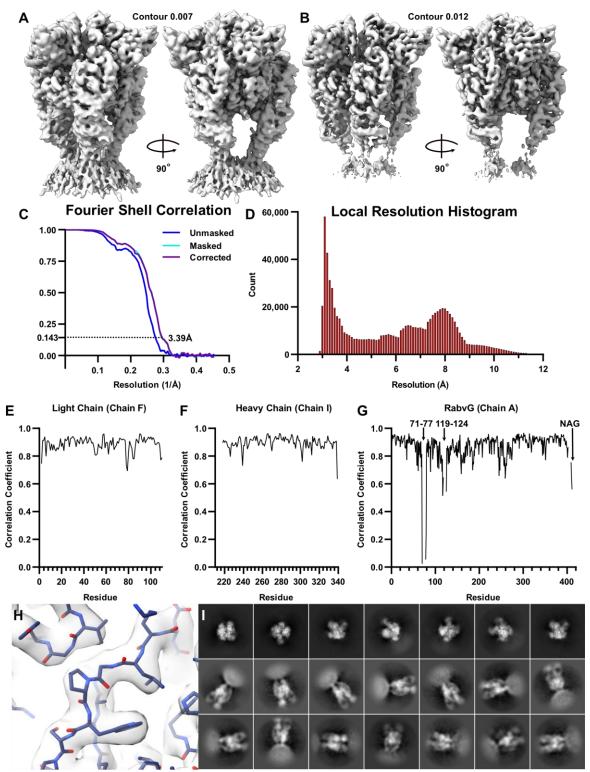
Science Advances

Supplementary Materials for

Structure of the rabies virus glycoprotein trimer bound to a prefusion-specific neutralizing antibody

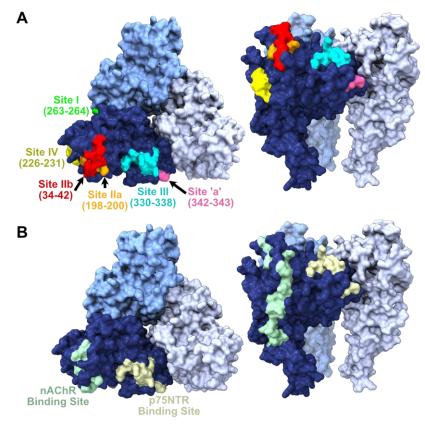
Heather M. Callaway et al.

Corresponding author: Erica Ollmann Saphire, erica@lji.org


Sci. Adv. **8**, eabp9151 (2022) DOI: 10.1126/sciadv.abp9151

The PDF file includes:

Figs. S1 to S9 Table S1 Legend for movie S1


Other Supplementary Material for this manuscript includes the following:

Movie S1

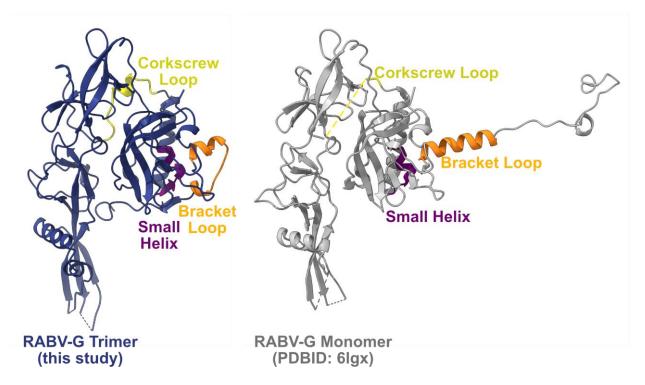


Fig. S1. Additional information and statistics for the cryo-EM structure of RABV-G complexed with neutralizing antibody RVA122. (A-B) Electron density maps at low (A) and high (B) contour levels. (C) Fourier Shell correlation curve. (D) Local resolution histogram. (E-G) Correlation coefficient graphs for the RVA122 light chain (E), RVA122 heavy chain (F), and

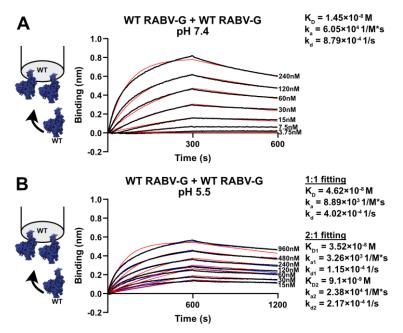
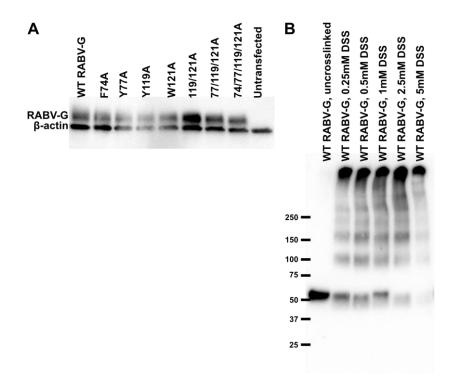
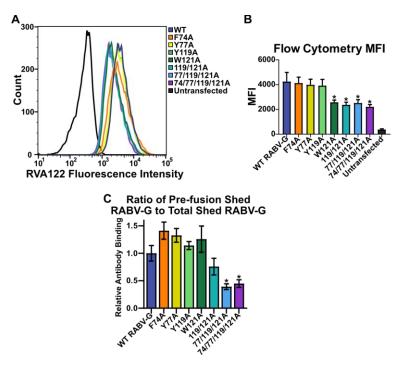

RABV-G (G). (H) Zoomed map showing the atomic model fit into electron density. (I) Representative 2D classes of cryo-EM particles used in 3D reconstruction.

Fig. S2. RABV-G antigenic sites and receptor binding sites. (**A**) Known RABV-G antigenic sites mapped onto the trimeric RABV-G structure, with residue numbers indicated. (**B**) Approximate receptor binding sites for the nicotinic acetylcholine receptor (nAChR) and the p75 neurotrophin receptor (p75NTR).

Fig. S3. Pre-fusion RABV-G trimers and alternate pre-fusion RABV-G monomers have different conformations of loops at the trimeric interface. Structure of one RABV-G protomer from this study (left) and a RABV-G monomer from a crystal structure (PDBID: 6lgx) (right), with the small helix (purple), corkscrew loop (yellow), and bracket loop (orange) marked.

Fig. S4. RABV-G soluble ectodomain binding kinetics. Bio-layer interferometry measurements of RABV-G protomer binding at pH 7.4 (**A**) and pH 5.5 (**B**). 1:1 curve fitting (red, pH 7.4 and 5.5) and 2:1 curve fitting (blue, pH 5.5 only) are shown. Curves were fitted using the Octet Data Analysis HT software version 11, with global fitting and either a 1:1 fitting model (A) or both 1:1 and 2:1 fitting models (B). Experiments were performed in duplicate.

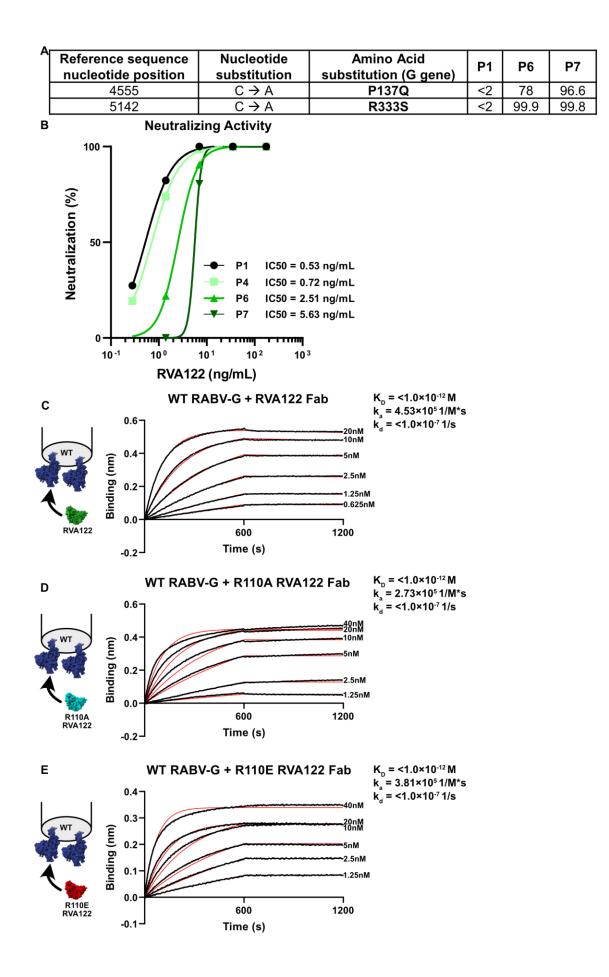


Fig. S5. Expression of RABV-G soluble ectodomains and use of an alternate crosslinker. A) Western blot showing total protein expression levels of RABV-G soluble ectodomains and β -actin (loading control) from lysed cells. B) Wild-type RABV-G ectodomains crosslinked with 0.25-5mM DSS.

Fig. S6. Fusion loop point mutants affect protein conformation and shedding for full-length RABV-G. (A-B) Flow cytometry quantifying the level of surface-expressed, full-length RABV-G in the pre-fusion conformation. (C) Ratio of pre-fusion shed RABV-G to total shed RABV-G in an ELISA quantifying shed RABV-G. Statistical significance of differences were analyzed using ANOVA. Error bars indicate SEM for three biological replicates. * p<0.05; ** p<0.01.

Fig. S7. Sequence conservation among type 1 lyssaviruses at the RVA122 binding site. A sequence alignment was created from European Bat Lyssaviruses 1 (YP_001285391.1) and 2 (YP_001285396.1), Khujand virus (YP_009094330.1), Aravan Lyssavirus (YP_007641395.1), Bokeloh Bat Lyssavirus (YP_009091812.1), Duvenhage virus (NC_020810.1), Irkut virus (AFP74571.1), and PV strain rabies virus (NC_001542.1). ChimeraX 1.2.5 (*39*) was used to color RABV-G residues according to sequence conservation.

Fig. S8. RABV-G escape mutations and the effect of RVA122 residue R110 on binding. A) NGS sequencing of the escape mutant selected with RVA122. Nucleotide positions are from the Tha-GFP RABV reference sequence (EVAg collection Ref-SKU: 014V-03195). **B)** RVA122 neutralization on sequential passages of Tha-GFP RABV. The IC₅₀ concentration for each passage was calculated using GraphPad Prism 9 (non-linear regression, best fit extrapolation). (**C-E**) Bio-layer interferometry measurements of binding kinetics between RABV-G and wildtype RVA122 Fab (C), R110A RVA122 Fab (D), and R110E RVA122 Fab (E). 1:1 curve fitting (red) is shown. Curves were fitted using the Octet Data Analysis HT software version 11, with global fitting and a 1:1 fitting model. Experiments were performed in duplicate.

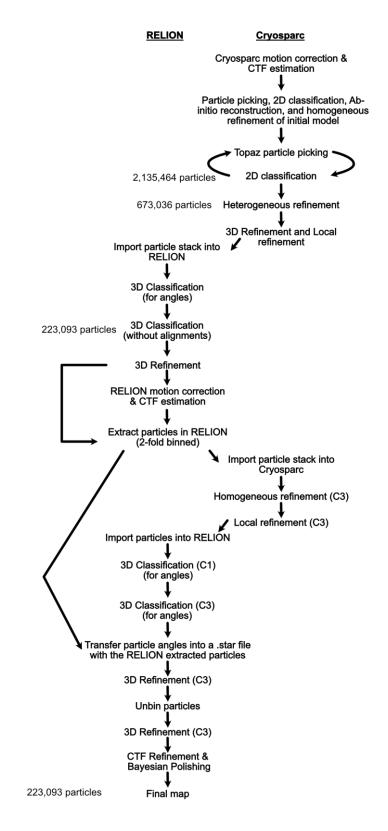


Fig. S9. Supplemental Figure 9. Cryo-EM data processing method for the high-resolution RABV-G/RVA122 complex.

<u>_</u> F	High Resolution RABV-G/RVA122 Complex	Low Resolution RABV-G/RVA122 Complex		
		3 engaged fusion loops	2 engaged fusion loops	0 engaged fusion loops
Map Statistics				
Movies	6,305	1,969		
Particles	223,092	9,627	32,409	10,144
B-factor	140.5	299.9	256.7	382.7
Resolution (Å)	3.39	7.05	5.71	6.92
Box size (px)	256	256		
Pixel size (Å/px)	1.1	1.15		
Microscope	Titan Krios	Talos Arctica	-	
Detector	Gatan K3	Gatan K2	-	
Total dose (e ⁻ /Å ²)	50	26.74	-	
Frames	50	55	-	
Dose per frame (e ⁻ /Å ²	⁽⁾ 1	0.49		

Molprobity statistics

All-atom clashscore	5.16	
Ramachandran plot:		
Outliers	0.00%	
Allowed	3.11%	
Favored	96.89%	
Cbeta outliers	0.00%	
Rotamer outliers	0.00%	
Peptide plane:		
Cis-proline	0.00%	
Cis-general	0.00%	
Twisted proline	0.00%	
Twisted general	0.00%	

Table S1. CryoEM map and model statistics.

Movie S1. 3D variability analysis of RABV-G fusion loops.