Appendix

Disease models

We employ SIR, SEIR and SEAIR model structures, where S, FE, A, I and R denotes
susceptible, exposed (infected, no symptoms, not infectious), asymptomatic infected
(infected, no symptoms, infectious), symptomatic infected (infected, symptomatic,
infectious), and recovered individuals, respectively. A flow diagram of each model is
shown in Figure 7. The ODEs governing our models are given below.
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Fig 7. Flow diagrams of the SIR (green arrows), SEIR (yellow arrows), and SEAIR
(orange arrows) models.



Least squares estimation for the IDEA method
From , our objective function is
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Let n = log Ry and £ = log(1 4+ d) and note that both of these transfromations are
monotone increasing. Next, we take partial derivatives of Q@ = Q(n, ) with respect to 7
and &.
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Finally, we minimize @ by setting % =0 and % = 0. Solving these equations, we
obtain
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In the last step, we solve for n = log Ry and thus find
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Posterior distributions
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First, we calculate the posterior distributions of each of the elements of 6. For ease

of exposition, in each calculation we drop the subscript on the scale parameter k in the
priors.
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Hence the posterior distribution for 5 is gamma with shape parameter o 4+ my, and scale
parameter k + ['F S(t) (I(t) + A(t)) /Ndt.
1

x {ﬁ O'E(TiA)} exp {— /jk aE(t)dt} o Lexp(—ko)

1

tr
x oMt "lexp {—O’ (k + E(t)dt) }
™

Hence the posterior distribution for ¢ is gamma with shape parameter o + my, and scale
parameter k + [ E(t)dt.
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Hence the posterior distribution for ¢ is gamma with shape parameter o + my and scale
parameter k + f:}“ A(t)dt.
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Hence the posterior distribution for v is gamma with shape parameter a + my and scale
parameter k + f:? I(t)dt.
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Lastly, we calculate the posterior distribution of —7{, with a prior distribution of
exponential, rate one.
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For 7{ <t < 7, we have that S(t) = N, I(t) =1, E(t), A(t) = 0, and hence
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from which it follows that
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and hence the posterior of —7{ is exponential with rate 3+~ + 1. Note that this
formula is the same for all models.



Symmetric Proposal

We need to show that g(7|7)/g(m|7) = 1. To do this, we use the fact that g(7|m) does
not depend on 7. Moreover, g(7) is a product of uniform distributions, so g(7) also
does not depend on 7. Therefore g(7|7;) = ¢ for some constant ¢, and hence

9(rIn) = g(n|r) = 1.

Sensitivity to Prior

As mentioned previously, the joint prior distribution of the unknown rate parameters
is made up of independent gamma distributions given by I'(«, k) with mean k/a. In the
main text, we assume that « is the same for the parameters 3, o, p, 7y, while k varies and
if appropriate will be denoted by kg, ks, k,, k. In the simulations we took these to be
a=1and kg =k, = 3,k, = 2,k, = 5. The prior distribution on —7{ is exponential
with rate one, and this is independent from the 6 vector. In Figure [§] we compare the
results in the main text with results repeating the method with a different prior
distribution for the SIR/SEIR/SEAIR data assuming SIR/SEIR/SEAIR models
respectively. The modified prior for the comparison is kg = 9/4, k, = 3. These were
chosen as alternative reasonable parameters for the influenza. The plots show that there
was very little change between the two versions.
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Fig 8. Comparison of the fullBayes method for SIR, SEIR, and SEAIR data with two
different prior distributions: same as main text is on the right and the modified version
is on the left. The inflection point for the epidemic is marked in blue, and the true Rg
for the data is marked as a horizontal red line.






