ¹H NMR (600 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0–4.7 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-threonine (2_T, 240 mM) and 3-Mercaptopropanoic acid (6b, 60 mM) with MSM (100 mM) as an internal standard at pH 9 and room temperature.

After 24 h following species were observed:

2-(Acetamidomethyl)-5-methyl-4,5-dihydrooxazole-4-carboxylic acid, $\mathbf{8}_{\mathbf{T}}$ (•) (partial assignment - OCHCH₃ resonance partially supressed due to proximity to the HOD peak), δ_{H} 4.75 (1H, p, J = 6.3 Hz, OCHCH₃), 4.09 (1H, AB, J = 17.4 Hz, AcNHCHH), 2.06 (3H, s, H_3 C(CO)), 1.43 (3H, d, J = 6.3 Hz, HOCHCH₃); $\mathbf{3}_{\mathbf{T}}$ (•) δ_{H} 4.40 (1H, qd, J = 6.4, 3.7 Hz, HOCHCH₃), 4.32 (1H, br, Thr- α H-COOH) and **12** (•) (partial assignment): δ_{H} 4.24 (2H, s, CH₂).

After complete consumption of 1 the reaction was heated at 60 $^{\circ}$ C for 16 h, which resulted in formation of 5_T.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) *N-Acetylglycylthreonine*, **5**_T (\checkmark): $\delta_{\rm H}$ 4.29 (1H, qd, *J* = 6.4, 3.7 Hz, HOCHCH₃), 4.20 (1H, br, Thr- α H-COOH), 4.03 (1H, AB, *J* = 17.3 Hz, AcNHCH*H*), 4.00 (1H, AB, *J* = 17.3 Hz, AcNHCH*H*), 2.09 (3H, s, *H*₃C(CO)), 1.18 (3H, d, *J* = 6.5 Hz, HOCHCH₃); *L-threonine*, **2**_T (\blacksquare): 3.45 (1H, d, *J* = 4.8 Hz, α H-COOH), 1.30 (3H, d, *J* = 6.6 Hz, HOCHCH₃); *N-acetylglycinamide*, **7** (**×**) (partial assignment): $\delta_{\rm H}$ 3.91 (2H, s, CH₂), 2.08 (3H, s, *H*₃C(CO)).

Figure S50: ¹H–¹³C HMBC (¹H: 700 MHz [3.4-4.6 ppm], ¹³C: 176 MHz [150–185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the Thr- α H-COOH in 5_T at 4.19 ppm with two resonances at 177.4 and 171.5 ppm, which is characteristic of amide bond formation of 2_T.

Coupling of 1 with L-valine 2_V at pH 8.5 and room temperature

Figure S51: ¹H NMR (600 MHz, H_2O/D_2O 9:1, noesygppr1d, 0.8–5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-valine (2v, 220 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (100 mM) as an internal standard at pH 8.5 and room temperature.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) *(2-acetamido-1-iminoethyl)valine*, **3**_V (•): $\delta_{\rm H}$ 4.28 (1H, AB, *J* = 17.1 Hz, AcNHCH*H*), 4.23 (1H, AB, *J* = 17.1 Hz, AcNHCH*H*), 3.97 (1H, d, *J* = 5.5 Hz, Val- α H-COOH), 2.31-2.24 (1H, m, H₃CCHCH₃), 2.10 (3H, s, H₃C(CO)), 0.95 (3H, d, *J* = 6.7 Hz, CH₃), 0.92 (3H, d, *J* = 7.0 Hz, CH₃); *L-valine*, **2**_V (•): $\delta_{\rm H}$ 3.53 (1H, br. d. *J* = 4.4 Hz, α H-COOH), 2.17-2.12 (1H, m, H₃CCHCH₃), 1.02 (3H, d, *J* = 7.0 Hz, CH₃), 0.93 (3H, d, *J* = 7.0 Hz, CH₃); *N-acetylglycinamide*, **7** (**x**) (partial assignment): $\delta_{\rm H}$ 3.90 (2H, s, CH₂), 2.06 (3H, s, CH₃).

Figure S52: ¹H–¹³C HMBC (¹H: 600 MHz [3.2-4.5 ppm], ¹³C: 176 MHz [150–185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Val**- α H-COOH in **3**v at 3.94 ppm with two resonances at 175.8 and 164.9 ppm, which is characteristic of amidine bond formation.

Competitive coupling of 1 with glycine 2_G and ammonium chloride

Table S19: Ratio for the formation of 3_G • and 12

Reaction conditions are as following 3-mercaptopropanoic acid (**6b**, 60 mM) \blacktriangle catalyzed formation of 3_G \bigcirc and 12 \blacksquare from the coupling of N-acetyl glycine nitrile (**1**, 200 mM) with glycine \blacksquare (**2**_G, 1 equiv.) and ammonium chloride (2 equiv., 5 equiv. and 10 equiv.) at pH 8.5, room temperature, after 12 h, unless stated otherwise.

Figure S53: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (**1**, 200 mM) with glycine (**2**₆, 200 mM), ammonium chloride (NH₄Cl, 2 equiv., 5 equiv. and 10 equiv.), and 3-mercaptopropanoic acid (**6b**, 60 mM) with MSM (100 mM) as an internal standard after 12 h at pH 8.5. A₁) ¹H spectrum shows reaction of **1** with 2 equiv. of NH₄Cl and 1 equiv. of **2**₆ after 1 hrs, A₂) reaction of **1** with 2 equiv. of NH₄Cl and 1 equiv. of **2**₆ after 12 hrs B) reaction of **1** with 5 equiv. of NH₄Cl and 1 equiv. of **2**₆ after 12 hrs C) reaction of **1** with 10 equiv. of NH₄Cl and 1 equiv. of **2**₆ after 12 hrs.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)glycine, $\mathbf{3}_{\mathbf{G}}$ (•): δ_{H} 4.26 (2H, s, AcNHCH₂), 3.91 (2H, s, Gly- α H-COOH), 2.09 (3H, s, H₃C(CO)); 2-(2-acetamidoacetimidamido)acetamide, 12 (•): δ_{H} 4.19 (2H, s, AcNHCH₂), 2.08 (3H, s, H₃C(CO)); glycine, $\mathbf{2}_{\mathbf{G}}$ (•): δ_{H} 3.51 (2H, s, CH₂).

	-				
144	50	5	$[C_6H_{11}N_3O_3+Na]^+$	196.0693	196.0690 (ESI pos.)
144	76	8	$[C_7H_{13}N_3O_3+H]^+$	188.1030	188.1030 (ESI pos.)
120	80	18	$[C_{10}H_{15}N_{3}O_{5}+H]^{+}$	273.1670	273.1669 (ESI pos.)
240	50	45	$[C_8H_{14}N_4O_4+Na]^+$	253.0907	253.0910 (ESI pos.)
144	83	17	$[C_8H_{13}N_3O_5+Na]^+$	254.0747	254.0749 (ESI pos.)
120	66	19	$[C_9H_{16}N_4O_4+H]^+$	245.1244	245.1243 (ESI pos.)
120	84	15	$[C_9H_{15}N_3O_5+Na]^+$	268.0904	268.0905 (ESI pos.)
125	84	13	$[C_{10}H_{15}N_5O_3+H]^+$	254.1248	254.1246 (ESI pos.)
168	86	8	$[C_{10}H_{19}N_3O_3+H]^+$	230.1499	230.1496 (ESI pos.)
144	81	12	$[C_{10}H_{19}N_3O_3+H]^+$	230.1499	230.1499 (ESI pos.)
120	42	16	$[C_{10}H_{12}N_4O_3+H]^+$	245.1608	245.1608 (ESI pos.)
120	63	22	$[C_9H_{17}N_3O_3+Na]^+$	270.0883	270.0887 (ESI pos.)
125	73	23	$[C_{13}H_{17}N_3O_3+H]^+$	264.1343	164.1341 (ESI pos.)
144	85	6	$[C_9H_{15}N_3O_3+H]^+$	214.1186	214.1185 (ESI pos.)
36	74		$[C_7H_{13}N_3O_4+H]^+$	204.0979	204.0981 (ESI pos.)
36	85		$[C_8H_{15}N_3O_4+H]^+$	218.1135	218.1134 (ESI pos.)
144	82	14	$[C_{15}H_{18}N_4O_3-H]^-$	301.1306	301.1306 (ESI neg.)
132	90	10	$[C_9H_{17}N_3O_3+H]^+$	216.1343	216.1342 (ESI pos.)
97	85	10	[C ₁₃ H ₁₇ N ₃ O ₄ -H] ⁻	278.1146	278.1147(ESI neg.)
	$\begin{array}{c} 144\\ 144\\ 120\\ 240\\ 144\\ 120\\ 120\\ 125\\ 168\\ 144\\ 120\\ 125\\ 168\\ 144\\ 120\\ 125\\ 144\\ 36\\ 36\\ 36\\ 144\\ 132\\ 97\\ \end{array}$	144 50 144 76 120 80 240 50 144 83 120 66 120 84 125 84 168 86 144 81 120 42 120 63 144 85 36 74 36 85 144 82 132 90 97 85	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table S20: Yields and ESI-HRMS data for 3-mercaptopropanoic acid (**6b**, 60 mM) \triangle catalyzed formation of peptide **5'** \bigtriangledown from the coupling of *N*-acetyl glycine nitrile (**1**, 200 mM) with aminoamide \blacksquare (**2**, 2.0 equiv.) at pH 8.5, room temperature, unless stated otherwise. Two equiv. of amino amide were used due to the low pKa of these compounds.

^a pH 7, 60 °C

Coupling of N-acetylglycine nitrile 1 with L-alaninamide 2_A ' at pH 8.5 and room temperature

Figure S54: ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-alaninamide (2_A', 400 mM) and 3-mercaptopropanoic acid (6b, 60 mM), with MSM (7 mM) as an internal standard, at pH 8.5, room temperature.

¹H NMR (700 MHz, H₂O/D₂O 9:1) **5**_A' (•): $\delta_{\rm H}$ 4.29 (1H, q, J = 7.3 Hz, C*H*(CH₃)) 3.91 (2H, s, C*H*₂CONH)), 2.04 (3H, s, *H*₃C(CO)), 1.37 (3H, d, J = 7.3 Hz, CH(CH₃)); *L-alaninamide*, **2**_A' (•): $\delta_{\rm H}$ 3.56 (1H, q, J = 7.2 Hz, CH(CH₃)); 1.29 (3H, d, J = 7.2 Hz, CH(CH₃)); *N-acetylglycinamide*, **7** (**×**) (partial assignment): $\delta_{\rm H}$ 3.89 (2H, d, CH₂).

Figure S55: ¹H–¹³C HMBC (¹H: 700 MHz [3.6-4.5 ppm], ¹³C: 176 MHz [160-192 ppm], H₂O/D₂O 9:1) spectrum for the coupling of **1** and **2**_A² catalyzed by 3-mercaptopropionic acid (**6b**) at pH 8.5 after 24 h, showing the diagnostic ²J_{CH} and ³J_{CH} coupling of **Ala**- α H in **4**_A at 4.15 ppm with two resonances at 174.5 and 188.7 ppm, which is characteristic of imidazolone formation.

Coupling of N-acetylglycine nitrile 1 with L-aspartic acid amide 2_D ' at pH 8.5 and room temperature

Figure S56: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-aspartic acid amide (2_D ², 260 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (7 mM) as an internal standard after 24 h at pH 8.5 and room temperature.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) **5**_D' (•): $\delta_{\rm H}$ 4.57 (1H, dd, J = 7.8, 5.2 Hz, Asp- α *H*-CONH₂), 3.94 (1H, J = 17.1 Hz, AcNHC*H*H), 3.90 (1H, J = 17.1 Hz, AcNHCH*H*), 2.67 (ABX, J = 15.9, 5.2 Hz, CH(CH*H*COOH)CONH₂), 2.61 (ABX, J = 15.9, 7.8 Hz, CH(CH*H*COOH)CONH₂), 2.05 (3H, s, *H*₃C(CO)); *L*-aspartic acid amide, **2**_D' (•): $\delta_{\rm H}$ 3.70 (1H, dd, J = 8.0, 5.5 Hz, α *H*-COOH), 2.60 (1H, ABX, J = 15.8, 5.5 Hz, CH(CH*H*COOH)CONH₂), 2.46 (1H, ABX, J = 15.8, 8.0 Hz, CH(CH*H*COOH)CONH₂); *N*-acetylglycinamide, **7** (**×**): $\delta_{\rm H}$ 3.90 (2H, s, CH₂).

Figure S57: ¹H–¹³C HMBC (¹H: 700 MHz [2.4-4.5 ppm], ¹³C: 176 MHz [160-200 ppm], H₂O/D₂O 9:1) spectrum for the coupling of **1** and **2**_D³ catalyzed by 3-mercaptopropionic acid (**6b**) at pH 8.5 after 24 h, showing the diagnostic coupling of the imidazolone amide signal in **4**_D at 192.2 ppm with signals at 4.30 ppm (**Asp**- α H, ²J_{CH}), 2.72 and 2.58 ppm (**Asp**- β H, ³J_{CH}), which is characteristic of imidazolone formation.

Figure S58: ¹H–¹³C HMBC (¹H: 700 MHz [3.5-5.0 ppm], ¹³C: 176 MHz [160-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Asp**- α H-CONH₂ in **5**_D' at 4.57 ppm with three resonances at 178.4, 177.0 and 172.3 ppm, characteristic of peptide formation.

Coupling of N-acetylglycine nitrile 1 with L-arginine amide 2_R ' at pH 8.5 and room temperature

Figure S59: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-arginine amide (2_R ', 400 mM) 3-mercaptopropanoic acid (6b, 60 mM) with MSM (30 mM) as an internal standard at pH 8.5 and room temperature. X = N-acetylglycinamide, 7.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)arginine, **5**_R' (\bullet): $\delta_{\rm H}$ 4.32 (1H, dd, J = 9.3, 5.1 Hz, Arg- α H-COOH), 3.95 (1H, app. s AcNHCH₂), 3.22 (overlapped, CH₂(guanidyl)), 2.07 (3H, s, H₃C(CO)), 1.90 (1H, m, CHHCH₂CH₂(guanidyl)), 1.77 (1H, m, CHHCH₂CH₂(guanidyl)), 1.57 (overlap, CH₂CH₂CH₂(guanidyl)); *L-arginine amide*, **2**_R' (\bullet) (partial assignment): $\delta_{\rm H}$ 3.45 (1H, t, J = 6.1 Hz, α H-COOH), 3.22 (overlap CH₂(guanidyl)); *N*-Acetylglycinamide, **7** (**X**) (partial assignment): $\delta_{\rm H}$ 3.90 (2H, s, CH₂).

Figure S61: ¹H–¹³C HMBC (¹H: 700 MHz [3.6-4.5 ppm], ¹³C: 176 MHz [160-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of **Arg**- α H in **5**_R' at 4.32 ppm with two resonances at 177.1 and 172.5 ppm.

Figure S62: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0–5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-asparagine amide (2_N ', 400 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (7 mM) as an internal standard at pH 8.5 and room temperature. $\mathbf{X} = N$ -acetyl glycinamide 7

Figure S63: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 3.5–4.7 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) at pH 8.5 and room temperature with 3-mercaptopropanoic acid (6b, 60 mM) and A L-asparagine (2_N , 240 mM, 120 h), B L-asparagine amide (2_N ', 400 mM, 240 h) or C L-aspartic acid amide (2_D ', 400 mM, 120 h).

For characterisation see entries for $\mathbf{2_N}$ (p 33) and $\mathbf{2_D'}$ (p 66).

Figure S64: ¹H–¹³C HMBC (¹H: 700 MHz [3.5-4.7 ppm], ¹³C: 176 MHz [160-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²*J*_{CH} and ³*J*_{CH} coupling of the Asn- α H- COOH in **5**_N at 4.54 ppm with three resonances at 178.4, 176.9 and 172.2 ppm, which is characteristic of peptide bond formation of Asn, and the ²*J*_{CH} and ³*J*_{CH} coupling of Asp- α H-CONH₂ in **5**_D' at 4.46 ppm with two resonances at 176.9 and 171.5 ppm, which is characteristic of peptide bond formation of Asp.

Coupling of N-acetylglycine nitrile 1 with L-glutamic acid amide 2_E' at pH 8.5 and room temperature

Figure S65: ¹H NMR (700 MHz, H₂O/D₂O 9:1 noesygppr1d, 1.0–5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-glutamic acid amide (2_{E} ', 220 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (7 mM) as an internal standard at pH 8.5 and room temperature. \neq = N-Acetyl glycinamide 7

¹H NMR (700 MHz, H₂O/D₂O 9:1) **5**_E' (•): $\delta_{\rm H}$ 4.27 (1H, dd, J = 9.2, 4.9 Hz, Glu- α H-CONH₂), 3.95 (2H, s, AcNHCH₂), 2.29-2.23 (m, CH₂C**H**₂COOH), 2.08 (3H, s, H₃C(CO)), 2.10-2.06 (m, CHHCH₂COOH), 1.98-1.91 (m, CHHCH₂COOH); *L*-glutamic acid amide, 2_E' (•): $\delta_{\rm H}$ 3.43 (1H, t, J = 6.72 Hz, α H-CONH₂), 2.24 (2H, t, J = 8.0 Hz, CH₂CH₂COOH), 1.93-1.88 (m, CHHCH₂COOH), 1.84-1.79 (1H, m, CHHCH₂COOH); *N*-acetylglycinamide, 7 (*) (partial assignment): $\delta_{\rm H}$ 3.90 (2H, s, CH₂).

Figure S66: ¹H–¹³C HMBC (¹H: 700 MHz [1.7-4.4 ppm], ¹³C: 176 MHz [160-200 ppm], H₂O/D₂O 9:1) spectrum for the coupling of **1** and **2**_E' catalyzed by 3-mercaptopropionic acid (**6b**) at pH 8.5 after 48 h, showing the diagnostic coupling of the imidazolone amide signal in **4**_E at 193.8 ppm with signals at 4.17 ppm (**Glu**- α H, ²J_{CH}), 2.12 and 1.90 ppm (**Glu**- β H, ³J_{CH}), which is characteristic of imidazolone formation.

Figure S67: ¹H–¹³C HMBC (¹H: 700 MHz [3.5-4.5 ppm], ¹³C: 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the Glu- α H in 5_E' at 4.27 ppm with two resonances at 177.2 and 172.5 ppm.

Coupling of N-acetylglycine nitrile 1 with L-glutamine amide 2q' at pH 8.5 and room temperature

Figure S68: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-glutamine amide (2q', 400 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (7 mM) as an internal standard at pH 8.5 and room temperature, $\mathbf{X} = \mathbf{7}$.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) **5** $_{\mathbf{Q}}$, (\bullet): δ_{H} 4.35 (1H, dd, J = 9.7, 4.7 Hz Gln- α H-COOH), 3.97 (2H, s, AcNHCH₂), 2.40 (2H, app. td, 7.4, 2.1 Hz CH₂CH₂CONH₂), 2.21 - 2.15 (1H, m, C**H**HCH₂CONH₂), 2.09 (3H, s, H₃C(CO)), 2.03 – 1.97 (1H, m, CH**H**CH₂CONH₂); *L*-glutamine amide, **2** $_{\mathbf{Q}}$, (\bullet): δ_{H} 3.46 (1H, t, J = 6.6 Hz, α H-COOH), 2.37 (2H, app t, J = 7.9 Hz, CH₂CH₂CONH₂), 1.99 – 1.93 (1H, m, C**H**HCH₂CONH₂), 1.90 – 1.83 (1H, m, CH**H**CH₂CONH₂); *N*-acetylglycinamide, **7** (*****) (partial assignment): δ_{H} 3.92 (2H, s, CH₂).

Figure S69: ¹H–¹³C HMBC (¹H: 700 MHz [3.7-4.5 ppm], ¹³C: 176 MHz [169-181 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Gln**- α H in **5** $_{Q}$ at 4.31 ppm with two resonances at 176.8 and 172.4 ppm, which is characteristic of amide bond formation of **Gln**.

Coupling of N-acetylglycine nitrile 1 with glycinamide 2_G ' at pH 8.5 and room temperature

Figure S70: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with glycinamide (2_G', 400 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (7 mM) as an internal standard at pH 9 and room temperature.

¹H NMR (700 MHz, H₂O/D₂O 9:1) 5_{G} ^{**'**} (\bullet): δ_{H} 3.96 (2H, s, AcNHCH₂), 3.94 (2H, s, CH₂CONH₂), 2.08 (3H, s, H₃C(CO)); *Ghycinamide*, 2_{G} ^{**'**} (\bullet): δ_{H} 3.41 (2H, s, CH₂).

Figure S71: ¹H–¹³C HMBC (¹H: 700 MHz [3.6-4.6 ppm], ¹³C: 176 MHz [160-200 ppm], H₂O/D₂O 9:1) spectrum for the coupling of **1** and **2** $_{G}$ ^{*} catalyzed by 3-mercaptopropionic acid (**6b**) at pH 8.5 after 24 h, showing the diagnostic coupling of the imidazolone amide signal in **4**_G at 191.3 ppm with signals at 4.12 ppm (**Gly**- $_{A}$ H, ²J_{CH}) which is characteristic of imidazolone formation.

Figure S72:¹H–¹³C HMBC (¹H: 700 MHz [3.5–5.0 ppm], ¹³C: 176 MHz [160-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of **Gly**- α H-CONH₂ in **5**c² at 3.94 ppm with two resonances at 175.0 and 173.0 ppm.

Coupling of N-acetylglycine nitrile 1 with L-histidine amide 2_{H} at pH 8.5 and room temperature

Figure S73: ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-histidine amide (2_{H} ', 400 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (7 mM) as an internal standard at pH 8.5 and room temperature.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) **5**_H^{**'**}(\bullet): $\delta_{\rm H}$ 7.69 (1H, s, Ar*H*), 6.98 (1H, s, Ar*H*), 4.57 (1H, dd, *J* = 8.3, 5.6 Hz, His-*αH*-COOH), 3.89 (1H, AB, *J* = 16.9 Hz, AcNHC*H*H), 3.86 (1H, AB, *J* = 16.9 Hz, AcNHC*HH*), 3.11 (1H, ABX, *J* = 15.0, 5.4 Hz, CH(CH*H*Ar)), 3.02 (1H, ABX, *J* = 15.0, 8.3 Hz, CH(C*H*HAr)), 2.05 (3H, s, H₃C(CO)); *L*-*bistidine amide*, **2**_H^{**'**}(\blacksquare): $\delta_{\rm H}$ 7.69 (1H, s, Ar*H*), 6.96 (1H, s, Ar*H*), 3.69 (1H, t, *J* = 6.3 Hz, *α*-*H*-COOH), 2.94 (1H, ABX, *J* = 14.7, 6.1 Hz, CH(CH*H*Ar), 2.87 (1H, ABX, *J* = 14.7, 7.0 Hz, CH(C*H*HAr)); *N*-*acetylglycinamide*, **7** (**X**) (partial assignment): $\delta_{\rm H}$ 3.90 (2H, s, CH₂).

Figure S74: ¹H–¹³C HMBC (¹H: 700 MHz [2.7-4.6 ppm], ¹³C: 176 MHz [160-200 ppm], H₂O/D₂O 9:1) spectrum for the coupling of **1** and **2**_H² catalyzed by 3-mercaptopropionic acid (**6b**) at pH 8.5 after 24 h, showing the diagnostic coupling of the imidazolone amide signal in **4**_H at 193.8 ppm with signals at 4.34 ppm (**His**- α H, ²J_{CH}), 3.15 and 3.00 ppm (**His**- β H, ³J_{CH}), which is characteristic of imidazolone formation.

Figure S75: ${}^{1}H-{}^{1}C$ HMBC (${}^{1}H$: 700 MHz [3.7–5.0 ppm], ${}^{1}C$: 176 MHz [160–185 ppm], ${}^{1}2O/D_2O$ 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the His- α H in 5 $_{H}$ ' at 4.57 ppm with two resonances at 176.4 and 172.2 ppm.

Coupling of N-acetylglycine nitrile 1 with L-isoleucinamide 2_{I} at pH 8.5 and room temperature

Figure S76: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 0.0–5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-isoleucinamide (2[,], 400 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (7 mM) as an internal standard at pH 8.5 and room temperature and x = 7.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) **5**₁' (•) (partial assignment, mixture of diastereomers A and B, 11:9): $\delta_{\rm H}$ 4.34 (1H, d, J = 5.4 Hz, A Ile- α H-COOH), 4.18 (1H, d, J = 7.0 Hz, B Ile- α H-COOH), 3.96 (2H, s, A AcNHCH₂), 3.94 (2H, s, B AcNHCH₂), 2.05 (3H each for A and B, s, H₃C(CO)), 1.98-1.91 (m, 1H, A Ile- β CH(CH₃)CH₂CH₃), 1.38-1.31 (m, 1H, A Ile-CH(CH₃)CHHCH₃), 1.22-1.22 (m, 1H, A Ile-CH(CH₃)CHHCH₃); *Lisoleucinamide*, **2**₁' (•): $\delta_{\rm H}$ 3.25 (1H, d, J = 6.1 Hz, α H-CONH₂) 1.69-1.63 (1H, m, Ile- β CH(CH₃)CH₂CH₃) 1.49-1.42 (1H, m, Ile-CH(CH₃)CHHCH₃), 1.20-1.12 (1H, m, Ile-CH(CH₃)CHHCH₃), 0.91 (3H, d, J = 7.0 Hz, Ile-CH(CH₃)CH₂CH₃), 0.88 (3H, t, J = 7.4 Hz, Ile-CH(CH₃)CH₂CH₃); *N*-acetylglycinamide, **7** (*****) (partial assignment): $\delta_{\rm H}$ 3.90 (2H, s, CH₂).

Figure S77: ¹H–¹³C HMBC (1H: 700 MHz [3.4–4.5 ppm], 13C: 176 MHz [150–185 ppm], H2O/D2O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the two diastereomers of **Ile**- α H in **5**t² at 4.34 ppm with two resonances at 177.3 and 172.6 ppm, and 4.18 ppm with two resonances at 177.0 and 172.3 ppm.

Figure S78: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 0.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-leucinamide (2L', 400 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (7 mM) as an internal standard at pH 8.5 and room temperature. $\mathbf{x} = \mathbf{7}$.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) **5**_L' (•) (partial assignment): $\delta_{\rm H}$ 4.34 (1H, dd, J = 10.4, 4.4 Hz, Leu- α *H*-COOH), 3.95 (1H, AB, J = 17.1 Hz, AcNHC*H*₂), 2.07 (3H, s, H₃C(CO)), 1.72-1.58 (3H, m; Leu- β C*H*₂-C*H*-(CH₃)₂), 0.95 (3H, d, J = 6.1 Hz, Leu-(CH₃)), 0.89 (3H, d, J = 6.3 Hz, Leu-(CH₃)); *L-leucinamide*, **2**_L' (•) (partial assignment): $\delta_{\rm H}$ 3.47 (1H, dd, J = 8.0, 6.4 Hz, α *H*-CONH₂),1.72-1.64 (1H, m; Leu-C*H*-(CH₃)₂), 1.54-1.43 (2H, m; Leu- β C*H*₂), 0.94 (3H, d, J = 6.7 Hz, Leu-(CH₃)), 0.92 (3H, d, J = 6.3 Hz, Leu-(CH₃)); *N-acetylglycinamide*, **7** (**×**) (partial assignment): $\delta_{\rm H}$ 3.91 (2H, s, CH₂).

Figure S79: ¹H–¹³C HMBC (¹H: 700 MHz [1.7-4.5 ppm], ¹³C: 176 MHz [160-200 ppm], H₂O/D₂O 9:1) spectrum for the coupling of **1** and **2**_L' catalyzed by 3-mercaptopropionic acid (**6b**) at pH 8.5 after 24 h, showing the diagnostic coupling of the imidazolone amide signal in **4**_L at 194.2 ppm with signals at 4.19 ppm (**Leu**- α H, ²J_{CH}), 1.70 and 1.54 ppm (**Leu**- β H, ³J_{CH}), which is characteristic of imidazolone formation.

Figure S80: ¹H–¹³C HMBC (¹H: 700 MHz [3.5-4.5 ppm], ¹³C: 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Leu**- α H in **5**_L' at 4.08 ppm with two resonances at 178.2 and 172.2 ppm, which is characteristic of amide bond formation of **2**_L'.

Coupling of N-acetylglycine nitrile 1 with DL-methionine amide 2_M 'at pH 8.5 and room temperature

Figure S81: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with DL-methioninamide (2_{M} ', 400 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (7 mM) as an internal standard pH 8.5 and room temperature. \Rightarrow = 7.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) **5**_M' (\bullet) (partial assignment): $\delta_{\rm H}$ 4.50 (1H, dd, J = 9.7, 4.5 Hz, Met *αH*-COOH), 3.97 (2H, s, AcNHC*H*₂), 2.68-2.54 (2H, m, C*H*₂SCH₃), 2.14 (3H, s, CH₂SCH₃), 2.09 (3H, s, H₃C(CO)), 2.19-2.04 (m, C*H*₂CH₂SCH₃); *DL-methioninamide*, **2**_M' (\blacksquare) (partial assignment): $\delta_{\rm H}$ 3.56 (1H, br. t., J = 6.6 Hz, *α*H-COOH), 2.61 (2H, t, J = 7.5 Hz, CH₂SCH₃), 2.14 (3H, s, SCH₃); *N-acetylglycinamide*, **7** (**×**) (partial assignment): $\delta_{\rm H}$ 3.92 (2H, s, CH₂).

Figure S82: ¹H–¹³C HMBC (¹H: 700 MHz [1.7-4.6 ppm], ¹³C: 176 MHz [160-200 ppm], H₂O/D₂O 9:1) spectrum for the coupling of **1** and **2**_M' catalyzed by 3-mercaptopropionic acid (**6b**) at pH 8.5 after 24 h, showing the diagnostic coupling of the imidazolone amide signal in **4**_M at 194.1 ppm with signals at 4.24 ppm (**Met**- α H, ²*J*_{CH}), 2.16 and 1.97 ppm (**Met**- β H, ³*J*_{CH}), which is characteristic of imidazolone formation.

Figure S83: ${}^{1}H-{}^{1}C$ HMBC (${}^{1}H$: 700 MHz [3.7-4.7 ppm], ${}^{1}C$: 176 MHz [160-185 ppm], H_2O/D_2O 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Met**- α H in **5**_M^{*} at 4.50 ppm with two resonances at 176.4 and 172.2 ppm, which is characteristic of amide bond formation.

Figure S84: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-8.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-phenylalaninamide (2_M², 400 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (7 mM) as internal standard at pH 8.5 and room temperature.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) **5**_F' (partial assignment) (\bullet): $\delta_{\rm H}$ 4.57 (1H, dd, J = 9.0, 5.8 Hz, Phe**a**H-COOH), 3.79 (1H, AB, J = 17.0 Hz, AcNHC*H*H), 3.74 (1H, AB, J = 17.0 Hz, AcNHCH**H**), 3.14 (1H, dd, J = 14.0, 5.5 Hz, CHCH*H*Ph), 1.98 (3H, s, H₃C(CO)); *L-phenylalaninamide* **2**_F' (\blacksquare) (partial assignment): $\delta_{\rm H}$ 3.62 (1H, t, J = 6.8 Hz, **a**H-COOH), 2.84 (1H, ABX, J = 13.5, 7.1 Hz, CHCH*H*Ph); *N-acetylglycinamide*, **7**(**×**) (partial assignment): $\delta_{\rm H}$ 3.85 (2H, s, CH₂).

Figure S85: ${}^{1}H-{}^{13}C$ HMBC (${}^{1}H$: 700 MHz [3.6-5.0 ppm], ${}^{13}C$: 176 MHz [160-185 ppm], H_2O/D_2O 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Phe**- α H in **5F** at 4.57 ppm with two resonances at 176.2 and 172.0 ppm, which is characteristic of amide bond formation.

Coupling of N-acetylglycine nitrile 1 with L-prolinamide 2_{P} at pH 8.5 and room temperature

Figure S86: ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-prolinamide (2_P², 400 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (7 mM) as an internal standard at pH 8.5 and room temperature.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) **5**_P' (\bullet) (partial assignment): $\delta_{\rm H}$ 4.38 (1H, dd, J = 8.9, 4.4 Hz, Pro *a*H-COOH), 4.07 (1H, AB, J = 17.4 Hz, AcNHCHH), 4.05 (1H, AB, J = 17.4 Hz, AcNHCHH), 3.66-3.62 (1H, m, NCHHCH₂CH₂), 3.60-3.56 (1H, m, NCHHCH₂CH₂), 2.28-2.23 (1H, m, NC(CONH₂)HCHHCH₂), 2.03 (3H, s, H_3 C(CO)); *L-prolinamide*, **2**_P' (\blacksquare) (partial assignment): $\delta_{\rm H}$ 4.11 (1H, dd, J = 8.6, 6.4 Hz, α H-COOH), 3.25-3.21 (1H, m, HNCHHCH₂CH₂), 3.19-3.15 (1H, m, HNCHHCH₂CH₂) 2.35-2.30 (1H, m, NC(CONH₂)HCHHCH₂); *Nacetylglycinamide*, **7** (**×**) (partial assignment): $\delta_{\rm H}$ 3.87 (2H, s, CH₂).

Figure 887: $^{1}H^{-13}C$ HMBC (¹H: 700 MHz [3.88-4.50 ppm], ^{13}C : 176 MHz [165-183 ppm], $^{H_2}O/D_2O$ 9:1) spectrum showing the diagnostic $^{2}J_{CH}$ coupling of the Gly-CH₂ AB in 5_P' at 4.07 and 4.05 ppm with two resonances at 175.0 and 170.0 ppm, which is characteristic of amide bond formation of Pro.

Coupling of N-acetylglycine nitrile 1 with L-serinamide 25' at pH 8.5 and room temperature

Figure S88: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-serinamide (2s', 400 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (7 mM) as an internal standard at pH 8.5 and room temperature.

Figure S89: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-serinamide (2s², 400 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (60 mM) as an internal standard at pH 7.0 and 60°C.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) **5**s' (partial assignment) (\bullet): $\delta_{\rm H}$ 4.44 (1H, app. t, J = 4.9 Hz, Ser- α H-CONH₂), 3.98 (1H, AB, J = 17.4 Hz, AcNHC*H*H), 3.96 (1H, AB, J = 17.4 Hz, AcNHCH*H*), 2.06 (3H, s, H_3 C(CO)).

Figure S90: ${}^{1}H-{}^{13}C$ HMBC (${}^{1}H:$ 700 MHz [3.5–4.5 ppm], ${}^{13}C:$ 176 MHz [150-185 ppm], ${}^{12}O/D_2O$ 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Ser**- α H in **5s**' at 4.44 ppm with two resonances at 175.2 and 172.6 ppm which is characteristic of amide bond formation.

Coupling of N-acetylglycine nitrile 1 with L-tryptophan amide $2_W'$ at pH 8.5 and room temperature

Figure S91: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-8.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-tryptophan amide (**Trp**, 200 mM) and 3-Mercaptopropanoic acid (MPA, 60 mM) with MSM (7 mM) as an internal standard at pH 8.5 and room temperature.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) **5**_w' (partial assignment) (•): $\delta_{\rm H}$ 7.52 (1H, d, J = 8.1 Hz, ArH), 7.12 (1H, s, ArH), 4.54 (1H, app. t, J = 6.8 Hz, Trp- αH -COOH), 3.67 (1H, AB, J = 16.9 Hz, AcNHCHH), 3.62 (1H, AB, J = 16.9 Hz, AcNHCHH), 3.17 (1H, ABX, J = 14.8, 5.8 Hz, CHCHHAr), 3.07 (1H, ABX, J = 14.8, 7.9 Hz, CHCHHAr), 1.83 (3H, s, H_3 C(CO)); *L*-tryptophan amide **2**_w' (partial assignment) (•): $\delta_{\rm H}$ 7.55 (1H, d, J = 7.9 Hz, ArH), 7.09 (1H, s, ArH), 3.56 (1H, app. t, J = 6.6 Hz αH -COOH), 3.01 (1H, ABX, J = 14.4, 6.3 Hz, CHCHHAr), 2.92 (1H, ABX, J = 14.4, 6.8 Hz, CHCHHAr); *N*-Acetylglycinamide, **7** (*****) $\delta_{\rm H}$ 3.82 (2H, s, CH₂), 2.02 (3H, s, H_3 C(CO)).

Figure S92: ¹H–¹³C HMBC (¹H: 700 MHz [2.7-4.6 ppm], ¹³C: 176 MHz [160-200 ppm], H₂O/D₂O 9:1) spectrum for the coupling of **1** and **2w'** catalyzed by 3-mercaptopropionic acid (**6b**) at pH 8.5 after 24 h, showing the diagnostic coupling of the imidazolone amide signal in **4**w at 192.4 ppm with signals at 4.00 ppm (**Trp**- α H, ²J_{CH}), 3.15 and 3.00 ppm (**Trp**- β H, ³J_{CH}), which is characteristic of imidazolone formation.

Figure S93: $^{1}H-^{13}C$ HMBC ($^{1}H: 700$ MHz [3.4–4.7 ppm], $^{13}C: 176$ MHz [160–185 ppm], H_2O/D_2O 9:1) spectrum showing the diagnostic $^{2}J_{CH}$ and $^{3}J_{CH}$ coupling of the diastereotopic glycyl AB in **5w'** at 3.67 and 3.62 ppm with two resonances at 175.2 and 172.0 ppm, which is characteristic of amide bond formation.

Figure S94: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-8.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-tyrosinamide (2x² 200 mM) and 3-Mercaptopropanoic acid (MPA, 60 mM) with MSM (7 mM) as an internal standard at pH 8.5 and room temperature.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) **5**_Y' (partial assignment) (•): $\delta_{\rm H}$ 4.49 (1H, dd, J = 7.9, 6.3 Hz, Tyr*a***H**-CONH₂), 3.82 (1H, AB, J = 16.8 Hz AcNHCH*H*), 3.77 (1H, AB, J = 16.9 Hz AcNHC*H*H), 3.04 (1H, ABX, J = 14.1, 5.8 Hz, CHCH*H*Ar), 1.99 (3H, s, *H***₃C(CO))**; *L*-*tyrosinamide*, **2**_Y' (partial assignment) (•): $\delta_{\rm H}$ 3.58 (1H, app. t, J = 6.7 Hz *a***H**-COOH), 2.76 (1H, ABX, J = 13.9, 7.0 Hz, CHC*H*HAr); *N*-*acetylglycinamide*, **7** (*****) $\delta_{\rm H}$ 3.86 (2H, s, CH₂), 2.04 (3H, s, *H***₃C(CO)**).

Figure S95: ¹H–¹³C HMBC (¹H: 700 MHz [3.6–4.5 ppm], ¹³C: 176 MHz [160–185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the diastereotopic glycyl AB in **5**x' at 3.82 and 3.77 ppm with two resonances at 175.2 and 172.0 ppm, which is characteristic of amide bond formation.

Coupling of N-acetylglycine nitrile 1 with L-threoninamide 2_T at pH 8.5 and room temperature

Figure S96: 'H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0–4.7 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-threoninamide (2r', 240 mM) and 3-Mercaptopropanoic acid (6b, 60 mM) with MSM (7 mM) as an internal standard at pH 8.5 and room temperature.

Figure S97: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-threoninamide (2s', 400 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (60 mM) as an internal standard at pH 7.0 and 60 °C.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) **5**_T^{*} (•): $\delta_{\rm H}$ 4.34-4.28 (2H, m, Thr- α H-CONH₂ + HOCHCH₃), 4.00 (2H, s, AcNHCH₂), 2.06 (3H, s, H₃C(CO)), 1.25 (3H, d, J = 6.3 Hz, HOCHCH₃); *L-threoninamide*, **2**_T^{*} (•): $\delta_{\rm H}$ 4.09 (1H, m, HOCHCH₃), 3.54 (1H, d, J = 4.9 Hz, α H-COOH), 1.20 (3H, d, J = 6.3 Hz, HOCHCH₃).

Figure S98: ¹H–¹³C HMBC (¹H: 700 MHz [3.4-4.4 ppm], ¹³C: 176 MHz [160–180 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Thr**- α H in **5r**' at 4.32 ppm with two resonances at 175.6 and 172.6 ppm, which is characteristic of amide bond formation.

Figure S99: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 0.0–5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-valinamide (2v³, 400 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (7 mM) as an internal standard at pH 8.5 and room temperature.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) **5v'** (partial assignment) (\bullet): $\delta_{\rm H}$ 4.16 (1H, d, J = 6.7 Hz, Val- α H-CONH₂), 3.98 (1H, AB, J = 17.2 Hz, AcNHCHH), 3.97 (1H, AB, J = 17.2 Hz, AcNHCHH), 2.15-2.10 (1H, m, H₃CCHCH₃), 2.07 (3H, s, H₃C(CO)); *L-valinamide*, **2v'** (\blacksquare): $\delta_{\rm H}$ 3.22 (1H, d. J = 6.1 Hz, α H-CONH₂), 1.92 (1H, app. octet, J = 6.7 Hz, H₃CCHCH₃); *N-acetylglycinamide*, **7** (**×**) (partial assignment): $\delta_{\rm H}$ 3.91 (2H, s, CH₂)

Figure S100: ¹H–¹³C HMBC (¹H: 700 MHz [1.4-4.6 ppm], ¹³C: 176 MHz [160-200 ppm], H₂O/D₂O 9:1) spectrum for the coupling of **1** and **2v**' catalyzed by 3-mercaptopropionic acid (**6b**) at pH 8.5 after 24 h, showing the diagnostic coupling of the imidazolone amide signal in **4v** at 193.4 ppm with signals at 4.10 ppm (**Val**- α H, ²J_{CH}), 2.22 ppm (**Val**- β H, ³J_{CH}), which is characteristic of imidazolone formation.

Figure S101: ¹H–¹³C HMBC (¹H: 700 MHz [3.2-4.5 ppm], ¹³C: 176 MHz [150–185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Val**- α H in **5v**² at 4.16 ppm with two resonances at 177.2 and 172.6 ppm, which is characteristic of amide bond formation.

Coupling of 1 with peptide fragments catalyzed by 6b

Coupling of 1 with L-alanylglycyl-L-alanine 2_{AGA}

Entry	pН	temperature / °C	reaction time / h	4 _{AGA} / %	5 _{AGA} / %
1	8.5	20	12	38	trace
2	8.5	20	144	12	34
3	8.5	60	28	0	50
4	7.0	60	96	0	81

Table S21: Thiol-catalyzed ligation of 1 with Ala-Gly-Ala $2_{AGA}.$

Entry	рН	buffer	temperature / °C	Time	12 / %	7 / %	5 _{AGA} / %
1	7	no buffer	60	96 hour	5	14	81
2	7	no buffer	20	20 days	5	12	78
3	8.5	no buffer	60	28 hours	overlapped	30	50
4	8.5	1 M borate	20	30 days	overlapped	25	64

Table S22: Thiol-catalyzed ligation of 1 with Ala-Gly-Ala 2AGA at pH 7 and 8.5 at different temperature.

Figure S102: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1; 100 mM), L-alanylglycyl-L-alanine (2_{AGA} ; 100 mM) and 3-mercaptopropionic acid (6b; 60 mM) with MSM (100 mM) as an internal standard in H₂O (1 mL) at pH 7 at 60°C.

N-*Acetylglycyl*-*DL*-alanylglycyl-*DL*-alanine, **5**_{AGA} (2 diastereoisomers) (▼) : ¹H NMR (600 MHz, H₂O) δ 4.35 - 4.28 (m, 1H, Ala-(C2)–H), 4.15 - 4.08 (m, 1H, Ala-(C2)–H), 3.98 - 3.93 (m, 4H, 2 × Gly-(C2)–H), 2.03 (s, 3H, COCH₃), 1.38 - 1.35 (m, 3H, Ala-(C3)–H₃), 1.31 - 1.29 (m, 3H, Ala-(C3)–H₃); *N*-acetylglycinamide, **7** (★) (partial assignment): $\delta_{\rm H}$ 3.91 (2H, s, *CH*₂), 2.10 (3H, s, *CH*₃), **12** (■): $\delta_{\rm H}$ 4.21 (2H, s, AcNHCH₂)

Figure S103: ¹H–¹³C HMBC (¹H: 600 MHz [3.80–4.40 ppm], ¹³C: 176 MHz [160-185 ppm]) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of **Ala**₂-(C2)–H and **Ala**₄-(C2)–H in a diastereoisomeric mixture of **5**_{AGA} (α_{H} = 4.31 ppm, δ_{c} = 175.8, 175.61, 172.7, 171.2; α_{H} = 4.15 ppm, δ_{c} 170.7 (× 2), 179.9, 180.4 ppm.

Figure S104: ¹H NMR (600 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile(1; 100 mM), L-alanylglycyl-L-alanine (2_{AGA}; 100 mM) and 3-mercaptopropionic acid (6b; 60 mM) with MSM (50 mM) as an internal standard in H_2O (1 mL) at pH 8.5 at 60°C.

Figure S105: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.3-4.5 ppm) spectrum to show the reaction of N-acetylglycine nitrile(1; 100 mM), L-alanylglycyl-L-alanine (**2**_{AGA}; 130 mM), 3-mercaptopropionic acid (**6b**; 60 mM) with MSM (50 mM) as an internal standard at pH 8.5 at room temperature in borate buffer (1 M, 1 mL).

Figure S106: ¹H–¹³C HMBC (¹H: 600 MHz [3.80–4.40 ppm], ¹³C: 176 MHz [160-185 ppm]) spectrum of the coupling between N-acetyl glycine nitrile **1** and H-Ala-Gly-Ala-OH **2**_{AGA} catalysed by **6b** after 12 h showing the diagnostic for **4**_{AGA} imidazolone α_H = 4.39 ppm, **\delta_c** 162.3, 168.4, 186.9 ppm.

Coupling of 1 with L-alanyl-glycine 2_{AG}

Table S23: The effect of pH on thiol-catalyzed ligation of 1 with Ala-Gly 2_{AG}

Figure S107: ¹H NMR (600 MHz, H2O/D2O 9:1, noesygppr1d, 1.3-4.5 ppm) spectrum to show the reaction of N-acetylglycine nitrile (1; 100 mM), *L*-alanyl-glycine (2_{AG} ; 130 mM), 3-mercaptopropionic acid (6b; 60 mM) with MSM (50 mM) as an internal standard in H₂O (1 mL) at pH 8.5 at 60°C. **x** = N-acetylglycinamide, **V** = glycine. Bottom spectrum = ¹H NMR spectrum acquired before the reaction was heated 60°C. Top spectrum = ¹H NMR spectrum acquired after heating reaction at 60°C for 36 h.

N-*Acetylglycyl*-*DL*-*alanylglycine*, **5**_{AG} (2 diastereoisomers) (▼): ¹H NMR (600 MHz, H₂O) δ 4.42 (q, J = 7.2 Hz, 1H, Ala-(C2)–H), 3.98 (s, 2H, Ac-Gly-(C**H**₂)–H), 3.84-3.76 (m, 2H, Gly-(C**H**₂)-COOH), 2.06 (s, 3H, COC**H**₃), 1.41 (d, J = 7.3 Hz, Ala-(C3)–H₃). **7** (**×**) (partial assignment): $\delta_{\rm H}$ 3.91 (2H, s, CH₂), 2.10 (3H, s, CH₃).

Figure S108: ¹H–¹³C HMBC (¹H: 600 MHz [3.50–4.60 ppm], ¹³C: 176 MHz [160-190 ppm]) spectrum showing the diagnostic ²J_{CH} coupling of the Ac-Gly-Ala- α H-Gly-OH is at 4.42 ppm with two resonances at 175.5 and 172.3 ppm, which is characteristic of amide bond formation of Ala.

Figure S109: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.3-4.5 ppm) spectrum to show the reaction of *N*-acetylglycine nitrile (1; 100 mM), *L*-alanyl-glycine (2_{AG} ; 130 mM), 3-mercaptopropionic acid (6b; 60 mM) with MSM (50 mM) as an internal standard in H₂O (1 mL) at pH 7 at 60°C. **x** = *N*-acetylglycinamide, ***** = glycine. Bottom spectrum = ¹H NMR spectrum acquired before the reaction was heated 60 °C. Top spectrum = ¹H NMR spectrum acquired after heating the reaction at 60°C for 36 h.

Preparative synthesis of amidines 3'

N-Acetyl glycine nitrile **1** (0.6 g, 6.3 mmol) and B(OH)₃ (1.5 g, 25 mmol) were dissolved in H₂O (25 mL). NaSH.xH₂O (assumed 50 wt % NaSH, 3.2 g, 28 mmol) added and solution was adjusted to pH 9 with 4 M HCl. The solution as allowed to stir for 18 h, then H₂S was outgassed from the solution into a solution of concentrated bleach - a stream of N₂ was passed through the solution for 30 mins while the pH of the reaction mixture was periodically adjusted to \sim pH 4 by addition of 4 M HCl. The resultant suspension was concentrated under reduced pressure and triturated with EtOAc (3 × 50 mL). The supernatant was concentrated to give **15** (440 mg, 3.3 mmol, 53%) as a yellow solid. Spectral data were consistent with those previously reported.³

¹H NMR (700 MHz, D₂O, zg30): 4.21 (2H, s, AcNHCH₂), 2.07 (3H, s, Ac), ppm

¹³C NMR (176.1 MHz, D₂O, zgpg30): 205.0 (*C*(=S)NH₂), 175.5 (*C*ONH), 49.9 (AcNH*C*H₂-), 22.4 (*C*H₃CONH-) ppm.

ES-HRMS (pos.) theoretical for [C₄H₈N₂OS+H]⁺: 133.0430; observed 133.0430.

Figure S110 1H NMR (700 MHz, D2O, zg30, 0.0-5.0 ppm) spectrum of 15

Figure S111: 13C NMR (176.1 MHz, D₂O, zg30, 0-220 ppm) spectrum of 15

$$\begin{array}{ccc} & & & & \\ AcHN & & & \\ & & & \\ & & & \\ 15 & & \\ \end{array} \xrightarrow{Mel} & AcHN & \\ Acetone & & \\ NH_2 I \\ \hline \\ NH_$$

15 (200 mg, 1.5 mmol) was dissolved in acetone (3.0 mL, 0.5 M) and the solution was cooled to 0°C. Iodomethane (200 μ L, 3.1 mmol, 2 equiv.) was added and the solution allowed to warm to room temperature and stand for 3 h. The colourless precipitate which formed in this time was separated by centrifugation, washed with acetone (3 × 3 mL) and dried under vacuum to give thioimidate **16** as a colourless solid (250 mg, 0.9 mmol, 61%).

¹H NMR (700 MHz, d₃-MeOD, zg30): 4.24 (2H, s, AcNHCH₂-), 2.05 (3H, s, Ac), 2.01 (3H, s, SMe) ppm

¹³C NMR (176.1 MHz, d₃-MeOD, zgpg30): 180.4 (*C*(=NH)SMe), 174.5 (*C*ONH), 41.8 (AcNH*C*H₂-), 22.3 (*C*H₃CONH-), 22.1 (S*C*H₃) ppm

ES-HRMS (pos.) theoretical for [C₅H₁₁N₂OS]+: 147.0598, observed 147.0594

Figure S113: 13C NMR (176.1 MHz, d3-MeOD, zg30, 0-220 ppm) spectrum of 16

AlaNH₂.HCl $2_{A'}$.HCl (85 mg, 0.7 mmol) and thioimidate 16 (215 mg, 0.9 mmol, 1.3 equiv.) were suspended in anhydrous MeCN (3.6 mL) in a flame-dried flask under an atmosphere of argon. NEtⁱPr₂ (240 µL, 1.4 mmol, 2 equiv.) was added, and the homogeneous solution stirred for 2 h at which point a colourless precipitate had formed. The solid was separated by centrifugation, washed with anhydrous MeCN (3 × 2 mL) and dried under vacuum to give amidine $3_{A'}$ as a colourless solid (120 mg, 0.5 mmol, 71%).

¹H NMR (700 MHz, D₂O, zg30): 4.38 (1H, q, *J* = 7.0 Hz, C*H*(Me)CONH₂), 4.21 (2H, AB, *J* = 17.5 Hz, AcNHC*H*₂-), 2.06 (3H, s, *Ac*), 1.50 (3H, d, *J* = 7.0 Hz, *Me*) ppm

¹³C NMR (176.1 MHz, D₂O, zgpg30): 176.3 (CH₃CONH), 174.7 (**C**ONH₂), 165.4 (**C**(NH)NH), 52.2 (AcNH**C**H₂-), 40.9 (**C**H(Me)CONH₂), 22.2 (**C**H₃CONH), 17.5 (**Me**) ppm

ES-HRMS (pos.) theoretical for [C₇H₁₅N₄O₂]+: 187.1190, measured: 187.1191.

IR: 3167, 2924, 1653, 1552, 1287, 1067, 557, 465 cm⁻¹

Figure S114: 1H NMR (700 MHz, D₂O, zg30, 0.0-5.0 ppm) spectrum of 3_A'

GlyNH₂.HCl 2_G'.HCl (36.5 mg, 0.3 mmol) and thioimidate 16 (103 mg, 0.4 mmol, 1.3 equiv.) were suspended in anhydrous MeCN (2.2 mL) in a flame-dried flask under an atmosphere of argon. NEtⁱPr₂ (115 μ L, 0.7 mmol, 2 equiv) was added, and the homogeneous solution stirred for 3 h at which point a colourless precipitate had formed. The solid was separated by centrifugation, washed with anhydrous MeCN (3 × 2 mL) and dried under vacuum to give amidine 3_G' as a colourless solid (55 mg, 0.2 mmol, 75%).

ES-HRMS (pos.) theoretical for [C₆H₁₃N₄O₂]+: 173.1033, observed 173.1032

¹H NMR (700 MHz, D₂O, zg30): 4.28 (2H, s, AcNHC*H*₂), 4.18 (2H, s, C*H*₂CONH₂) 2.10 (3H, s, *Ac*) ppm

¹³C NMR (176.1 MHz, D₂O, zgpg30): 176.4 (CH₃CONH), 171.1 (*C*ONH₂), 166.6 (*C*(NH)NH), 44.6 (AcNH*C*H₂-), 40.7 (*C*H₂CONH₂), 22.3 (*C*H₃CONH) ppm

IR: 3230, 3026, 1677, 1647, 1537, 1393, 748, 592, 506 cm⁻¹

Figure S117: $^{13}\!\mathrm{C}$ NMR (176.1 MHz, D2O, zg30, 0-220 ppm)spectrum of $3_G{}^{*}$

 $3_{A'}$ (5 mg, 0.025 mmol) and MSM [internal standard] were dissolved in H₂O (800 µL). The solution was adjusted to pH 9 with 4 M NaOH, D₂O (50 µL) was added and the solution volume was increased to 1 mL. ¹H NMR spectra were acquired periodically. After 16 h the mixture was characterised by ¹H, ¹³C, and ¹H-¹³C HMBC NMR. The solution was lyophilised and analysed by HRMS.

¹H NMR (700 MHz, H₂O/D₂O 19:1, noesygppr1d): 4.26 (2H, t, *J* = 2.2 Hz, C3-H₂-), 4.16 (1H, qt, *J* = 7.4, 2.2 Hz, C6-H), 2.05 (3H, s, C1-H₃), 1.33 (3H, d, *J* = 7.4 Hz, C7-H₃) ppm.

¹³C NMR (176.1 MHz, H2O/D2O 19:1, zgpg30): 193.7 (C5), 175.6 (C2), 173.9 (C4), 61.4 (C6), 39.1 (C3), 22.4 (C1), 15.65 (C7) ppm.

HRMS (ESI pos.)– [C₇H₁₁N₃O₂+H]⁺ theoretical 170.0924, measured 170.0921.

Figure S118: ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 0.0-5.0 ppm) spectrum to show the cyclisation of $3_A'$ (25 mM) to form 4_A after 16 h at room temperature and pH 9.

Figure S119¹³C NMR (176.1 MHz, H₂O/D₂O 9:1, zg30, 0-240 ppm)) spectrum to show the cyclisation of 3_{A} (25 mM) to form 4_{A} after 16 h at room temperature and pH 9.

Figure S120: ¹H–¹³C HMBC (¹H: 700 MHz [1.0-4.5 ppm], ¹³C: 176 MHz [155-200 ppm], H₂O/D₂O 9:1) spectrum to show the cyclisation of **3**_A' (25 mM) to form **4**_A after 16 h at room temperature and pH 9, showing the diagnostic ²J_{CH} and ³J_{CH} coupling of **Ala**- α H in **4**_A at 4.15 ppm with two resonances at 174.5 and 188.7 ppm, which is characteristic of imidazolone formation.

Isolation of $\mathbf{3}_{\mathbf{A}}$

N-Acetyl glycine nitrile **1** (200 mg, 2 mmol), L-alanine 2_A (2 mmol) and 3-mercaptopriopionic acid **6b** were dissolved in H₂O (10 mL) and the solution was adjusted to pH 8.5 with 4 M NaOH. The reaction was stirred at room temperature for 2 days, then the solution was adjusted to pH 3.0 with 4 M HCl and extracted with Et₂O (3 × 25 mL) to remove the thiol. The solution was adjusted to pH 7.0 and lyophilised. The solid residue was triturated with EtOH (2 × 15 mL) to leave 3_A as a colourless solid (250 mg, 1.33 mmol, 67%).

¹H NMR (700 MHz, D₂O, zg30): 4.24 (2H, AB, *J* = 17.4 Hz, AcNHC*H*₂-), 4.13 (1H, q, *J* = 7.1 Hz, C*H*(Me)CONH₂) 2.10 (3H, s, *Ac*), 1.46 (3H, d, *J* = 7.1 Hz, *Me*) ppm

¹³C NMR (176.1 MHz, D₂O, zgpg30): 177.0 (**C**ONH₂), 176.2 (CH₃**C**ONH), 164.0 (**C**(NH)NH), 53.8 (**C**H(Me)CONH₂), 40.7 (AcNH **C**H₂-), 22.3 (**C**H₃CONH), 17.4 (**Me**) ppm

IR: 3238, 2932, 1641, 1563, 1362, 771, 731, 457cm⁻¹

ES-HRMS (pos.) theoretical for [C7H13N4O2+H]+: 188.1030, observed 188.1030

4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 Chemical Shift (ppm)

Figure S121: 1H NMR (700 MHz, D₂O, zg30, 0.0-5.0 ppm) spectrum to show 3A.

General procedure for the hydrolysis of authentic amidines

Amidine 3_A ' (5 mg, 0.025 mmol) and MSM (30 mM) [internal standard] were dissolved in H₂O (800 µL). The solution was adjusted to the desired pH with 4 M NaOH, D₂O (50 µL) was added and volume was increased to 1 mL with H₂O. NMR spectra were acquired periodically.

Hydrolysis of authentic amidines 3'

Hydrolysis of 3_A at pH 7 in phosphate buffer (100 mM)

Figure S123. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectra to show the hydrolysis of **3**_A' (25 mM) in phosphate buffer (100 mM) and MSM (30 mM) as an internal standard at pH 7.0 and room temperature.

time/ h	3 _A ' / %	4 _A , / %	5 _A , / %
1	88	11	0
8	27	54	14
16	7	50	33
24	3	36	47
36	2	21	60
48	2	12	67
72	2	4	76
96	2	2	77
144	2	0	76

Table S24. Hydrolysis of 3_A' at pH 7 in phosphate buffer (100 mM).

Figure S124. ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectra to show the hydrolysis of 3A' (25 mM) with MSM (30 mM) as an internal standard at pH 7.0 and room temperature.

time/ h	3 _A ' / %	4 _A , / %	5 _A ' / %
1	99	3	0
3	97	4	0
12	92	10	1
20	84	14	2
46	67	23	6
60	53	24	9
120	32	24	19

Table S25. Hydrolysis of 3_A ' at pH 7

Figure S125. ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectra to show the hydrolysis of $3_A'$ (25 mM) with MSM (30 mM) as an internal standard at pH 9.0 and room temperature.

time/ h	3 _A , / %	4 _A ' / %	5 _A '/ %
1	81	37	4
3	46	59	8
12	18	78	14
20		75	18
46		54	28
60		45	33
120		22	42

Table S26. Hydrolysis of 3_A' at pH 9.

Figure S126. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectra to show the hydrolysis of **3**_A' (25 mM) with MSM (30 mM) as an internal standard at pH 10.0 and room temperature.

time/ h	3 _A , / %	4 _A ' / %	5 _A '/ %
1	15	63	9
3	2	62	15
12	0	43	27
20	0	33	34
46	0	12	47
60	0	6	52
120	0	4	55

Table S27. Hydrolysis of 3_A' at pH 10.

Figure S127. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectra to show the hydrolysis of **3**G' (25 mM) with MSM (30 mM) as an internal standard at pH 9.0 and room temperature.

time/ h	3_G ' / %	4 _G '/ %	5 _G '/ %
1	86	4	2
4	77	10	6
8	69	16	10
14	57	22	15
24	43	28	20
36	34	30	25
48	27	31	29
81	18	27	36
118	10	22	40

Table S28. Hydrolysis of 3_G at pH 9

Hydrolysis of 3_G at pH 9 in the presence of 3-mercaptopropionic acid 6b

Figure S128. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectra to show the hydrolysis of 3G' (25 mM) in the presence of 3-mercaptopropionic acid (6b, 100 mM) with MSM (30 mM) as an internal standard at pH 9.0 and room temperature.

time/ h	3 _G ' / %	4 _G ' / %	5 _G ' / %
1	95	7	3
4	89	11	6
8	77	18	10
14	63	25	14
24	46	33	21
36	32	39	28
48	23	39	32
118	10	37	43

Table S29. Hydrolysis of 3_{G} at pH 9 in the presence of 3-mercaptopropionic acid 6b

Hydrolysis of 3_G at pH 9 in the presence of L-alanine (2_A)

Figure S129. ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectra to show the hydrolysis of $3_G'$ (25 mM) in the presence of alanine (2_A , 20 mM) with MSM (30 mM) as an internal standard at pH 9.0 and room temperature.

time/ h	3 _G ' / %	4 _G ' / %	5 _G ' / %
1	87	6	3
3	76	14	7
7	62	23	12
15	43	32	20
24	30	37	25
35	20	36	31
48	14	34	35
71	9	29	42

Table S30. Hydrolysis of 3_{G} , at pH 9 in the presence of L-alanine (2_{A}).

Hydrolysis of 3_G ' at pH 9 in the presence of L-alaninamide (2_A)

Figure S130. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectra to show the hydrolysis of **3c'** (25 mM) in the presence of alaninamide (**2a'**, 20 mM) with MSM (30 mM) as an internal standard at pH 9.0 and room temperature.

time/ h	3 _G ' / %	4 _G ' / %	$3_{G}' / \%$
1	90	6	2
3	73	18	10
7	54	28	16
15	33	37	24
24	22	42	30
35	13	41	36
48	10	36	41
71	3	34	49

Table S31. Hydrolysis of 3_G ' at pH 9 in the presence of L-alaninamide (2_A ').

No incorporation of either alanine 2_A or alaninamide 2_A ' was observed.

Hydrolysis of $\mathbf{3}_{A}$

Hydrolysis of $\mathbf{3}_{\mathbf{A}}$ at pH 7

Figure S131. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectra to show the hydrolysis of 3_A (25 mM) at pH 7.0 A after 18 at 80°C in phosphate buffer (100 mM); B after 18 h at 80°C; C after 30 days at room temperature in phosphate buffer (500 mM).

Hydrolysis of $\mathbf{3}_{\mathbf{A}}$ at pH 9

Figure S132. ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectra to show the hydrolysis of **3**_A (25 mM) at pH 9.0 **A** after 18 at 80 °C in the presence of 100 mM B(OH)₃; **B** after 30 days at room temperature in borate buffer (500 mM); **C** after 30 days at room temperature in borate buffer (100 mM); **D** after 30 days at room temperature

Coupling of N-acetylglycine nitrile 1 with L-lysinamide 2_{K} at pH 8.5 and room temperature

Figure S133: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-lysinamide (2^k, 400 mM) and 3-mercaptopropanoic acid (6b, 60 mM) with MSM (7 mM) as an internal standard at pH 8.5 and room temperature.

¹H NMR (700 MHz, H₂O/D₂O 9:1) α -peptide (partial assignment) (\bullet , \bullet): $\delta_{\rm H}$ 4.29 (1H, dd, J = 9.4, 4.9 Hz, Lys- α -CHCONH₂), 3.94 (2H, s, CH₂CONH), 2.06 (3H, s, H₃C(CO)); *ε*-amidine (partial assignment) (\bullet , \bullet): $\delta_{\rm H}$ 4.18 (2H, s, CH₂C(NH)NH), 3.32 (2H, t, J = 7.0 Hz, Lys– ϵ -CH₂NH₂), 2.09 (3H, s, H₃C(CO)); *L*-lysinamide, 2_K' (partial assignment) (\bullet): $\delta_{\rm H}$ 3.45 (1H, t, J = 6.4 Hz, CHCONH₂), 3.00 (2H, t, J = 7.5 Hz, ϵ -CH₂NH₂); *N*-acetylglycinamide, 7 (\bullet) (partial assignment): $\delta_{\rm H}$ 3.89 (2H, d, CH₂).

Figure S134: ¹H–¹³C HMBC (¹H: 700 MHz [3.9-4.5 ppm], ¹³C: 176 MHz [160-180 ppm], H₂O/D₂O 9:1) spectrum showing the ²J_{CH} and ³J_{CH} coupling of the **Lys**-αH in **5**_K' and **10** at 4.29 ppm with resonances at 172.5 and 177.4 ppm, characteristic of peptide formation, alongside the ³J_{CH} coupling of the **Lys**-αH₂ in **10** and **17** at 3.32 ppm with a resonance at 164.9 ppm, characteristic of amidine formation.

Entry	α -amide (5 _K ' + 10) / %	ε-amide (10 + 17) / %	7/ %
1	42	37	16

Table S32. Coupling of N-acetylglycine nitrile 1 with L-lysinamide 2κ at pH 8.5 and room temperature.

Coupling of N-acetylglycine nitrile 1 with L-lysinamide 2_{K} at pH 9.0, 80 °C

Figure S135: ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-lysinamide (2κ ', 200 mM) and 3-mercaptopropanoic acid (**6b**, 60 mM) with MSM (17 mM) as an internal standard at pH 9.0 and 80°C after 18 h.

ε-amide (partial assignment) (■, ▼): δ_H 3.85 (2H, s, C*H*₂C(NH)NH), 3.21 (1H, t, *J* = 7.0 Hz, Lys–ε-C*H*₂NH₂), 2.09 (3H, s, *H*₃C(CO)).

Entry	α-amide (5 _K ' + 11) / %	ε-amide (11 + 17) / %	7/ %
1	20	15	59

Table S33. Coupling of N-acetylglycine nitrile 1 with L-lysinamide 2x' at pH 9.0, 80 °C

Figure S136: ¹H–¹³C HMBC (¹H: 700 MHz [3.9-4.5 ppm], ¹³C: 176 MHz [160-180 ppm], H₂O/D₂O 9:1) spectrum showing the ³J_{CH} coupling of the **Lys**- ϵ H₂ in **11** and **18** at 3.21 ppm with a resonance at 164.9 ppm, characteristic of amide formation.
Coupling of N-acetylglycine nitrile 1 with L-lysinamide 2_{K} at pH 7.0, 80°C

Figure S137: ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (**1**, 200 mM) with L-lysinamide (**2** κ ^{*****}, 200 mM) and 3-mercaptopropanoic acid (**6b**, 60 mM) with MSM (17 mM) as an internal standard at pH 9.0 and 80°C.

Entry	time / days	α-amide (5κ' + 10 + 11) / $\frac{\%}{2}$	ε-amidine (10 + 17) / %	e-amide (11 + 18) / %	7/ %
1	1	67	19	trace	16
2	2	68	14	4	19
3	4	68	5	6	24
4	6	65	trace	7	25

Table S34. Coupling of N-acetylglycine nitrile 1 with L-lysinamide 2^{sc} at pH 7.0, 80 °C

Coupling of N-acetylglycine nitrile 1 with L-lysylglycine 2_{KG} at pH 7.0, 80 °C

Figure S138. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with L-lysylglycine (2_{KG} , 200 mM) and 3-mercaptopropanoic acid (6b, 60 mM, 0.3 eq.) with MSM (40 mM) as the internal standard at pH 7.0 and 80 °C. \checkmark = 2-carboxyethyldisulfide (formed by aerial oxidation of 6b).

¹H NMR (700 MHz, H₂O/D₂O 9:1) *a-peptide* (partial assignment) (\bullet , \blacksquare , \blacksquare): δ_{H} 4.36 (1H, dd, J = 9.2, 4.9 Hz, Lys- α -C*H*CONHGlyOH), 3.93 (1H, AB, J = 17.3 Hz, C*H*CONHLysOH), 3.91 (1H, AB, J = 17.3 Hz, C*H*'CONHLysOH), 3.71 (1H, ABX, J = 17.3, 4.0 Hz, LysC*H*CO₂H), 2.03 (3H, s, *H*₃C(CO)); *ε-amidine* (partial assignment) (\blacksquare , \blacktriangledown): δ_{H} 4.15 (2H, s, C*H*₂C(NH)NH), 2.06 (3H, s, *H*₃C(CO)); *LL-hysylghvine*, **2**_{KG} (partial assignment) (\blacksquare): δ_{H} 3.80 (1H, AB, J = 17.3Hz, LysC*H*CO₂H); *N-Acetylghvinamide*, **7** (**x**) (partial assignment): δ_{H} 3.87 (2H, s, CH₂). HRMS (ESI) m/z for **5**_{KG} [C₁₂H₂₃N₄O₅]⁺ : calcd 303.1663, found 303.1661.

Figure \$139. ¹H–¹³C HMBC (¹H: 700 MHz [3.0-4.6 ppm], ¹³C: 176 MHz [162-180 ppm], H₂O/D₂O 9:1) spectrum showing the ³J_{CH} coupling of the Lys- ε H₂ in **11**_{KG} and **18**_{KG} at 3.18 ppm with a resonance at 172 ppm, characteristic of amide formation.

Entry	time / days	α -amide (5 _{KG} + 10 _{KG} + 11 _{KG}) / %	ε-amidine (10 _{KG} + 17 _{KG}) / %	ε-amide (11 _{KG} + 18 _{KG}) / %
1	1	55	17	2
2	3	50	7	4
3	6	59	2	6

Table S35. Coupling of N-acetylglycine nitrile 1 with L-lysylglycine 2_{KG} at pH 7.0, 80 °C. 7 could not be accurately quantified due to overlap with glycyl peaks.

Coupling of N-acetylglycine nitrile 1 with L-lysyl-L-lysine 2KK at pH 7.0, 80 °C

Figure S140: 1H NMR (700 MHz, H2O/D2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200

mM) with LL-lysyllysine (2_{KK} , 200 mM) and 3-mercaptopropanoic acid (6b, 60 mM, 0.3 eq.) with MSM (33 mM) as the internal standard at pH 7.0 and 80 °C. \checkmark = 2-carboxyethyldisulfide (formed by aerial oxidation of 6b).

¹H NMR (700 MHz, H₂O/D₂O 9:1) *a-peptide* (partial assignment, mixture of diastereomers) (\bullet , \bullet): $\delta_{\rm H}$ 4.31 (1H, overlapping dd, Lys- α -CHCONHLysOH), 3.93 (1H, AB, J = 16.8 Hz, CHCONH), 3.91 (1H, AB, J = 16.8 Hz, CHCONH), 2.03 (3H, s, H₃C(CO)); *ε-amidine* (partial assignment, mixture of diastereomers) (\bullet , \bullet): $\delta_{\rm H}$ 4.15 (2H, s, CH₂C(NH)NH), 2.06 (3H, s, H₃C(CO)); *LL-lysyllysine*, $2_{\rm KK}$ (partial assignment) (\bullet): $\delta_{\rm H}$ 3.68 (1H, t, J = 6.6 Hz, CHCONH₂); *N-Acetylglycinamide*, **7** (\bf{x}) (partial assignment): $\delta_{\rm H}$ 3.87 (2H, s, CH₂). HRMS (ESI) m/z for $5_{\rm KK}$ [C₁₆H₃₂N₅O₅]⁺ : calcd 374.23980, found 374.2398.

Figure S141. ¹H–¹³C HMBC (¹H: 700 MHz [2.9-4.6 ppm], ¹³C: 176 MHz [160-185 ppm], H₂O/D₂O 9:1) spectrum showing the ³J_{CH} coupling of the Lys- ϵ H₂ in 11_{KK} and 18_{KK} at 3.21 ppm with a resonance at 172 ppm, characteristic of amide formation.

Entry	time / days	$\begin{array}{c} \alpha \text{-amide} \\ \textbf{(5_{KK} + 10_{KK} + 11_{KK})} \\ / \% \end{array}$	ε-amidine (10 _{KK} + 17 _{KK}) / %	ε-amide (11 _{KK} + 18 _{KK}) / %
1	1	63	33	3
2	3	62	13	9
3	6	70	2	13

Table S36. Coupling of N-acetylglycine nitrile 1 with LL-lysyllysine 2_{KK} at pH 7.0, 80 °C. 7 could not be accurately quantified due to overlap with glycyl peaks.

Figure S142: ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of N-acetyl glycine nitrile (1, 200 mM) with O-methyl serinamide hydrochloride (2_{Mes}², 200 mM) and 3-mercaptopropanoic acid (6b, 60 mM, 0.3 eq.) with MSM (33 mM) as the internal standard at pH 7.0 and 60 °C.

Coupling between 1 and 2_{MeS} ' at pH 7 and 60 °C shows a similar result to coupling between 1 and 2_{S} ' at pH 8.5 (Fig. S88). The methyl group prevents oxazoline formation which enables serinamide 2_{S} ' to form peptides in high yield at neutral pH (Fig. S89).

¹ Covington, A. K., Paabo, M., Robinson, R. A. & Bates, R. G. Use of the glass electrode in deuterium oxide and the relation between the standardized pD (paD) scale and the operational pH in heavy water. *Anal. Chem.* **1968**, 40, 700-706.

² Kohn, H.; Hyup Lee, S. Phosphine-Assisted Rearrangement of 4,5-Dihydroxy-1,2-Dithianes to 4-Hydroxy-3-Mercaptotetrahydrothiophenes. *Heterocycles* **2003**, *60*, 47-56.

³ Canavelli, P.; Islam, S.; Powner, M. W., Peptide ligation by chemoselective aminonitrile coupling in water. *Nature* **2019**, *571*, 546-549.