OMTN, Volume 29

Supplemental information

HDAC inhibitors improve CRISPR-Cas9

mediated prime editing and base editing

Nan Liu, Lifang Zhou, Guifeng Lin, Yun Hu, Yaoge Jiao, Yanhong Wang, Jingming Liu, Shengyong Yang, and Shaohua Yao

Figure S1. Representative Sanger sequencing results and EditR analysis of site 29 in figure 3a.

Figure S2. Detailed analysis of the effect of HDAC inhibitors on cytosine base editing. a. Summarization of the IC50 HDAC profile of inhibitors used in this study. The value of each IC50 was obtained from cell-free assay. b. Dose dependent effects of Nexturastat A on cytosine base editing. Nexturastat A can only improve the base editing of BE3 when its concentration exceeded 3μ M. c. Effects of Romidepsin and E14 on cytosine base editing at 4 endogenous sites. Note that Romidepsin and E14 shared two common targets, HDAC1 and HDAC2. d. The comparison of improvement of 5 HDAC inhibitors on cytosine base editing at 4 endogenous sites. Data are represented as mean \pm SD; Asterisks indicate statistically significant differences between DMSO-treated cells and HDAC inhibitors-treated cells. (*p < 0.05, **p < 0.01, ***p < 0.001).

Figure S3. The cell viability assay of HDAC inhibitors on HEK293T cell line. a. The images of phenotypic observation of HEK293T cell treated with different HDAC inhibitor. **b.** Cell viability of HEK293T treated with HDAC inhibitors. Promega #G3582 assay was used to determine cell viability. Data are represented as mean \pm SD; Asterisks indicate statistically significant differences between DMSO-treated cells and HDAC inhibitors-treated cells. (*p < 0.05, **p < 0.01, ***p < 0.001).

Figure S4. Effects of Nexturastat A and Abexinostat on cytosine base editing of 7 additional endogenous sites. The Nexturastat A and Abexinostat improved the C to T base editing efficiency of BE3 across all 7 endogenous sites. Each experiment was repeated at least three times. Data are represented as mean \pm SD; Asterisks indicate statistically significant differences between DMSO-treated cells and HDAC inhibitors-treated cells. (*p < 0.05, **p < 0.01, ***p < 0.001).

Figure S5. The total cytosine editing efficiency and the editing ratio of SaCas9 derived CBE across tested 5 endogenous sites. Each experiment was repeated at least three times. Data are represented as mean \pm SD; Asterisks indicate statistically significant differences between DMSO-treated cells and HDAC inhibitors-treated cells. (*p < 0.05, **p < 0.01, ***p < 0.001)

Figure S6. HDAC inhibitors generally improved the action of a wide range of base editing systems. Effect of Nexturastat A and Abexinostat on sgCBE (a), sgABE (b), BE-PIGS (c) and SpCas9-CABE (e). d. Schematic diagram of the structure of CABE base editor. 8e TadA and A3A were fused to the N-terminal of nSpCas9. Each experiment was repeated at least three times. Data are represented as mean \pm SD; Asterisks indicate statistically significant differences between DMSO-treated cells and HDAC inhibitors-treated cells. (*p < 0.05, **p < 0.01, ***p < 0.001).

Figure S7. HDAC inhibitors improved the base editing efficiency in different cell lines. The effects of Nexturastat A and Abexinostat on the editing of BE3 in HCT116, HepG2 and HeLa cell line. Each experiment was repeated at least three times. Data are represented as mean \pm SD; Asterisks indicate statistically significant differences between DMSO-treated cells and HDAC inhibitors-treated cells. (*p < 0.05, **p < 0.01, ***p < 0.001).

Figure S8. The effect of HDAC inhibitors on DNA off-target editing. a, b. Sequence-dependent off-target editing were investigated with two previously known off-target sites of HEK4 and site31. Editable Cs in each site were shown in red and mismatched bases within off-target sites were shown in bold (1). c. Relative improvement of HDAC inhibitor over DMSO in on-target base editing and off-target base editing. d. A diagram showing the mechanism of detecting sequence-independent editing with orthogonal R-loop assay and sequence-independent off-target editing. Two artificial R-loop were generated by transfection of nSaCas9 (D10A) and corresponding sgRNAs. The sequence-independent base editors with or without sgRNA. e. On target efficiency of DNMT1 and Site32 and their corresponding independent off-target efficiency on Sa site4 and Sa site5 genomic site. Each experiment was repeated at least three times. Data are represented as mean \pm SD; Asterisks indicate statistically significant differences between DMSO-treated cells and HDAC inhibitors-treated cells. (*p < 0.05, **p < 0.01, ***p < 0.001).

Figure S9. The effect of HDAC inhibitors on the editing of cytosine base editors with (BE3) or without UGI (BE-NO-UGI). a and b. The effect of Nexturastat A and Abexinostat on the editing of BE3 and BE-NO-UGI. a. Representative Sanger sequencing results and EditR analysis of site 29. c. Relative improvement of HDAC inhibitor over DMSO in base editing of BE3 and BE-NO-UGI. Each experiment was repeated at least three times. Data are represented as mean \pm SD; Asterisks indicate statistically significant differences between DMSO-treated cells and HDAC inhibitors-treated cells. (*p < 0.05, **p < 0.01, ***p < 0.001).

Table S1. Li	st of the 54 drugs	used in the screening.	
	Drug	Target	Relative editing
			ratio
D01 0	I-CBP112	Epigenetic Reader Domain	1.10
D01-a-2	hydrochloride	inhibitor	
D01 = 2	Tenovin-1	Epigenetic Reader Domain	1.17
D01-a-3		inhibitor	
D01-a-4	NSC 42834	JAK inhibitor	0.77
$D01 \circ 5$	Doxorubicin	Topoisomerase inhibitor	0.71
D01-a-5	hydrochloride	Topolsomerase initiotor	
$D01 \circ 7$	Docetaxel	Bcr-Abl inhibitor; Microtubule	0.64
D01-a-7		Associated inhibitor; Others	
$D01 \circ 8$	Theophylline	AChR antagonist; HDAC	1.10
D01-a-0		activator; PDE inhibitor	
D01-9-11	Curcumin	Epigenetic Reader Domain	1.09
D01-a-11		inhibitor; Others	
D01-b-2	Zebularine	DNA Methyltransferase inhibitor	0.67
D01-b-4	Entacapone	Transferase inhibitor	1.00
	Resveratrol	COX inhibitor; DNA/RNA	0.63
		Synthesis inhibitor; IkB/IKK	
D01-b-5		inhibitor; Lipoxygenase	
		inhibitor; NADPH inhibitor;	
		Sirtuin inhibitor	
D01-b-7	Bortezomib	Proteasome inhibitor	0.55
20107	(PS-341)		
D01-b-8	BAY 87-2243	HIF inhibitor	0.53
	Vorinostat		1.57
D01-b-9	(SAHA,	HDAC inhibitor	
	MK0683)		
D01-b-10	Aminophylline		0.67
D01-b-11	Daptomycin	DNA/RNA Synthesis inhibitor	0.87
D01 0	BET	Epigenetic Reader Domain	1.05
D01-c-3	bromodomain	inhibitor	
	inhibitor	Listen - Matheulture asfaura -	0.00
D01-c-4	AMI-I	Histone Metnyitransferase	0.80
			1.00
D01-c-5	EPZ6438	Histone Metnyitransferase	1.33
$D01 \circ C$			0.96
D01-C-0	CUDC-90/		U.80 1.01
D01-c-7	Dariciunio (Ph		1.01
$D01_{-2}$	SP2500	Histone Demethylase inhibitor	1.00
D01-c-8	SP2509	Histone Demethylase inhibitor	1.00

	SC-514	Aurora Kinase inhibitor; CDK	1.00
D01 0		inhibitor; IĸB/IKK inhibitor; p38	
D01-c-9		MAPK inhibitor; Serine	
		Protease inhibitor	
D01 10	PFI-3	Epigenetic Reader Domain	0.84
D01-c-10		inhibitor	
D01-c-11	TCS PIM-1 1	Pim inhibitor	1.03
D01-d-2	PJ34	PARP inhibitor	1.08
D01 U 2	hydrochloride		
D01-d-4	PCI-24781	HDAC inhibitor	1.60
Dona	(Abexinostat)		
D01-d-5	Decernotinib(JAK inhibitor; Tyrosine Kinases	1.19
201 4 2	VX-509)	inhibitor	
D01-d-6	J147	Epigenetic Reader Domain	1.08
D01-d-7	SMI-4a	Pim inhibitor	0.87
D01-d-8	Daphnetin	Others inhibitor	1.13
	(-)-	EGFR inhibitor: PKA inhibitor:	1.52
D01-d-9	Epigallocatech	PKC inhibitor	
	in Gallate		
D01-d-10	Curcumol	JAK inhibitor	1.30
D01-d-11	Sodium Aescinate	HIF inhibitor	0.98
D01 2	Imatinib	Bcr-Abl inhibitor; c-Kit inhibitor;	1.01
D01-e-3	(STI571)	PDGFR inhibitor	
$\mathbf{D}01$ = 4	GSK J4	Listone Demethylage inhibitor	0.76
D01-e-4	hydrochloride	Historie Demetrylase infibitor	
$D01 \circ 5$	Procarbazine	DNA/DNA Synthesis inhibitor	1.01
D01-e-3	hydrochloride	DNA/INIA Synthesis initibiliti	
D01-e-6	Methotrexate	Dehydrogenase inhibitor	1.21
	(R)-		1.52
D01-e-7	Ruxolitinib	JAK inhibitor	
	(INCB018424)		
D01-e-8	Belinostat	HDAC inhibitor	1.11
	(PXD101)		
D01-e-9	Momelotinib	JAK inhibitor	1.33
	(CYT387)		
D01-e-10	Picropodophyll	Adenosine Receptor antagonist;	1.27
	in (PPP)	Aurora Kinase inhibitor	
D01-e-11	IOX 2	HIF/HIF Prolyl-Hydroxylase	1.05
		inhibitor	_
D01-f-2	Nexturastat A	HDAC inhibitor	2.06
D01-f-4	JW55	PPAR inhibitor	1.35
D01-f-5	WHI-P258	EGFR inhibitor; JAK inhibitor	1.13
	SKLB-681	SETDB1 inhibitor	1.17

cis-24b	SETDB1 inhibitor	1.08	
(<i>R</i> , <i>R</i>)-32b	SETDB1 inhibitor	1.24	
(R,R)-59	SETDB1 inhibitor	1.12	
(<i>S</i> , <i>S</i>)-45	SETDB1 inhibitor	1.53	
SKLB-A011	ATM inhibitor	0.94	
XAJ-A017	ATM inhibitor	0.98	
AZD1390	ATM inhibitor	1.58	
AZD0156	ATM inhibitor	1.38	

Table S2. List of Sequences of pegRNAs.

			PBS	RT
pegRN	spacer sequence	3'extension	length	template
А			(nt)	length(nt
)
β-actin	GGCTATTCTCG	TCGACGACGAGCGCGG	13	34
+2 C to	CAGCTCACCA	CGATATCATCATCCATAG		
А		TGAGCTGCGAGAA		
β-actin	GGCTATTCTCG	TCGACGACGAGCGCGG	13	40
+1	CAGCTCACCA	CGATATCATCATCCATGG		
KI36		AGCCGCAGCACCCTGG		
		ACAGCAAGGCATGGAA		
		GCTTTGAGCTGCGAGAA		
β-actin	GGCTATTCTCG	CGTCGCCCGCGAAGCCG	13	41
del1-40	CAGCTCACCA	GCCTTGCACATGCCGGA		
		TGAGCTGCGAGAA		
DNMT	GATTCCTGGTG	AGGAGGAGGAAGCTGC	11	76
1+1	CCAGAAACA	TAAGGACTAGTTCTGCC		
KI27		CTCCCGTCACCCCTGTC		
		TTGTAATCCATGGATCCG		
		AGCTCGGT		
DNMT	GATTCCTGGTG	TAAAATAAAGGAGGAG	11	33
1 del1-	CCAGAAACA	GAAGCTGCTAAGGACTA		
24		TTCTGGCACCAGG		
DNMT	GATTCCTGGTG	GTCACGCCTGTTTCTGG	11	13
1+6 G	CCAGAAACA	CACCAGG		
to C				
VEGFA	GATGTCTGCAG	AGGGGCCACAGTGTGTC	13	87
+1	GCCAGATGA	CCTCTGACAATGTGCCA		
KI40		TCTGGAGCCCTCACTCG		
		CTGCTCCCTGGGGGCTAG		
		CAGCGAGACAGGGGAT		
		CCTCTGGCCTGCAGA		
VEGFA	GATGTCTGCAG	AGTTGCTTCATGTACAG	13	33

del1-50	GCCAGATGA	AGAGCCCAGGGCTGGG		
		TCTGGCCTGCAGA		
VEGFA	GATGTCTGCAG	AATGTGCCATCTGGAGC	13	22
+5 G to	GCCAGATGA	ACTCATCTGGCCTGCAG		
С		А		
HEK3	GGCCCAGACT	TGGAGGAAGCAGGGCT	13	74
+1	GAGCACGTGA	TCCTTTCCTCTGCCATCA		
KI40		ATAACTTCGTATAATGTA		
		TGCTATACGAAGTTATAA		
		CAATCGTGCTCAGTCTG		
HEK3d	GGCCCAGACT	AGGAGCTGCACATACTA	13	47
el1-40	GAGCACGTGA	GCCCCTGTCTAGGAAAA		
		GCTGTCCTGCGACCGTG		
		CTCAGTCTG		
HEK3+	GGCCCAGACT	TGGAGGAAGCAGGGCT	13	34
3 A to C	GAGCACGTGA	TCCTTTCCTCTGCCACC		
		ACGTGCTCAGTCTG		

Table S3. List of sgRNAs and Oligos sequence

sgRNA	target sequence	Oligo F	Oligo R	Reference
Site31	GAGTCCGAGC	CACCGAGTCC	AAACTTCTTC	(2)
	AGAAGAAGAA	GAGCAGAAGA	TTCTGCTCGG	
	GGG	AGAA	ACTC	
RNF2	GTCATCTTAGT	CACCGTCATCT	AAACCAGGT	(2)
	CATTACCTG	TAGTCATTACC	AATGACTAA	
	AGG	TG	GATGAC	
DNAJ	GCGCTCACTGT	CACCGCGCTC	AAACCAGAG	(3)
C5-5	CTACCTCTG	ACTGTCTACCT	GTAGACAGT	
	GGG	CTG	GAGCGC	
β-actin	GCTATTCTCGC	CACCGCTATTC	AAACTGGTG	This study
	AGCTCACCA	TCGCAGCTCA	AGCTGCGAG	
	TGG	CCA	AATAGC	
SiteE	CACACACACAC	CACCGCACAC	AAACCAGAT	(4)
	TTAGAATCTG	ACACACTTAG	TCTAAGTGTG	
	TGG	AATCTG	TGTGTG	
HEK4	GGCACTGCGGC	CACCGGCACT	AAACCCACC	(5)
	TGGAGGTGG	GCGGCTGGAG	TCCAGCCGC	
	GGG	GTGG	AGTGCC	
Site30	GAACACAAAG	CACCGAACAC	AAACGCAGT	(2)
	CATAGACTGC	AAAGCATAGA	CTATGCTTTG	
	GGG	CTGC	TGTTC	
Site28	GACAAACCAG	CACCGACAAA	AAACGGAGC	(6)
	AAGCCGCTCC	CCAGAAGCCG	GGCTTCTGGT	

	TGG	CTCC	TTGTC	
Sa	GATGTTCCAAT	CACCGATGTTC	AAACTGCGT	(7)
Site6	CAGTACGCA	CAATCAGTACG	ACTGATTGG	
	GAGAGT	CA	AACATC	
HEK3	GGCCCAGACTG	CACCGGCCCA	AAACTCACG	(8)
	AGCACGTGA	GACTGAGCAC	TGCTCAGTCT	
	TGG	GTGA	GGGCC	
Site29	GTTCACACCCA	CACCGTTCAC	AAACTGTTC	This study
	TGACGAACA	ACCCATGACG	GTCATGGGT	-
	TGG	AACA	GTGAAC	
DNMT	GATTCCTGGTG	CACCGATTCCT	AAACTGTTTC	(8)
1	CCAGAAACA	GGTGCCAGAA	TGGCACCAG	
	GGG	ACA	GAATC	
VEGF	ATGTACAGAGA	CACCGATGTAC	AAACGCCCT	This study
A3	GCCCAGGGC	AGAGAGCCCA	GGGCTCTCT	
	TGG	GGGC	GTACAT C	
VEGF	GATGTCTGCAG	CACCGATGTCT	AAACTCATCT	(8)
A1	GCCAGATGA	GCAGGCCAGA	GGCCTGCAG	
	GGG	TGA	ACATC	
Site32	GAAGACCAAG	CACCGAAGAC	AAACGCAGT	(6)
	GATAGACTGC	CAAGGATAGA	CTATCCTTGG	
	TGG	CTGC	TCTTC	
RUNX	GCATTTTCAGG	CACCGCATTTT	TCGCTTCCTC	(8)
1	AGGAAGCGA	CAGGAGGAAG	CTGAAAATG	
	TGG	CGA	С	
HEK2	GTTAAGAACAC	CACCGTTAAG	AAACCCTTTA	This study
site2	GTTTAAAGG	AACACGTTTAA	AACGTGTTCT	
	GGG	AGG	TAAC	
VEGF	GCTCCATTCAC	CACCGCTCCAT	AAACGGGAA	This study
A11	CCAGCTTCCC	TCACCCAGCTT	GCTGGGTGA	
	TGTGGT	CCC	ATGGAGC	
EXM1-	CCTCCCTCCCT	CACCGCCTCCC	AAACACCTG	(9)
1	GGCCCAGGT	TCCCTGGCCCA	GGCCAGGGA	
	GAAGGT	GGT	GGGAGGC	
RUNX	GTACTCACCTC	CACCGTACTCA	AAACAGTGC	(9)
14	TCATGAAGCAC	CCTCTCATGAA	TTCATGAGA	
	T GTGGGT	GCACT	GGTGAGTAC	
HEK3-	GTACTCACCTC	CACCGTACTCA	AAACAGTGC	(2)
2	TCATGAAGCAC	CCTCTCATGAA	TTCATGAGA	
	T GTGGGT	GCACT	GGTGAGTAC	
HEK3-	TCTGCTTCTCC	CACCGTCTGCT	AAACGCCAG	(2)
1	AGCCCTGGC	TCTCCAGCCCT	GGCTGGAGA	
	CTGGGT	GGC	AGCAGAC	
Sa site4	GGTGGAGGAG	CACCGGTGGA	AAACACCCC	(7)

	GGTGCATGGGG	GGAGGGTGCA	ATGCACCCTC	
	T CAGAAT	TGGGGT	CTCCACC	
Sa site5	TCTGCTTCTCC	CACCGTCTGCT	AAACGCCAG (7))
	AGCCCTGGC	TCTCCAGCCCT	GGCTGGAGA	
	CTGGGT	GGC	AGCAGAC	

CTGGGT	GGC	AGCAGAC
Table S4. Primers used to an	nplify each targe	t sites for sanger sequencing

Target site	chromosome	Forward primer	Reverse primer
Site31	Chr2	CAGCTCAGCCTGA	CTCGTGGGTTTGTGG
		GTGTTGA	TTGC
RNF2	Chr1	ACCACTGTTCACC	TCCCTTCCAAATACT
		CAGTACC	AAAATTG
DNAJC5-5	Chr20	TCTGTCTGTGCAC	AGCTGTGACCAGTTC
		GTGGCAA	AACGC
β-actin	Chr7	GACCCGGCGCTGT	AAAGCGCCCTTGCCT
		TTGAA	CC
SiteE	Chr1	TTCGAGGTGGAGC	TTCTGCAGGCGAGA
		TCAAGAT	ACCTG
HEK4	Chr20	CAGCGAGGTCAAA	TCCTTTCAACCCGAA
		GTCACC	CGGAG
Site30	Chr5	ACAGGCTACCCCC	TCCCAAGTGAGAAG
		TAAGT	CCAGTG
Site28	Chr3	GGCACAAAGGATG	GCTCAGTCTTGCATG
		AAGGCT	AAACAC
Sa site6	Chr11	ATGACTGGCATCAT	GGTGCTGACGTAGGT
		CTCGCA	AGTGC
HEK3	Chr9	TGGGTCACAGTGG	ATGCAGGTGCTGAAA
		CAAATGA	GCCAC
Site29	Chr12	CAAAGAAAGAGG	GCTGAGTACGTCGTG
		GAGCGGGG	GAGTC
DNMT1	Chr19	AGTCCCGTGCAAA	CCGTGAACGTTCCCT
		TCACGAA	TAGCA
VEGFA	Chr6	GGAACAAGGGCCT	GCCGTTCCCTCTTTG
site3		CTGTCTG	CTAGG
VEGFA	Chr6	GGAACAAGGGCCT	GCCGTTCCCTCTTTG
site1		CTGTCTG	CTAGG
Site32	Chr22	TTCCAACCTTCCC	GGGCATCATAGCGAG
		ACAGG	AC
RUNX1	Chr21	GTTCTCACGCACC	GAGTCCCAGAGGTAT
		GACTGAA	CCAGC
HEK2 site2	Chr5	ACAGGCTACCCCC	TCCCAAGTGAGAAG
		TAAGT	CCAGTG
VEGFA11	Chr5	GGAACAAGGGCCT	GCCGTTCCCTCTTTG
		CTGTCTG	CTAGG

EXM1-1	Chr2	AATCTACCACCCC	GCCCCTAACCCTATG
		AGGCTCT	TAGCC
RUNX14	Chr21	GTTCTCACGCACC	GAGTCCCAGAGGTAT
		GACTGAA	CCAGC
HEK3-2	Chr9	AGAATGGGTCACA	TAGGAAAAGCTGTCC
		GTGGCAA	TGCGA
HEK3-1	Chr9	AGAATGGGTCACA	TAGGAAAAGCTGTCC
		GTGGCAA	TGCGA
Sa site4	Chr1	AGGAACAACCTGT	AGGCATACACTCCTG
		CCGCAAG	GCATC
Sa site5	Chr9	AGAATGGGTCACA	TAGGAAAAGCTGTCC
		GTGGCA	TGCGA

Table S5.	HTS	Primers	used	to	amplify	each	target	sites
-----------	-----	---------	------	----	---------	------	--------	-------

sample name	Primer Name	Sequence
DNMT1+1 KI 27-DMSO	HTS-1-for	GTGAACA accacatgtgaacggaca
	HTS-1-rev	CGTGTTCCCCAGAGTGACTT
DNMT1+1 KI 27-	HTS-2-for	GTGACTC accacatgtgaacggaca
Nexturastat A	HTS-2-rev	CGTGTTCCCCAGAGTGACTT
DNMT1+1 KI 27-Vorinostat	HTS-3-for	GTGTCAA accacatgtgaacggaca
	HTS-3-rev	CGTGTTCCCCAGAGTGACTT
DNMT1+1 KI 27-	HTS-4-for	AACTGTC accacatgtgaacggaca
Abexinostat	HTS-4-rev	CGTGTTCCCCAGAGTGACTT
DNMT1 del 1-24-DMSO	HTS-5-for	AAGTCAG accacacatgtgaacggaca
	HTS-5-rev	CGTGTTCCCCAGAGTGACTT
DNMT1 del 1-24-	HTS-6-for	ATCAGTG accacatgtgaacggaca
Nexturastat A	HTS-6-rev	CGTGTTCCCCAGAGTGACTT
DNMT1 del 1-24-Vorinostat	HTS-7-for	ATCTGCT accacatgtgaacggaca
	HTS-7-rev	CGTGTTCCCCAGAGTGACTT
DNMT1 del 1-24-	HTS-8-for	ATGTGAC accacatgtgaacggaca
Abexinostat	HTS-8-rev	CGTGTTCCCCAGAGTGACTT
β -actin +1 KI36-DMS	HTS-9-for	CTGATGT ccccctggcggccta
	HTS-9-rev	CACGATGGAGGGGAAGACG
β -actin +1 KI36-Nexturastat	HTS-10-for	CTGTAGA ccccctggcggccta
А	HTS-10-rev	CACGATGGAGGGGAAGACG
β -actin +1 KI36-Vorinostat	HTS-11-for	GAACACT cccctggcggccta
	HTS-11-rev	CACGATGGAGGGGAAGACG
β -actin +1 KI36-Abexinostat	HTS-12-for	GATCTCA ccccctggcggccta
	HTS-12-rev	CACGATGGAGGGGAAGACG
β-actin del 1-40-DMSO	HTS-13-for	GACTACA cccctggcggccta
	HTS-13-rev	CACGATGGAGGGGAAGACG
β-actin del 1-40-Nexturastat	HTS-14-for	GACTCAC ccccctggcggccta
А	HTS-14-rev	CACGATGGAGGGGAAGACG
β-actin del 1-40-Vorinostat	HTS-15-for	GAGTCGT ccccctggcggccta

	HTS-15-rev	CACGATGGAGGGGAAGACG
β-actin del 1-40-Abexinostat	HTS-16-for	GTACAGA ccccctggcggccta
	HTS-16-rev	CACGATGGAGGGGAAGACG
VEGFA+1 KI40nt-DMSO	HTS-17-for	CACACTGccaaaggaccccagtcactc
	HTS-17-rev	TGGGACTGGAGTTGCTTCAT
VEGFA+1 KI40-Nexturastat	HTS-18-for	CACTTGAccaaaggaccccagtcactc
А	HTS-18-rev	TGGGACTGGAGTTGCTTCAT
VEGFA+1 KI40-Vorinostat	HTS-19-for	CACTGATccaaaggaccccagtcactc
	HTS-19-rev	TGGGACTGGAGTTGCTTCAT
VEGFA+1 KI40-Abexinostat	HTS-20-for	CAGATCAccaaaggaccccagtcactc
	HTS-20-rev	TGGGACTGGAGTTGCTTCAT
VEGFA del1-50-DMSO	HTS-21-for	CAGTACTccaaaggaccccagtcactc
	HTS-21-rev	TGGGACTGGAGTTGCTTCAT
VEGFA del1-50-Nexturastat	HTS-22-for	CAGTCTAccaaaggaccccagtcactc
А	HTS-22-rev	TGGGACTGGAGTTGCTTCAT
VEGFA del1-50-Vorinostat	HTS-23-for	CTAGACAccaaaggaccccagtcactc
	HTS-23-rev	TGGGACTGGAGTTGCTTCAT
VEGFA del1-50-Abexinostat	HTS-24-for	CTTGAGTccaaaggaccccagtcactc
	HTS-24-rev	TGGGACTGGAGTTGCTTCAT
HEK3 del 1-40-DMSO	HTS-41-for	TCAGAGAtgcatttgtaggcttgatgc
	HTS-41-rev	GTCAACCAGTATCCCGGTGC
HEK3 del 1-40-Nexturastat	HTS-42-for	TGACTGAtgcatttgtaggcttgatgc
А	HTS-42-rev	GTCAACCAGTATCCCGGTGC
HEK3 del 1-40-Vorinostat	HTS-43-for	TGAGACTtgcatttgtaggcttgatgc
	HTS-43-rev	GTCAACCAGTATCCCGGTGC
HEK3 del 1-40-Abexinostat	HTS-44-for	TGTCAGTtgcatttgtaggcttgatgc
	HTS-44-rev	GTCAACCAGTATCCCGGTGC

Table S6. List of off-target sites

sequence			
GGCATCACGGCTGGAGGTGG			
GAGGCCGAGCAGAAGAAGA			
	sequence GGCATCACGGCTGGAGGTGG GAGGCCGAGCAGAAGAAAGA		

Table S7. primers used for amplifying off-target sites

Sample	Forward primer	Reverse primer
name		
HEK4 off	CAGGTGTTCAGCTTTGCCA	AGTAGAGACAGGCCCAGA
Target		G
Site31 off	TGCAGGAGCTAGACTCCGA	TCCTCGTCCTGCTCTCACTT
Target		

References

1. Komor, A.C., Y.B. Kim, M.S. Packer, J.A. Zuris, and D.R. Liu. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 533(7603): p. 420-4.

2. Komor, A.C., K.T. Zhao, M.S. Packer, N.M. Gaudelli, A.L. Waterbury, L.W. Koblan, Y.B. Kim, A.H. Badran, and D.R. Liu. (2017). Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv. **3**(8): p. eaao4774.

3. Yao, X., X. Liu, Y. Zhang, Y. Li, C. Zhao, S. Yao, and Y.J.H.G.T. Wei. (2017). Gene therapy of adult neuronal ceroid lipofuscinoses with CRISPR/Cas9 in Zebrafish. **28**(7): p. 588-597.

4. Cheng, T.-L., S. Li, B. Yuan, X. Wang, W. Zhou, and Z.J.N.c. Qiu. (2019). Expanding C–T base editing toolkit with diversified cytidine deaminases. **10**(1): p. 1-10.

5. Koblan, L.W., J.L. Doman, C. Wilson, J.M. Levy, T. Tay, G.A. Newby, J.P. Maianti, A. Raguram, and D.R. Liu. (2018). Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol. **36**(9): p. 843-846.

6. Huang, T.P., K.T. Zhao, S.M. Miller, N.M. Gaudelli, B.L. Oakes, C. Fellmann, D.F. Savage, and D.R. Liu. (2019). Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat Biotechnol. **37**(6): p. 626-631.

7. Doman, J.L., A. Raguram, G.A. Newby, and D.R.J.N.B. Liu. (2020). Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. **38**(5): p. 620-628.

8. Anzalone, A.V., P.B. Randolph, J.R. Davis, A.A. Sousa, L.W. Koblan, J.M. Levy, P.J. Chen, C. Wilson, G.A. Newby, A. Raguram, et al. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. **576**(7785): p. 149-157.

9. Kleinstiver, B.P., M.S. Prew, S.Q. Tsai, N.T. Nguyen, V.V. Topkar, Z. Zheng, and J.K. Joung. (2015). Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol. **33**(12): p. 1293-1298.