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Fig. S1. PUF chip, memristor device, and D2D variation. (A) Basic 1T1R structure with a 
memristor integrated between M5 and M6. The inset is the cross-section transmission electron 
micrograph (TEM) of the memristor material stack. (B) Micrograph of the fabricated PUF chip. 
(C) The D2D variation in conductance values measured from 1024 memristors. 
  



 
 

 

Fig. S2. C2C correlation in memristor conductance values. (A) The change in conductance 
values of 5 memristors with incremental SET/RESET cycle. The conductance values are read out 
after RESET. (B) The corresponding probability distributions of these conductance values. 
  



 
 

 

 
Fig. S3. Change in the conductance distributions. Colormaps of the conductance distributions 
for 1 kb memristors with incremental SET-RESET cycle. The conductance values are normalized 
for each colormap individually. 
  



 
 

 

 
Fig. S4. Simulated change of Vo during the RESET process. (A) The change in the 
recombination rate of dynamic Vo and residual Vo with incremental RESET time. The insets show 
the corresponding change in filament morphology. (B) Dynamic Vo are combined at a higher 
speed with incremental RESET voltage. (C) The change in recombination rate of dynamic Vo and 
residual Vo with different RESET voltages. With RESET voltage approximately 1.825 V, a perfect 
balance between SET and RESET is achieved with 100% recombination of dynamic Vo and 0% 
recombination of residual Vo. 
  



 
 

 

 
Fig. S5. KMC simulation results with balanced SET and RESET conditions. The simulated 
change in filament morphology after multiple RESET-SET operations. The filaments mainly 
formed at the center, contributing the most to the device conductivity. The other marginal parts 
are less important and thus are covered in translucent gray in these subfigures. The yellow cells 
represent the dynamic Vo, which are randomly generated in the filament gap to bridge a conductive 
path after SET and erased after RESET. The white cells represent the residual part, which remains 
unchanged among the switching cycles. The SET and RESET voltages are 1.6 V and 1.85 V, 
respectively. 
  



 
 

 

 
Fig. S6. KMC simulation results with unbalanced SET and RESET conditions. The simulated 
change in filament morphology after RESET with RESET condition that is too strong (e.g., VRESET 
= 2.0 V) and RESET conditions that is too weak (e.g., VRESET = 1.6 V). 
  



 
 

 

 
Fig. S7. Randomness evaluation results. (A) The uniformity distribution of 50 128-bit PUF keys. 
The uniformity measures the probability of a PUF bit being 1, and its ideal value is 0.5. From the 
distribution, the average uniformity is 0.50273. (B) The uniqueness distribution of 50 128-bit PUF 
keys collected from 5 chip (i.e., 10 PUF keys per chip). The uniqueness measures the difference 
between the two responses from two PUF chips which are inquired with the same challenge, and 
its ideal value is 50%. From the distribution, the average uniqueness is 50.5156%.  



 
 

 

 
Fig. S8. Diffusion evaluation results. (A) The correlation coefficient matrix of the resistance 
values of any two columns in a PUF chip, where negligible correlation can be found, indicating 
that the resistance distribution is highly random. (B) The diffusion distribution of 40 128-bit PUF 
keys collected from 4 chip (i.e., 10 PUF keys per chip). The diffusion measures the difference 
between any two responses from one PUF chip, and its ideal value is 50%. In most case, the 
diffusion ranges from 43% to 57%, and the average is 49.9028%. 
  



 
 

 

 
Fig. S9. Measured BER with reliability enhancement techniques. (A) The implementations of 
temporal majority voting (TMV) and masking techniques. TMVx means using x memristors to 
represent 1 PUF bit. (B) The change of BER in readout mode with different methods. (C) The 
change of BER in secure mode with different methods. 
  



 
 

 

 
Fig. S10. A side-channel secure system based on the concealable PUF . Side-channel attacks 
such as differential power attacks break a security system by understanding the relationship 
between power consumption and CMOS circuit operations. The concealable PUF provides a 
feasible and efficient countermeasure by leveraging its inherent write/read noise, making the side-
channel signal extremely noisy whenever the chip is working. 
  



 
 

 

 
Fig. S11. High temperature test result of the concealable memristive PUF. (A) The change of 
the resistance distribution with incremental temperature. (B) The change of the BER in secure 
mode and readout mode with incremental temperature. 
 
  



 
 

 

Table S1. NIST SP800-22 randomness evaluation results 

 
  



 
 

 

Table S2. Power consumption/efficiency and delay with TMVx technique 

 
  



 
 

 

Table S3. Comparison to different PUF devices 
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