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Other Supplementary Material for this manuscript includes the following:

Data S1



Fig. S1. The relationship between the 20 allometric equations found to estimate AGC (Table 

S1) and the one provided by ref. (1). The y-axis is the natural logarithmic of the estimate 

provided by ref. (1) formula and the x-axis is the natural logarithmic of the aboveground carbon 

of each allometric equation. We present the mean prediction of the linear regression model (in 

blue) and the associated R2 of the model.  



  

 
  



Fig. S2. Carbon equations residual plots. Smoothers between residuals and fitted values from 

different models tested to find the best description of the relationship between above-ground 

carbon (AGC; estimated by ref. (1)) and basal area (BA) based on from 527 inventories 

reporting both AGC and BA estimates.  

 



 

 

 

 

  



 

Fig. S3. The relationship between above-ground carbon and basal area for 527 forest 

inventories. Values of above-ground carbon were obtained from values of above-ground 

biomass estimated using the allometric equation provided by ref.(1)). The green line is the fit of 

the Gompertz equation, whose parameter estimates, explanatory power (R2) and standard 

residual error (%) are provided. Points represents the values for each inventory.  

 

Figure S4: An a priori model of the causal relationships among climate, soil properties, 

topography, human impacts, tree community properties, and aboveground carbon storage 

(AGC) in Atlantic Forest. We hypothesize that effect of human impacts is negative, the soil 

properties is positive and the climate, slope declivity and field sampling methods can be positive 

or negative depending on the evaluated variable. Taller and hard wood species and taxonomic 

and functional diversity increases the carbon stocks. 

 

 

 

 

 

 

 



Figure S5:  Correlation matrix between potential carbon stocks drivers. Wg_gcm3_log (CWM 

wood density log transformed), MaxHeight_m_log (CWM Maximum height log transformed), 

FEve.n (Functional evenness), FDiv.n (Functional divergence), FRic.n (Functional richness), 

PAR (perimeter area ratio), DBH_inclusion_c (Dbh cutoff criterion), Ridit_DL (Within 

fragment disturbance level), MAT (Mean annual temperature), ppt (Mean annual precipitation), 

CWD_T (Climatic water deficit -1 transformed), frag_area (Fragment size), mean.patch_area 

(Mean fragment size), DECLIV (Slope declivity), Soil.Quality_T (soil quality), LeafArea_log 

(CWM Leaf area log transformed) and SeedMass_g_log ( CWD seed mass log transformed).   

 

  



 

Figure S6:  Causal mediation analysis in its simplest form.  a’ = effect of X on Y; b’ = effect 

of X on M, b’c’= effect of X on Y mediated by M.  

 
 

 



Figure S7: Residual plots. (A) AGC main drivers’ model (Table S1 and Fig 1). (B-F) 

Causal mediation models (Table S4). 

 
 

 

 

 

 

 

 

 

 

 

 



Table S1: Standardized coefficients and partial pseudo-R² of model-averaged of AGC main 

drivers model of Atlantic Forest. Model averaging was developed with all candidate models 

that presented ΔAICc ≤ 4. Note: AGC (Above-ground carbon stocks); SE (standard error).  

Log(AGC)~scale(FRic.n)+scale(effort_ha)+scale(DBH_inclusion_c)+ 

scale(PAR)+scale(log(LeafArea))+scale(FDiv.n)+scale(FEve.n)+scale(log(SeedMass_g))+

scale(log(wsg_gcm3))+scale(log(MaxHeight_m))+scale(mean.patch.area)+scale(frag_are

a)+scale(Frag_Dist_L)+scale(CWD_T)+scale(temp)+scale(Soil.Quality_T)+scale(Slope)+

(1|ecoreg) 

 

Variable Code 

Drivers Estimate SE p-value 

partial 

pseudo-R² 

(%) 

 Intercept 4.132 0.054 <0.0001  

Frag_Dist_L Within fragment 

disturbance level -0.128 0.010 <0.0001 12.24 

FEve.n Functional evenness -0.075 0.011 <0.0001 3.97 

CWD_T Climatic water 

deficit (-1 

transformed) -0.026 0.019 0.174 0.30 

temp Mean annual 

temperature -0.098 0.015 <0.0001 3.97 

DBH_inclusion_

c Dbh cuttoff criteria -0.052 0.017 0.002 0.97 

Soil.Quality_T Soil quality -0.017 0.010 0.110 0.25 

Slope Slope declivity -0.001 0.011 0.921 0.00 

FRic.n Functional richness 0.016 0.013 0.234 0.15 

SeedMass_g CWM Seed mass 0.079 0.010 <0.0001 4.88 

frag_area Fragment size 0.029 0.011 0.007 0.73 

FDiv.n Functional 

divergence 0.044 0.010 <0.0001 1.71 

mean.patch.area Mean fragment size 0.033 0.011 0.002 0.90 

LeafArea CWM Leaf area 0.036 0.014 0.011 0.64 

wsg_gcm3 CWM Wood density 0.054 0.013 <0.0001 1.56 

PAR Perimeter-area ratio 0.057 0.012 <0.0001 2.06 

MaxHeight_m Maximum tree 

height 0 0 0 0.00 

effort_ha Sampling effort  -0.020  0.010 0.059 0.35 

 

 

Table S2: The carbon estimate ± standard error (SE) from optimum linear mixed model 

(Fig.2 and Table S1). Note: Within fragment disturbance level is shown here as a categorical 

variable (i.e., without Ridit score transformation). 

 

Within Disturbance levels Estimate SE df 

Low 72.399 4.574 8.939 

Medium 69.838 4.231 7.613 

High 55.056 3.326 7.455 

Heavy 48.241 5.225 75.295 

 

 

 



Table S3: Tukey test results from generalized linear mixed models testing effects of within 

fragment disturbances on carbon stocks (AGC). 

 

Within disturbances levels p- value 

Low - Medium 0.595 

Low - High <.0001* 

Low - Heavy <.0001* 

Medium - High <.0001* 

Medium - Heavy <.0001* 

High - Heavy 0.445 

"*" p-value > 0.05, significant values 

 

  



Table S4: Causal mediation analysis models. The estimated coefficients ± standard error (SE) 

from multiple linear mixed models, testing the effects of human impacts (mean fragment size and 

forest degradation level) and environmental conditions (climate, slope declivity and soil quality) 

on functional traits (wood density -WD, Seed mass and Leaf area) and functional diversity 

(functional richness – FRic, functional evenness -FEve and functional divergence -FDiv). Note: 

MAT (Mean annual temperature), CWD (climatic water deficit), MEMs: Moran’s eigenvector 

maps, spatial filters. Climatic water deficit was -1 transformed and AGC, WD, seed mass and leaf 

area were transformed in the natural logarithmic scale. All models were fitted with scaled drivers. 

a) Wood density mediation model b) Seed Mass mediation model  

 Estimate SE p-value  Estimate SE p-value 

Intercept -0.4869 0.0166 <0.0001 Intercept -0.7511 0.1159 0.0004 

Within fragment 

disturbance level -0.0091 0.0024 0.0002 

Within fragment 

disturbance level -0.0885 0.0211 <0.0001 

Mean fragment size 0.0073 0.0026 0.0054 Mean fragment size 0.0487 0.0225 0.0308 

Slope declivity -0.0092 0.0025 0.0002 Slope declivity -0.0912 0.0215 <0.0001 

Soil quality 0.0079 0.0025 0.0017 Soil quality 0.0343 0.0217 0.1138 

MAT 0.0061 0.0034 0.0750 MAT 0.1611 0.0294 <0.0001 

CWD 0.0345 0.0046 <0.0001 CWD -0.1002 0.0387 0.0103 

Model R² 0.207   Model R² 0.088   

Degrees of freedom 111.25   Degrees of freedom 111.25   

Moran I statistic standard deviate 0.1791 Moran I statistic standard deviate 0.4303 

c) Leaf area mediation model d) Functional divergence mediation model 

 Estimate SE p-value  Estimate SE p-value 

Intercept 3.6961 0.1019 <0.0001 Intercept 0.7895 0.0072 <0.0001 

Within fragment 

disturbance level -0.0120 0.0171 0.4833 

Within fragment 

disturbance level -0.0024 0.0021 0.2696 

Mean fragment size -0.0246 0.0182 0.1771 Mean fragment size 0.0001 0.0023 0.9634 

Slope declivity 0.1545 0.0174 <0.0001 Slope declivity -0.0013 0.0022 0.5586 

Soil quality -0.0377 0.0175 0.0319 Soil quality 0.0012 0.0022 0.5864 

MAT 0.3129 0.0238 <0.0001 MAT 0.0008 0.0030 0.7666 

CWD -0.0938 0.0317 0.0033 CWD 0.0073 0.0036 0.0468 

Model R² 0.208   Model R² 0.017   

Degrees of freedom 111.25   Degrees of freedom 111.25   

Moran I statistic standard deviate 0.9266 Moran I statistic standard deviate 0.6942 

e) Functional evenness mediation model f) AGC stocks mediation model 

 Estimate SE p-value  Estimate SE p-value 

Intercept 0.5245 0.0102 <0.0001 Intercept 4.1420 0.0526 <0.0001 

Within fragment 

disturbance level 0.0061 0.0022 0.0074 

Within fragment 

disturbance level -0.1272 0.0106 <0.0001 

Mean fragment size -0.0089 0.0024 0.0002 Mean fragment size 0.0329 0.0114 0.0040 

Slope declivity 0.0132 0.0023 <0.0001 Slope declivity -0.0036 0.0111 0.7464 

Soil quality 0.0040 0.0023 0.0866 Soil quality -0.0191 0.0108 0.0789 

MAT 0.0102 0.0032 0.0015 MAT -0.0975 0.0164 <0.0001 

CWD -0.0069 0.0040 0.0870 CWD -0.0253 0.0197 0.2008 

MEM10 -0.0104 0.0022 <0.0001 Wood density 0.0642 0.0142 <0.0001 

MEM15 0.0071 0.0022 0.0017 Tree Maximum Height 0.0265 0.0154 0.0863 

MEM86 0.0072 0.0022 0.0010 Leaf area 0.0383 0.0147 0.0093 

MEM3 -0.0133 0.0030 <0.0001 Seed mass 0.0721 0.0116 <0.0001 

MEM14 0.0075 0.0022 0.0008 Functional richness 0.0193 0.0136 0.1546 

    Functional evenness -0.0755 0.0118 <0.0001 



    Functional divergence 0.0431 0.0105 <0.0001 

    PAR 0.0552 0.0123 <0.0001 

    DBH cutoff -0.0614 0.0189 0.0012 

    Sampling effort -0.0211 0.0108 0.0516 

Model R² 0.144   Model R² 0.367   

Degrees of freedom 68.461   Degrees of freedom 49.44   

Moran I statistic standard deviate 0.9111 Moran I statistic standard deviate 0.7696 

Table S5. List of the all allometric equations reported in the forest inventories used for 

data analysis. AGB= Above-ground biomass, H= Height of the tree, DBH= diameter at breast 

height, WD= wood density and DW= Dry weight. 

Allometric  equations 

AGB=0.0673*(WD*(DBH^2)*H)^(0.976) 

AGB=0.033430*(DBH^2.397902)*(H^0.426536) 

AGB=exp(-2.289+2.649*ln(DBH)-0.021*(ln(DBH))^2) 

AGB=exp(-2.187+0.916*ln(WD*(DBH^2)*H)) 

AGB=exp(-2.977+ln(WD*(DBH^2)*H)) 

AGB=exp(-2.557+0.940*ln(WD*(DBH^2)*H)) 

DW=(59.321357)+(-12.28289)*DBH+(0.8396136)*(DBH^2) 

AGB=0.04821*(DAP^1.34374)*(H^1.26829) 

ln(AGB)=-4.15190+1.06068*ln((DBH^2)*H) 

AGB=0.317*(DBH^2)+0.009*((DBH^2)*H) 

AGB=-3.025*DBH+0.425*(DBH^2)+0.006*((DBH^2)*H) 

AGB=exp(-10.8771683824+2.6359736325*ln(DBH)+0.0878059946*ln(H))/(0.4802) 

AGB= exp(-11.319842099+2.1415723631*ln(DBH)+0.8134282561*ln(H))/(0.4833) 

AGB=exp(-10.7501678493+2.0580637328*ln(DBH)+0.8604515609*ln(H))/(0.4860) 

AGB=exp(-10.9520199234+2.0898526615*ln(DBH)+0.8096162241*ln(H))/(0.4839) 

AGB=exp(-10.9520199234+2.0898526615*ln(DBH)+0.8096162241*ln(H))/(0.4802) 

AGB=exp(-11.319842099+2.1415723631*ln(DBH)+0.8134282561*ln(H))/(0.4833) 

AGB=25.87071+0.02909*(DBH^2)-0.21382*(H^2)+0.03189*(DBH^2)*H 

AGB = 0.024530*(DAP^2.443356)*(H^0.423602) + 

0.2596*(0.024530*(DAP^2.443356)*(H^0.423602)) + 

0.0445*(0.024530*(DAP^2.443356)*(H^0.423602)) 

AGB=(-4.8639)+0.3981*DBH+0.2625*(DBH^2) 

log10(AGB)=-0.88239023+2.40959057* log10 (DBH) 



                                                                                                                         

 

Table S6.  Performance of carbon equations based on basal area. Comparison of the equations used to find the 

best description for the relationship between above-ground carbon (AGC; estimated by ref.1) and basal area (BA) 

based on from 527 inventories reporting both estimates. Best equation (i.e Gompertz equation) was selected based on 

the lowest AIC value and are shown in bold. 

    Akaike value 

Gompertz equation log10 (AGC) ~ A*exp(-c*exp(-k*BA)) -184.821 

Monomol equation log10 (AGC) ~ A*(1-c*exp(-k*BA)) -184.783 

Log-Log linear equation log10(AGC)~log10(BA) -183.039 

Weibull equation log10 (AGC) ~ A*(1- exp(-k*BA^c))  -182.772 

Hosffeld equation log10 (AGC) ~ A/ (1+c*exp(-k*ln(BA)) -182.287 

Korf equation  log10 (AGC) ~ A*exp(-k/BA^c) -181.787 

Power equation log10(AGC) ~ A* (BA^k)  -174.293 

Naslund equation log10 (AGC) ~ BA/ (A*BA+k)^2 -160.107 

Curtis equation log10 (AGC) ~ A*(BA/(1+BA)) -150.323 

Terazaki equation log10 (AGC) ~ A*exp(-k/BA) -144.777 

Meyer equation log10 (AGC) ~ A*(1-exp(-k*BA)) -102.209 

Linear equation AGC ~ BA 4268.906 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Text 

Indirect effect explanation in causal mediation analysis 

 

Suppose you have Y as your response variable, T as your predictor (with levels 0 and 1) and M as a 

mediator variable (with levels 0 and 1). Mi(t) denotes the potential value of a mediator under the treatment 

status Ti = t. Yi(t, m) denote the potential outcome when T and M variables equal t and m, respectively. So 

the observed outcome, Yi, equals Yi(Ti,Mi(Ti)) where Mi(Ti) represents the observed value of the mediator 

Mi at Ti.  

 

The indirect effect is represented by: 

Indirect effect (t) ≡ Yi(t, Mi(1)) − Yi(t, Mi(0)) 

 

Thus, the indirect effect (causal mediation effect) is the expected change in Y when the mediator took the 

value that would realize under another level of T (Mi(Ti)) while T is hold constant (t).  

 

The package use simulation to calculate confidence intervals around the coefficient. More details at the 

package documentation (https://cran.r-project.org/web/packages/mediation/vignettes/mediation.pdf) and in 

refs (74,75). 

 

 

Supplementary data 

Supplementary Data 1: Pre-selection of co-variables. The full co-variables and models used for selected 

the main drivers of carbon stocks.  

 

https://cran.r-project.org/web/packages/mediation/vignettes/mediation.pdf
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