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Supplementary Tables

CN parameters

Table S1: List of reaction rate constants in the CN model (s−1).

Function Parameters

Input
kIA = 10, kAI = 0.000001
kAB = 0.1, kBA = 0.000001

Activation function
k+ = 1, k− = 5
k−last = 0.5

Learning
kAE = 0.05, kEA = 0.000001, kEH = 100, kHE = 0.000001
kAH = 0.001, kHA = 0.000001, kHB = 100, kBH = 0.000001

Leak
kH∅ = 0.0003
kB∅ = 0.1
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c-CN parameters

Table S2: List of reaction rate constants in a c-CN model (s−1).

Function Reaction rates

Input
kIA = 10, kAI = 0.000001

kAH = 0.03, kHA = 0.000001, kHB = 100, kBH = 0.000001

Activation function
k+ = 1, k− = 5
k−last = 0.5

Weight accumulation

kAE = 0.2, kEA = 0.000001, kA∗E = 0.2, kEA∗ = 0.000001,
kA∗A = 0.05, kAA∗ = 0.000001

kA∗h = 1, khA∗ = 0.1
kleak = 0.0001

kh = 1

Leak
kH∅ = 0.0003
kB∅ = 0.1

List of nucleotide sequences and binding rates for d-CN

Table S3: List of toehold domains and their respective binding and unbinding rates in µM
s−1 for the simulations carried out in the infinite compilation mode.

Signal Species Toehold Bind Unbind

An ta 1 10
Hn th 0.001 10
B tb 1 10
Em tem 5 10
Fsi tfsi 1 10
Faf tfaf 1 10

Ism tism 1 10
Iaf tiaf 1 10
Isi tisi 1 10

Iwan itwan 1 10
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Table S4: List of the two-domain DNA strands and their respective nucleotide sequences in
the d-CN activation function.

Strand Sequence

<ta^ a1> GACA+ CCCTAAACTTATCTAAACAT
<ta^ a2> GACA+ CCCATTTCAAATCAAAACTT
<ta^ a3> GACA+ CCCATTACTAATCAATTCAA

<th^ h1> CTCAG+ CCCTTTTCTAAACTAAACAA
<th^ h2> CTCAG+ CCCTTATCATATCAATACAA
<th^ h3> CTCAG+ CCCTTAACTTAACAAATCTA

<tb^ b> ACTACAC + CCCAAAACAAAACAAAACAA
<te0^ b> CATCG+ CCCAAAACAAAACAAAACAA
<te1^ b> TACCAA+ CCCTTATCATATCAATACAA
<te2^ b> GTCA+ CCCTTATCATATCAATACAA
<te3^ b> GCTA+ CCCTTATCATATCAATACAA
<te4^ b> TATTCC + CCCTTATCATATCAATACAA
<te5^ b> CACACA+ CCCTTATCATATCAATACAA

<tfsi^ fsi1> ACCT + CCCTATTCAATTCAAATCAA
<tfsi^ fsi2> ACCT + CCCTATACTATACAATACTA
<tfsi^ fsi3> ACCT + CCCTAATCTAATCATAACTA

<tisi^> TAGCCA
<tism^> CCCT
<tiwa1^> CTCAATC
<tiwa2^> CCTACG
<tiwa3^> TCTCCA

<i> CCCTTTACATTACATAACAA
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Supplementary Figures

Weight distributions for FB 2 and TC 2 tasks.
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(a) FB 2
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(b) TC 2

Figure S1: Normalised weights for (a) FB 2 and (b) TC 2 tasks as a function of chain
length m. The y-axis on the right side of the figures describes the sum of weights across all
input channels, which is a normalisation constant for the corresponding sets of weights. It
can be noticed that the accumulation of weights becomes more difficult as the chain length
increases. However, it’s worth noting that both low and high m result in low variance of the
weight representations.
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Examples of learning episodes
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(a) Average weights for frequency bias (m = 3).
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(b) Average weights for temporal correlation (m = 1).

Figure S2: Normalised weights in the steady state for input data with (a) frequency bias,
and (b) temporal correlation. The values represent averages over 200000s of stimulation,
and were only collected once the system reached a homeostatic state (after 800000s). We
then repeat each experiment 10 times, and calculate the statistics. We define the temporal
correlation as pairing of inputs from channels A1 and A2. The inputs from A1 always precede
that of the A2 with a fixed temporal distance δ. We can see that the steady state abundances
of channel specific Hn molecules reflect the temporal order of the inputs provided. Moreover,
the input channel that spiked in an asynchronous way (A3) accumulated lower weights than
the temporally correlated channels. In the frequency bias experiment we assume A1 to come
at frequency twice as high as that of the two other input channels. The system learns
by accumulating steady state abundances of weight molecules Hn for each channel. After
training, the weights of the channels with a high input frequency will be high, whereas the
ones less likely to spike are on a similar low level.
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Simulation of learning tasks
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(a) Example of temporal correlation learning.
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(b) Example of frequency bias learning.

Figure S3: Example learning episode for (a) temporal correlation task, and (b) frequency
bias task simulated using a detailed compilation mode of Visual DSD. The detailed mode
is the most realistic setting, which assumes that binding, unbinding and branch migration
have finite rates.
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Learning new input statistics
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(a) Example of frequency bias learning with input statistics changing during the simulation
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(b) Normalised weights at t=120000.
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(c) Normalised weights at t=240000.

Figure S4: We examine a case when the statistical bias of the inputs changes during the
simulation. The simulation starts with inputs having a statistical bias towards inputs from
channel A1, which arrive twice as frequently compared to the other channels. At t=120000
the statistics change and A3 becomes the statistically over-represented input channel. The
neuron’s weights reflect this change and the weight associated with the new biased input
channel increases.
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(a) Example of temporal correlation learning with input statistics changing during the simulation
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(b) Normalised weights at t=120000.
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(c) Normalised weights at t=240000.

Figure S5: We examine a case when the statistical bias of the inputs changes during the
simulation. The simulation starts with inputs having a temporal correlation between inputs
A1 and A2, where the inputs from A2 always arrive 1s after that of A1. After 120000s, the
weight associated with the second input channel H2 is slightly higher than H1, and both of
them are significantly higher than H3. At t=120000 the statistics change and we introduce a
correlation between A1 and A3, where the inputs from A1 always arrive 1s after that of A3.
The neuron’s weights reflect this change at t=240000. Now, the weight associated with the
first input channel H1 is slightly higher than H3, and both of them are significantly higher
than H2.
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Signal modulation in the DNA neuron
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(a) Internal state (B) as a function of Hn.

10 20 30 40 50 60
H

0.20

0.22

0.24

0.26

0.28

0.30

L

(b) Learning signal (E) as a function of Hn.

Figure S6: Signal modulation in d-CN (m = 1). (a) We inject 5 µM of An molecules to
the system at t = 100, 300, and 500. Each channel has a different amount of H molecules
associated with it: H1 = 10, H2 = 30, and H3 = 50. This has the effect that the conversion
of A1 is slower than that of A2, which is in turn slower than the conversion of A3. (b) The
influence of inputs on the concentration of L species as a function of its weight (H). The
d-CN shows a different amount of activation given inputs from differently weighted channels.
Here, we assume a constant decay of Hn and B species with rate constants kH = 0.00002
and kB = 2.
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Strategies of garbage collection
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(a) Normalised H3.
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(b) Index of dispersion.

Figure S7: We examine the performance of different strategies of supplying garbage collector
molecules to the system as a function of bolus size β. We vary the temporal distance between
subsequent injections of these species (δdecay). We measure the diversity of the weight set
using index of dispersion, i.e. the standard deviation divided by the mean of the weights. As
expected, the more frequent but smaller injections (more similar to a decay with a constant
rate) are more conducive to learning. The extreme case of δdecay = 120000 demonstrates
that the system fails to learn if the garbage collection complexes are provided only once at
the beginning of the simulation.

Stability of the d-CN

Here, we investigate the ability of the systems to distinguish temporarily correlated inputs

as a function of the bolus size β. Fig. S8 shows that the increase of β results in less diverse

weight representations. We use the index of dispersion, i.e. the standard deviation divided

by the mean of the weights, as a measure of diversity in the weight set. As the amount of An

molecules injected at each spike increases, the system’s performance declines as a result of

resource starvation. Each input spike results in a complete release of E molecules, regardless

of the abundance of B molecules. This results in the steady state weight of the uncorrelated

input (H3) approaching the weights of the two other inputs. As a consequence, the system

is no longer able to detect temporal correlations. Moreover, we vary the abundance of gate

fuel molecules available at the beginning of each simulation. As the amount of available gate

S-10



complexes increases the ability of the system to distinguish temporally correlated inputs also

increases. Therefore, we show that the performance of temporal correlation detection can

be increased at a cost of more fuel molecules, and therefore longer simulation time.
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(a) Normalised H3.
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Figure S8: (a) The normalised value of the uncorrelated weight (H3), and (b) index of
dispersion of the weights at the steady state as a function of the bolus size β. The index of
dispersion is a measure of diversity of the steady state weights, hence indicates how well the
d-CN distinguished between input channels. This means that an input stream with no bias
would result in an index of dispersion ≈ 0.

Performance of the CN and d-CN on the FB and TC

task

When using the CN to detect a FB, the difference between the steady state weight abun-

dances will reflect the difference of the frequencies with which the input channels fired,

although the exact relationship between the two is not immediately clear. In order to un-

derstand this better, we considered a CN with three input channels. We then varied the

frequency of channel 1 while keeping the input frequency to channel 2 fixed and recorded the

ratio w1/w2 as a function of f1/f2. We found that the weight ratio was proportional to the

frequency ratio (Fig. S9a). While it remains unclear to what extent this qualitative result

generalises to more complicated cases, it is apparent that CN is able to detect very small
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biases, albeit with a correspondingly small output signal strength.
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Figure S9: The response of the neuron, as measured by the ratio of the first and the second
channel weight, as a function of the signal strength. (a) We kept the frequency of the first
channel fixed at 1 Hz and decreased the frequency of the second channel. The non-linearity
was set to 1. (b) Both input channels have the same frequency of 1 Hz, but we varied the
probability that an output spike of the second channel follows an input to channel 1. The
nonlinearity was set to 5.

We performed an equivalent analysis with the TC task. We varied the probability of an

input spike in channel 1 being followed by an input spike in channel 2, while keeping the

total frequency of all input channels constant. So, for example, a probability of 0.5 means

that on average every second input spike of channel 1 is followed by an input spike of channel

2 after a delay of δ and half of the input spikes of channel 2 occur at random times. Again,

we find that even for small probabilities, there is a reliable difference in weights between the

first and the second channel (Fig. S9b).
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Visual DSD code for d-CN model

1 directive simulation {final=1000000; plots=[B(); L(); H1(); H2(); H3(); A1();

A2(); A3()]}

2 directive simulator deterministic

3 directive deterministic {stiff=true}

4 directive units{concentration=uM}

5 directive compilation infinite

6 directive parameters [bOUT=2; Ein=5; AFgateIn=10; backIn=10; rateb=1; tedeg=1;

t1b_deg =0.1; NovelB1=10; Ain = 10; SMFin = 0.5; WAFin = 0.5; SIFin = 0.5;

AFFin=1; NdegE = 0; NdegH = 0.05; Hs = 0; kdegB = 0.1; kdegE = 0.1; kdegH =

0.000005]

7

8 //// Toehold domain reactivity

9 dom ta = {bind=1; unbind=10; colour="green"} // Inputs

10 dom th = {bind=0.001; unbind=10; colour="orange"} // Weights

11 dom tb = {bind=1; unbind=10; colour="#00fbff"} // State

12 dom te0 = {bind=5; unbind=10; colour="#eb34e8"} // Activation

13 dom te1 = {bind=5; unbind=10; colour="#eb34e8"} // Activation

14 dom te2 = {bind=5; unbind=10; colour="#eb34e8"} // Activation

15 dom te3 = {bind=5; unbind=10; colour="#eb34e8"} // Activation

16 dom te4 = {bind=5; unbind=10; colour="#eb34e8"} // Activation

17 dom te5 = {bind=5; unbind=10; colour="#eb34e8"} // Activation

18 dom tfsi = {bind=1; unbind=10; colour="black"} // Fuel for SI

19

20 //// Translator toeholds reactivity

21 dom tiwa1 = {bind=1; unbind=10; colour="#ffe000"} // WA1

22 dom tiwa2 = {bind=1; unbind=10; colour="#ffe000"} // WA2

23 dom tiwa3 = {bind=1; unbind=10; colour="#ffe000"} // WA3
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24 dom tiwa4 = {bind=1; unbind=10; colour="#ffe000"} // WA4

25 dom tism = {bind=1; unbind=10; colour="blue"} // SM

26 dom tisi = {bind=1; unbind=10; colour="red"} // SI

27

28 //// Activation

29 def E0() = <te0^ b>

30 def E1() = <te1^ b>

31 def E2() = <te2^ b>

32 def E3() = <te3^ b>

33 def E4() = <te4^ b>

34

35 //def L() = <b te1^ b> // Learning signal (m=1)

36 //def L() = <b te2^ b> // Learning signal (m=2)

37 //def L() = <b te3^ b> // Learning signal (m=3)

38 //def L() = <b te4^ b> // Learning signal (m=4)

39 def L() = <b te5^ b> // Learning signal (m=5)

40

41 def nE0() = <b te0^>

42 def nE1() = <b te1^>

43 def nE2() = <b te2^>

44 def nE3() = <b te3^>

45 def nE4() = <b te4^>

46

47 def nB() = <b tb^>

48

49 //// Inputs

50 def A1() = <ta^ a1>

51 def A2() = <ta^ a2>

52 def A3() = <ta^ a3>
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53 def A4() = <ta^ a4>

54

55 //// Weights

56 def H1() = <th^ h1>

57 def H2() = <th^ h2>

58 def H3() = <th^ h3>

59 def H4() = <th^ h4>

60

61 //// State

62 def B() = <tb^ b>

63

64 //// Fuels

65 //// Join gate (R1 + R2 <-> T)

66 def Join(ta, a, tb, b, tr) = {ta^*}[a tb^]:[b tr^]:[i]

67 //// Fork gate (T <-> P1 + P2)

68 def Fork(ta, a, tb, b, tr) = [i]:[ta^ a]:[tb^ b]{tr^*}

69 def Fork_WA(ta, a, tb, b, tr) = [i]:[ta^ a]:<b>[tb^ b]{tr^*}

70

71 //// Decay modules

72 def degE() = {te^*}[e] // E removal

73 def degB() = {tb^*}[b] // B removal

74 def degH1() = {th^*}[h1] // H1 removal

75 def degH2() = {th^*}[h2] // H2 removal

76 def degH3() = {th^*}[h3] // H3 removal

77 def degH4() = {th^*}[h4] // H4 removal

78

79 //// Weight accumulation: An + Ex <-> Ex + Hn (OLD) mx

80 def WA_fuel_mx(an, hn, tiwan, fuel, time) =

81 ( fuel Join(ta, an, te5, b, tiwan) @ time
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82 | fuel Fork_WA(th, hn, te5, b, tiwan) @ time

83 | fuel <hn te5^> @ time

84 | fuel <i th^> @ time

85 | fuel <tiwan^ i> @ time

86 )

87

88 //// Signal modulation: An + Hn <-> Hn + B

89 def SM_fuel(an, hn, fuel, time) =

90 ( fuel Join(ta, an, th, hn, tism) @ time

91 | fuel Fork(tb, b, th, hn, tism) @ time

92 | fuel <b th^> @ time

93 | fuel <i tb^> @ time

94 | fuel <tism^ i> @ time

95 )

96

97 //// Signal integration: An + In <-> In + B - NEW

98 def SI_fuel_new(an, in, fuel, time) =

99 ( fuel Join(ta, an, tfsi, in, tisi) @ time

100 | fuel Fork(tb, b, tfsi, in, tisi) @ time

101 | fuel <b tfsi^> @ time

102 | fuel <tfsi^ in> @ time

103 | fuel <i tb^> @ time

104 | fuel <tisi^ i> @ time

105 )

106

107 //// Signal integration: I + An <-> An + B - OLD

108 def SI_fuel_old(in, an, fuel, time) =

109 ( fuel Join(tfsi, in, ta, an, tisi) @ time

110 | fuel Fork(tb, b, ta, an, tisi) @ time
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111 | fuel <b ta^> @ time

112 | fuel <tfsi^ in> @ time

113 | fuel <i tb^> @ time

114 | fuel <tisi^ i> @ time

115 )

116

117 //// Activation function: B + Faf <-> Faf + E

118 def AF_newE_5(fuel_gate, time) =

119 ( fuel_gate {tb^*}[b te0^]:[b tb^]:[b te1^]:[b tb^]:[b te2^]:[b tb^]:[b te3^]:[b

tb^]:[b te4^]:[b te5^]<b> @ time

120 )

121

122 //// Activation function: B + Faf <-> Faf + E

123 def AF_newE_4(fuel_gate, time) =

124 ( fuel_gate {tb^*}[b te0^]:[b tb^]:[b te1^]:[b tb^]:[b te2^]:[b tb^]:[b te3^]:[b

te4^]<b> @ time

125 )

126

127 //// Activation function: B + Faf <-> Faf + E

128 def AF_newE_3(fuel_gate, time) =

129 ( fuel_gate {tb^*}[b te0^]:[b tb^]:[b te1^]:[b tb^]:[b te2^]:[b te3^]<b> @ time

130 )

131

132 //// Activation function: B + Faf <-> Faf + E

133 def AF_newE_2(fuel_gate, time) =

134 ( fuel_gate {tb^*}[b te0^]:[b tb^]:[b te1^]:[b te2^]<b> @ time

135 )

136

137 //// Activation function: B + Faf <-> Faf + E
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138 def AF_newE_1(fuel_gate, time) =

139 ( fuel_gate {tb^*}[b te0^]:[b te1^]<b> @ time

140 )

141

142 //// Short example of randomly generated input with frequency bias

143 ( 0 B() | B() ->{bOUT}

144 | 0 H1() | H1() ->{kdegH}

145 | 0 H2() | H2() ->{kdegH}

146 | 0 H3() | H3() ->{kdegH}

147

148 | Ein E0()

149 | Ein E1()

150 | Ein E2()

151 | Ein E3()

152 | Ein E4()

153

154 | backIn nE0()

155 | backIn nE1()

156 | backIn nE2()

157 | backIn nE3()

158 | backIn nE4()

159

160 | backIn nB()

161 | 0 L()

162 | AF_newE_5(AFgateIn, 0)

163

164 | SM_fuel(a1, h1, 25000, 0)

165 | SI_fuel_old(i1, a1, 80000, 0)

166 | WA_fuel_mx(a1, h1, tiwa1, 10000, 0)
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167

168 | SM_fuel(a2, h2, 25000, 0)

169 | SI_fuel_old(i2, a2, 80000, 0)

170 | WA_fuel_mx(a2, h2, tiwa2, 10000, 0)

171

172 | SM_fuel(a3, h3, 25000, 0)

173 | SI_fuel_old(i3, a3, 80000, 0)

174 | WA_fuel_mx(a3, h3, tiwa3, 10000, 0)

175

176 | Ain A1() @ 1376

177 | Ain A1() @ 1794

178 | Ain A3() @ 5713

179 | Ain A3() @ 5963

180 | Ain A1() @ 9357

181 // etc.

182 )
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