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Reviewers' comments:

Reviewer #1 (Remarks to the Author): 

This study present a deep-learning model to predict a clinical diagnosis of AD dementia, non-AD 
dementia, as well as normal cognition and MCI (due to any aetiology). The noteworthy aspect of this 
study is the model. The results are, however, unsurprising and do not seem provide a significant 

contribution to the literature (it is well established that in AD dementia there is substantial temporal 
lobe atrophy). 

There are several issues: 

-It is put forward that a deep-learning model like presented in this study is important for non-
specialised clinicians, including general practitioners. GPs usually do not have access to an MRI 

scanner, and it would for them to use this model, since one of the most important features is MRI 
based. For clinical trials biomarker evidence for e.g., amyloid pathology would be preferred, and is not 

included in this paper, 
- A complication is that the model is trained on a clinical diagnosis. Although this is an understandable 
choice when a lot of data is required for training the model, it is not the most accurate choice, since a 

clinical label may not reflect the underlying aetiology. E.g., up to 30% of individuals with clinical AD 
dementia do not have AD underlying pathology. Indeed, figure 4d suggests that a very high AD 

probability score may not correspond to the highest pathology scores, and there is even 1 individual 
with 0 A, B, C pathological scores. This makes it also problematic to compare model performance 
with the clinician ratings: deviation between model prediction and clinicians reflects differences 

between the new clinicians vs the old ones who made the first diagnosis, rather than a better ability of 
the model to detect AD (which is trained on the ‘old’ first diagnoses). Also it is not clear why this 

comparison was not performed for AD vs nonAD, which would be a typical neurologist task. 
- Classification of dementia vs non-dementia: A dementia diagnosis is determined based on low 

performance on neuropsychological tests scores and the MMSE, as such it is not a surprise that 
these perform highly accurate (since the tests are part of the diagnosis). A more difficult and relevant 
task would be to tease apart the AD vs nonAD dementias, and indeed this is reflected by the model 

performance. It is not so clear, however, why nonAD dementias are all put into 1 group? Do the 
authors expect that differences with AD in terms of symptoms and atrophy patterns are the same for 

FTD and DLB patients? 

On combining cohorts: 

-How was non-imaging data pooled, there is mention of NACC and OASIS-3 following Uniform Data 
Set guidelines), but how do the other cohorts fit in? 

-How were MRI scans harmonised across cohorts? It is not clear whether all MRIs were processed 
again using the same pipeline. This still leaves other cohort specific effects (e.g., differences in 
scanning protocol, magnetic field strength etc.). 

-How were cohort-specific missing data dealt with? E.g., APOE is missing in the parkinson and 
frontotemporal dementia cohorts. As such, based on the presence of APOE alone it would already be 

possible to predict AD vs nonAD dementia almost perfectly. 

Fig4d :It would be helpful to see scatterplots of the probabilities vs the A, B and C scores, preferably 
with colors or symbols that indicate the cohort. 

Table 1: 
Please indicate n with pathologically confirmed diagnosis; 

I find it hard to believe that AIBLE has no data available about educational level, have the authors 
applied for AIBLE data directly from the AIBLE website, or was this through e.g., GAAIN? 
the missing data seems to be related directly to AD vs nonAD diagnosis, for e.g., APOE is unavailable 

for nonAD cohorts. How was missing data handled in the model? 



Reviewer #2 (Remarks to the Author): 

This manuscript has looked at a combination of datasets consisting of more than 8,000 patients with 
dementia symptoms and sought to differentiate Alzheimer's disease diagnosis from other dementia 

causing disorders. The manuscript has performed in-depth analysis, with several layers of validation, 
including technical, clinical, and neuropathological. There are many similar studies using machine 
learning methods in the literature; therefore, while this study confirms previous studies, it brings extra 

validation and new insights by combining data sets at much larger scales than previous studies and 
with several different modalities (as mentioned above). I therefore believe this study is highly novel. 

The methods are clearly reported and meticulously designed. My comments are listed below: 

1) It was unclear how the external validation data set was chosen to report AUC. The manuscript 
mentions splitting the dataset into folds, but the explanation is vague in reporting results. Is it an 
average across folds? Did the manuscript choose an external validation data set from the beginning 

to prevent bias? 
2) Related to the point above, it remains unclear how reporting AUC, and other metrics are 

independent of tuning and training models. 
3) The network analysis is not motivated enough and feels separated from the rest of the work. 
4) can the manuscript discuss the utility of the model in a real-world setting? The quality of real-world 

data is likely to differ from research data and may benefit from the discussion for deployment in future. 
5) I suggest changing the labels in the figure to spell out the full words for readability. 

6) please report the confidence intervals for AUC measures in the results. 
7) Do MRI data need harmonizations? There is a mention of harmonizing clinical data but not 
imaging. How can effects of centers be adjusted for? 

8) it seems some disorders are likely to be drawn from specific data sets only (e.g., FTD). I wonder 
whether this may introduce bias in results (mixing effects of interest with confounders). 

Arman Eshaghi 

Reviewer #3 (Remarks to the Author): 

Qiu et al presented deep learning models trained from clinical information and brain MRI to perform 3 
classification tasks: 1) cognitively normal individuals vs cognitively impaired individuals (COGnc), 2) 
patients with dementia vs individuals without dementia (COGde), 3) Alzheimer’s disease (AD) 

dementia cases vs non-AD dementia cases (AD vs non-ADD). For each task, the authors trained 
models with 3 different combinations of features: 1) MRI only, 2) non-imaging features only, 3) a 

“fusion” model that included both MRI and non-imaging features. The authors also presented 
“neuroimaging signatures” of AD and non-AD dementia via feature interpretation of brain regions that 
were implicated in the AD vs non-ADD task. The authors investigated correlations between their 

models’ predictions and AD neuropathology. Finally, the authors compared the performance of their 
models against the diagnostic accuracy of neurologists and neuroradiologists. 

The authors presented a very dense manuscript with lots of material. The comparisons between their 

models and the clinicians were particularly interesting, and this aspect of the paper will likely draw in a 
wide readership. I have some comments for the authors that are aimed at clarifying their results and 
improving the readability of their manuscript. 

Major comments: 

1) The results section was quite hard to follow. A lot of core ideas/terms are presented without 
enough context or explanation in this section. I had to jump back and forth between the methods and 
supplementary information sections a lot to understand the results. I get the impression that the 

authors may have originally structured the paper with the methods section presented before the 
results section. If the results are to be presented before the methods (as in the current form), it would 

be helpful to readers if the authors could briefly define their tasks (e.g. COGnc, COGde, COG-3way, 



etc) and models (e.g. MRI-only, fusion, etc) and indicate which datasets were used for training and 
testing in a short summary paragraph at the beginning of the results section. In its current shape, the 

results don’t stand alone as its own section without the reader being required to read the methods 
section first. 

2) Can the authors expand Supplementary Table S8 to include the counts of AD and Parkinson’s 
disease dementia (PDD) cases? The authors looked at PDD as part of their nADD subgroup analyses 
(for example in Supplementary Figures S1 and S2), but it’s not described which datasets contain PDD 

or how many cases of PDD there were in each dataset. 
3) The authors repeatedly claim throughout their manuscript that they used data from 8 separate 

cohorts. This is slightly misleading because the majority of the datasets (ADNI, AIBL, PPMI, NIFD, 
LBDSU, FHS) were used only in validation for one model (MRI-only). While this is revealed in 

Supplementary Table S1 and Supplementary Figure S9, this should be stated more explicitly in the 
main text of the manuscript. 
4) Can the authors please clarify the caption of Figure 2? Are each of the rows in (a) and (b) 

representing results from the fusion models? The caption also states that (b) contains results for 
external datasets that include ones that were only used for the MRI-only model validation - so this 

simply cannot be correct for the top row, the COGnc task, because the caption says it is the fusion 
model. 
5) The authors state on lines 213-215, “On visual inspection of the individual case, there was notable 

similarity between areas of high SHAP scores for the COG 3-way task and region-specific 
semiquantitative neuropathological scores obtained from autopsy”. What is considered “notable 

similarity”? For example, I see a lot of differences between the distribution of the SHAP values and 
the neuropathological scores among the parietal and frontal lobes of the brain. 
6) Since the neurologists and neuroradiologists were asked to perform different tasks (neurologists 

did the COGnc and COGde tasks, while the neuroradiologists did the AD vs nADD task), and they 
were provided different data (the neuroradiologists only received MRI, age and gender, while the 

neurologists also received information from clinical assessments), the text-based analysis seems 
biased so that the clustering would inherently result in the separation of the two types of clinicians. 

Because of these confounding factors, I’m not convinced that this analysis revealed patterns that 
were truly distinct to each of these clinicians’ expertise as the authors suggest in lines 252-259. 

Minor comments: 
1) Figure 4a is missing the scale for SHAP value. 

2) Is PET imaging of amyloid or quantifying amyloid or tau by CSF a part of the standard of care for 
clinicians who specialize in dementia? There are studies that have shown that clinicians’ diagnoses or 
subsequent care management can change after receiving information about a patient’s amyloid status 

(see Rabinovici et al 2019 JAMA https://jamanetwork.com/journals/jama/fullarticle/2729371, for 
example). How do the authors think the lack of information regarding amyloid may have impacted the 

diagnostic accuracy of the clinicians in their study? 

Reviewer #4 (Remarks to the Author): 

This is a well-designed study presenting a novel deep learning framework able to differentiate normal 
cognition, MCI, Alzheimer’s disease and other dementias leveraging on a large multi-study cohort. 

The study reports superior performance for the developed framework compared to experienced 
radiographers and radiologists. One of the main advantages of the study is that a comprehensive 
evaluation of the cases by neurologists and neuroradiologists is reported and was used for 

comparisons. Four categories were classified: normal cognition, MCI, AD, non-AD dementia. Two 
tasks were evaluated first was cognition based on MRI – 3 class and then given dementia, AD or non-

AD. Results are interpretable due to the use of SHAP. Overall conclusions are supported by the 
presented data. 

There are several points that need to be further discussed and some suggested improvements. 



Methods 

Lines 36- 51 

It appears the authors have relied on normalisation to MNI space as a step for harnomization 
however, this might not be enough. Methods such as ComBat (Fortin et al. 2018 ) have been 
developed and applied for multi-site data harmonisation. This would be particularly important since it 

needs to be rulled out that the observed performance might be driven partly by site differences. 
Though in figure SF11 the authors demonstrate no clear clustering, they should demonstrate also that 

the deep learning scheme is not sensitive to study/site effects. Hence, I suggest a further exploratory 
analysis where study ID will be included as a feature in the applied machine learning pipelines, 

especially when imaging data are included. 

Line 42: There is a discordance in the number of regions reported here and in the caption of figure 3 

(95 vs 57). 

Line 94: It is unclear what imaging data have gone in the models 

Lines 142-144 

More details are needed about the manual alignment step in order for it to be reproducible. 

Since interpretability of the results following deep learning is a key issue, more methodological details 
are needed about SHAP. 

Results 
The number of excluded scans due to the applied QC should be reported. 

Though the fusion model improves performance on the non-parkinsonian dementias, there is no 

mention or explanation about a slightly worse performance in VD and FTD (SFigures 1 and 2 - Lines 
139-141) 

Discussion 

As neuroradiologist 1 points, there wasn’t a consensus approach between radiologists. This should be 
reported as a limitation. 

It is unclear whether atypical AD cases existed in any of the cohorts, if this information is available it 
should be included and discussed in relation to the findings. This should also be discussed in the 

limitations. 

The achieved performance and importance of the framework are discussed, however the discussion 

would benefit from an additional paragraph discussing the observed findings in figures 3 and 4. 



Multimodal deep learning for Alzheimer’s disease dementia assessment 

Response to reviewer comments: 

We sincerely thank the reviewers for providing constructive feedback on our original 
submission. We followed the suggestions from the reviewers and revised our manuscript 
accordingly. Our resubmission includes a document that tracked all the changes from the original 
submission as well as a clean copy.  



Reviewer 1:

Comment 1: This study presents a deep-learning model to predict a clinical diagnosis of AD 
dementia, non-AD dementia, as well as normal cognition and MCI (due to any aetiology). The 
noteworthy aspect of this study is the model. The results are, however, unsurprising and do not 
seem to provide a significant contribution to the literature (it is well established that in AD 
dementia there is substantial temporal lobe atrophy). 
Response 1: We thank the reviewer for their time in reviewing our manuscript and for 
recognition of the ‘noteworthy’ model around which we have constructed our research. We agree 
that temporal lobe atrophy is a well-established marker of AD pathology. However, the purpose 
of our work is not to demonstrate the role of temporal lobe changes and AD diagnosis. As the 
reviewer notes, this connection is well-established. Rather, the present research is aimed at more 
fully replicating the task of differentially diagnosing dementia within a single modeling 
framework. To this end, any correlations between model results and temporal lobe atrophy are 
meant to serve as confirmatory evidence of our computational results. By assimilating our 
outcomes with known patterns of neurodegenerative changes, we sought to confirm our novel 
deep learning approach with well-validated measures of AD pathology. Thus, while temporal 
lobe atrophy in AD dementia may be unsurprising, we believe that its high degree of correlation 
with our novel computational results is an important step to show consistency between our work 
and the accumulated knowledge surrounding this devastating disease.  

Comment 2: It is put forward that a deep-learning model like presented in this study is important 
for non-specialized clinicians, including general practitioners. GPs usually do not have access to 
an MRI scanner, and it would be for them to use this model, since one of the most important 
features is MRI based.  
Response 2: We greatly appreciate the reviewer’s comment, and their constructive intention to 
make us clarify the clinical utility of our deep learning model. While we agree that general 
practitioners typically do not have access to or review MRIs, our understanding is that some may 
order an MRI if deemed necessary. There are a few published papers that have delved into GP’s 
experience with ordering and reviewing MRIs: 

1. S Skinner. MRI brain imaging. Aust Fam Physician. 2013 Nov;42(11):794-7. 
2. M Robling, P Kinnersley, H Houston, M Hourihan, D Cohen, J Hale. An exploration of 

GPs’ use of MRI: a critical incident study. 1998 Jun;15(3):236-43. 
3. A L Gough-Palmer, C Burnett, W M Gedroyc. Open access to MRI for general 

practitioners: 12 years’ experience at one institution - a retrospective analysis. The British 
Journal of Radiology, 82 (2009), 687–690. 

4. S Kara, A Smart, T Officer, C Dassanayake, P Clark, A Smit, A Cavadino. Guidelines, 
training and quality assurance: influence on general practitioner MRI referral quality. 
Journal of Primary Health Care 11(4) 387-387, 2019.  

We do appreciate that MRIs may or may not be available in general healthcare settings. Even so, 
we believe that our deep learning models can be useful to both specialists and GPs. For a 
situation when the practitioner (either a GP or a specialist such as a neurologist) can order an 
MRI, the deep learning model can provide a fair assessment of the person’s cognitive status 
using several modes of available data (i.e., MRI + non-imaging). Alternatively, when MRI 
cannot be ordered, we believe our non-imaging model can be useful. We anticipated such 



scenarios while pursuing our research, and this is the reason why we developed several 
alternative models using different forms/modalities of data that can carry out the classification 
tasks. Certainly, our results demonstrate that the inclusion of MRI features boosts the 
performance of the predictive algorithm. However, the main goal of our work (i.e., the ability to 
carry out a multitask differential diagnosis of AD) is not limited by the availability of 
neuroimaging data. Thus, we feel that the diverse range of inputs that we have tested lends itself 
to clinical translation for specialized and non-specialized practitioners alike. 

Comment 3: For clinical trials, biomarker evidence for e.g., amyloid pathology would be 
preferred, and is not included in this paper. 
Response 3: We share the reviewer’s opinion that amyloid pathology data would be the optimal 
means by which to confirm AD diagnosis in the context of clinical trials. While focus on clinical 
trials is extremely important to discover disease modifying therapies, our manuscript’s primary 
goal was to develop and validate deep learning models that can serve as assistive tools for 
diagnosis across the care continuum. For this reason, we wanted to make sure our models can 
predict the output class label at least as well as the expert-level diagnosis using data that is 
collected within various clinical settings. Therefore, we selected primary clinical diagnosis as our 
output label during model development. Moreover, amyloid pathology data is not widely 
available, so relying on them to create deep learning models was not practical. Nonetheless, we 
used available neuropathology data on 110 subjects from the ADNI, NACC and FHS cohorts to 
validate our model. We believe neuropathological validation of our models is a strength of our 
study, and it was reassuring to see that models that were primarily developed using clinical 
information to have confirmatory evidence on autopsy data. To honor the reviewer’s comment 
and to stay consistent with the broad theme of our work, we did not include any discussion 
related to clinical trials in our revised manuscript. 

Comment 4: A complication is that the model is trained on a clinical diagnosis. Although this is 
an understandable choice when a lot of data is required for training the model, it is not the most 
accurate choice, since a clinical label may not reflect the underlying aetiology, e.g., up to 30% of 
individuals with clinical AD dementia do not have AD underlying pathology. Indeed, figure 4d 
suggests that a very high AD probability score may not correspond to the highest pathology 
scores, and there is even 1 individual with 0 A, B, C pathological scores. This makes it also 
problematic to compare model performance with the clinician ratings: deviation between model 
prediction and clinicians reflects differences between the new clinicians vs the old ones who 
made the first diagnosis, rather than a better ability of the model to detect AD (which is trained 
on the ‘old’ first diagnoses). 
Response 4: We truly appreciate the reviewer’s comment. As described in the previous response, 
our goal was to develop and validate deep learning models that can serve as assistive tools for 
diagnosis across the care continuum. For this reason, we wanted to make sure our models can 
predict the output class label at least as well as the expert-level clinical diagnosis. Therefore, we 
selected primary clinical diagnosis as our output label during model development. We must note 
that the clinical labels in each dataset were obtained by a consensus review of all relevant data by 
multidisciplinary panels including neurologists, neuropsychologists, and neuroradiologists. We 
have tried to emulate clinical scenarios at multiple levels by referring to information that would 
be routinely collected in a primary care setting as well as that collected in specialty neurology 
clinics. Using these varied depths of information, we presented multiple non-imaging and fusion 



models each with distinct AUC values. Moreover, not all large multicenter databases such as 
those used in our work collect neuropathology data in equal measure to clinical and imaging 
information. Therefore, we feel that our usage of this information remains well up to the 
standards of the AD research community.  

We also thank the reviewer for rightly pointing out a single case, whose correlation with 
model predictions and pathology scores was not in correspondence. Clearly, this confirms that 
models or even clinicians may not always be accurate in terms of identifying disease, and this 
observation speaks to the real-world diagnostic standards in clinical neurology. We may 
speculate that the individual noted as having no relevant pathology is representative of the “false 
positives” that the reviewer has astutely pointed out and we have included this in our limitations 
section. Nevertheless, correlation of model predictions with neuropathology in most of the other 
cases provides a statistical basis by which to underscore the validity of our deep learning model. 
In summary, we believe that our labels are reflective of more than just the diagnostic 
idiosyncrasies of individual practitioners.  

Lastly, we would like to demonstrate to the reviewer our efforts to develop models based 
upon biospecimens. Thus, we trained two additional models using CSF biomarker 
measurements: (i) a “CSF-only” CatBoost classifier that took as input only scalar values of  Aβ 
amyloid, phosphorylated tau, and total tau and (ii) a “fusion CSF” model in which CNN-derived 
COG and ADD scores from MRI were used alongside CSF biomarkers. These models were 
developed using 195 subjects from the NACC dataset for whom CSF information was available 
within 6 months of MRI. Below, we present (a) ROC and PR curves for the COGNC task. The 
“CSF-only”  (red curves)  and “fusion CSF” (yellow curves) are shown in comparison to an 
MRI-only model (green) and a separate CatBoost model trained with only non-imaging clinical 
variables (blue). We also show (b) ROC and PR curves for the COGDE task. Notably, there were 
no individuals with nADD in the NACC dataset with CSF information available, thus precluding 
development of biomarker  models for ADD vs. nADD classification.



Based on these results, it appears that CSF-based modeling is approximately on par with the 
accuracy of clinical diagnoses. Given that our present work does not focus on biomarkers for AD 
diagnosis, we feel that CSF modeling may not fit within our overall narrative for this study. 
However, if the Reviewer feels that this would be a necessary adjunct to our work, we would be 
happy to include the above figure within the Supplement.  

Comment 5: Also, it is not clear why this comparison was not performed for AD vs nonAD, 
which would be a typical neurologist task.
Response 5: We appreciate the reviewer’s close reading of our work and their attention in noting 
the decision to not include a model-to-neurologist comparison of AD vs. non-AD diagnosis. This 
choice reflects differences in the model’s prediction process and the diagnostic simulation in 
which clinicians participated.  

As we described in the manuscript, both neurologists and the model received MRI scans and 
non-imaging features from 100 patients spread evenly across NC, MCI, AD, and non-AD 
categories. During neurologist review, all simulated patients were eligible to receive any of the 
four labels depending on the physician’s clinical impression. Conversely, during the deep 
learning model’s processing, only those patients who first received an internal label of dementia
were eligible for further assessment of AD vs. non-AD. The physicians’ diagnostic task was thus 
a “one-step” process, whereas the model’s classification was a “two-step” process which 
depended on separating out a sub-population of demented patients. Therefore, by the time of AD 
vs. non-AD classification, the model has honed in on a sub-population of persons, likely 
composed of distinct cases than those identified by the neurologist. For this task, then, the 
algorithm and the clinicians are operating on different sets of persons, thus eliminating the 
possibility of a “fair” head-to-head comparison. We have noted this within our updated Methods 
within the “Head-to-head comparison with clinicians” and write as follows:

“Notably, the model was not directly compared to neurologists for the task of 
ADD versus nADD discrimination, given that our framework only performs this 
prediction on patients internally-identified as demented. Given this computational 
pre-selection, it was impossible to consistently compare a common cohort of 
patients with neurologists who also must perform a differential diagnosis of NC, 
MCI, AD, and nADD.” 

Nevertheless, we did feel it important to provide some grounding by which readers can compare 
our deep learning framework with clinician performance for AD vs. nonAD diagnosis. As such, 
for both the model and neurologists, we have provided the sensitivity, specificity, F-1 score, and 
MCC for detecting each disease class within Table S5. We hope that these metrics will allow 
direct comparison where ROC and PR curves could not.  

Comment 6: Classification of dementia vs non-dementia: A dementia diagnosis is determined 
based on low performance on neuropsychological tests scores and the MMSE, as such it is not a 
surprise that these perform highly accurate (since the tests are part of the diagnosis). A more 
difficult and relevant task would be to tease apart the AD vs nonAD dementias, and indeed this is 
reflected by the model performance. It is not so clear, however, why nonAD dementias are all 
put into 1 group? Do the authors expect that differences with AD in terms of symptoms and 
atrophy patterns are the same for FTD and DLB patients? 



Response 6: We appreciate the reviewer’s careful consideration of the variables used within 
model development and their role within the differential diagnosis of dementia. We would like to 
note, however, that the essential focus of our work is the specific identification of AD amidst 
potential confounding diagnoses. Certainly, we do not expect that frontal and temporal lobar 
changes present in FTD would be shared in a subcortical dementia such as DLB or Parkinson’s 
dementia. However, given that our approach was still geared towards the discrimination of AD 
from other dementia syndromes, we still felt it appropriate within our main analysis to group 
non-AD dementias as a singular entity. Indeed, we feel that the temporo-parietal changes within 
AD would be likely to distinguish it from non-AD dementias. We have also acknowledged our 
reasoning for grouping together nADDs as a singular entity as a deliberate decision within our 
Methods section as follows: 

“Notably, we elected to conglomerate all nADD subtypes into a singular label 
given that subdividing model training across an arbitrary number of prediction 
tasks ran the risk of diluting overall diagnostic accuracy.” 

However, we fully agree with the reviewer that the atrophy patterns and symptoms across 
various types of dementia are different. Thus, we systematically conducted several sub-group 
analyses on AD versus each non-AD type of dementia. Firstly, we present the classification 
performance between AD and each other type of dementia in Figures S1-S2. Secondly, we also 
conducted the subgroup analyses based on the interpretable SHAP heatmaps. In Figure S8, we 
generated similar violin plots as Figure 4c to make direct comparison on the atrophy patterns 
between AD and each of the non-AD dementia types, including vascular dementia, 
frontotemporal lobe dementia, Lewy body dementia (which is a combination of the Parkinson 
disease dementia and dementia with Lewy bodies).  

Comment 7: How was non-imaging data pooled, there is mention of NACC and OASIS-3 
following Uniform Data Set guidelines), but how do the other cohorts fit in?  
Response 7: Our consideration of which cohorts to use for development on non-imaging models 
was informed by a) data standardization protocols and b) data availability. In terms of 
standardization of non-imaging variables, we note that both NACC and OASIS-3 follow 
Uniform Dataset (UDS) guidelines [1]. Therefore, non-imaging variables derived from these 
datasets may already be considered as harmonized given that their definition and collection 
follows identical protocols.  

Our consideration of which cohorts to use for development on non-imaging models was 
informed by a) data standardization protocols and b) data availability. In terms of standardization 
of non-imaging variables, we note that both NACC and OASIS-3 follow Uniform Dataset (UDS) 
guidelines [1]. Therefore, non-imaging variables derived from these datasets may already be 
considered as harmonized given that their definition and collection follows identical protocols. 
Furthermore, we note that non-imaging variables had considerably less availability or the data 
was not collected in a comparable manner in the ADNI, AIBL, FHS, NIFD, PPMI, and LBDSU. 
We completed a survey of the available non-imaging data in each of the 8 cohorts (See File: 
Data_Harmonization_Table.xlsx). Clinical testing has evolved over the years and thus, although 
ADNI, AIBL, FHS, and NIFD studies may collect comparable data in similar clinical domains, 
direct comparisons may not be feasible. To demonstrate this, we have now included an additional 
Supplementary Figure S12 which shows the availability of all non-imaging variables across the 



dataset. Due to the significant differences between the cohorts regarding non-imaging 
information, we were limited in our ability to develop and test non-imaging models in these 
populations without resorting to excessive feature imputation.

[1] Monsell SE, Dodge HH, Zhou XH, et al. Results From the NACC Uniform Data Set 
Neuropsychological Battery Crosswalk Study. Alzheimer Dis Assoc Disord. 2016;30(2):134-139. 
doi:10.1097/WAD.0000000000000111

Comment 8: How were MRI scans harmonised across cohorts? It is not clear whether all MRIs 
were processed again using the same pipeline. This still leaves other cohort specific effects (e.g., 
differences in scanning protocol, magnetic field strength etc.).
Response 8: All MRIs were harmonized according to the common FSL pipeline described within 
our Methods section.  We have adjusted the description of this pipeline within our Methods to 
highlight the fact that it was applied identically to all cohorts. Specifically, we now state:  

“To harmonize neuroimaging data between cohorts, we developed a pipeline of 
preprocessing operations (Fig. S11) that was applied in identical fashion to all 
MRIs used in our study.” 

Furthermore, based on the reviewer’s helpful feedback, we have taken steps to rule out cohort-, 
site-, and scanner-specific biases both within our processed training data and the hidden layers of 
our trained models. Specifically, we now include a series of t-distributed Stochastic Neighbor 
Embedding (tSNE) plots drive from both downsampled (8x) MRI data and hidden-layer 
embeddings within our CNN to rule-out systematic biases due to a) study cohort (e.g. NACC, 
ADNI, etc.) b) specific NACC Alzheimer’s Disease Research Center (ADRC) and c) MRI 
scanner manufacturer. We have elected to include these plots as a separate figure within our 
main manuscript (revised Figure 2). The graphic of this figure may be found at the end of this 
response, and we describe the subsections as follows:  

● Figure 2a. MRI tSNE by Cohort: This figure demonstrates 2D tSNE embeddings of 8x-
downsampled MRIs. Each datapoint is colored by its overall cohort label. No discernible 
clustering is observed, indicating that raw imaging data likely did not differ 
systematically between our training set and various testing sets.  

● Figure 2b. MRI tSNE by ADC Site: MRI tSNE by ADRC Site: This figure demonstrates 
2D tSNE embeddings of 8x-downsampled MRIs. Each data point is colored according to 
its unique ADRC ID. No discernible clustering is observed based on specific ADRC, thus 
indicating that imaging data within our NACC training cohort is unlikely to have site-
specific biases 

● Figure 2c. MRI tSNE by MRI Manufacturer: This figure demonstrates 2D tSNE 
embeddings of 8x-downsampled MRIs from the NACC dataset. Each data point is 
colored according to the brand of the MRI scanner-either Philips, GE, or Siemens. No 
discernible clustering is observed based on specific companies. Therefore, imaging data 
within our training cohort is unlikely to have systematic biases due to differing 
manufacturers. 

● Figure 2d. Hidden Layer tSNE by Cohort Label: This figure demonstrates 2D tSNE 
embeddings derived from the penultimate hidden layer of our CNN model. Each 



datapoint is colored according to its overall cohort label. While there is notable clustering 
among NACC data points, we note that this pattern did not extend to external validation 
datasets. This likely indicates that cohort-specific biases did not affect validation 
performance.  

● Figure 2e. Hidden Layer tSNE by ADRC ID: This figure demonstrates 2D tSNE 
embeddings derived from the penultimate hidden layer of our CNN model for NACC 
scans. Each data point is colored according to the corresponding ADRC ID, and there is 
no specific clustering observed on this basis. Therefore, we conclude that our model did 
not learn site-specific information while training.  

● Figure 2f. Hidden Layer tSNE by MRI Manufacturer: This figure demonstrates 2D tSNE 
embeddings derived from the penultimate hidden layer of our CNN model when trained 
with NACC data. Each data point is colored according to the brand of the MRI scanner-
either Philips, GE, or Siemens. No discernible clustering is observed based on specific 
companies. Therefore, our clinical model’s predictions were unlikely to have been unduly 
influenced by systematic differences in MRI instruments. 

Overall, we believe that our use of tSNE on both raw data and internal model representations 
helps us to conclude neither our post processed MRIs nor our model predictions were 
significantly affected by differences in scanning protocol, magnetic field strength, or other 
imaging parameters that could have biased our prediction tasks.  

Lastly, in addition to our tSNE conclusions above, we calculated Mutual Information Scores 
(MIS) between diagnostic labels, scanner brand, and ADRC ID. The MIS measures the similarity 
between two labels on the same dataset. Values of 1 indicate perfect concordance between two 
sets of label assignments, whereas values of 0 indicate random association between these sets. 
For the relationship of scanner brand to diagnostic label, we found a MIS of 0.010. For the 
relationship of ADRC ID to the diagnostic label, we found a MIS of 0.065. These values indicate 
near-randomness of association between diagnoses, scanner, and clinical site. We feel that this 
result strongly evidences a null association between the potential confounders noted by the 
reviewer and our outcomes of interest. We report our MIS values in the Results section of our 
manuscript. Lastly within Figure 2g and Figure 2h, we illustrate counts of diagnostic labels 
stratified by scanner brand and ADRC ID, respectively. We hope that these subfigures, like our 
tSNE plots, will help readers to appreciate a lack of confounding relationships.  





Comment 9: How were cohort-specific missing data dealt with? E.g., APOE is missing in the 
parkinson and frontotemporal dementia cohorts. As such, based on the presence of APOE alone 
it would already be possible to predict AD vs nonAD dementia almost perfectly.
Response 9: We appreciate the reviewer’s careful consideration of the potential for biasing 
cohort-specific data. Certainly, we too foresaw the potential for asymmetry in variable selection 
to falsely confer inflated testing accuracy; as such, we only utilized non-imaging variables which 
were common to the NACC and OASIS-3 datasets. APOE was only included within our 
demographic table for the purposes of presenting cohort characteristics. We apologize that a 
fuller explanation of non-imaging variable selection was not included, and have now explicitly 
addressed this aspect of our modeling approach within the Methods section, with a sentence that 
reads as follows:  

“In addition to an MRI-only model, we developed a range of traditional machine 
learning classifiers using all available non-imaging variables shared between the 
NACC and the OASIS datasets.” 

Comment 10: Fig4d :It would be helpful to see scatterplots of the probabilities vs the A, B and C 
scores, preferably with colors or symbols that indicate the cohort.  
Response 10: In addition to the map included in Figure 4d, we provided a swarmplot 
demonstrating COG scores (i.e., dementia probabilities) derived from the model as a function of 
A, B, and C scores. We note that triangular, circular, and rectangular markers are supplied in this 
figure to indicate the cohort from which an individual datapoint is derived.  

Comment 11: Table 1: Please indicate n with pathologically confirmed diagnosis; 
I find it hard to believe that AIBL has no data available about educational level, have the authors 
applied for AIBL data directly from the AIBL website, or was this through e.g., GAAIN?  
Response 11: We thank the reviewer for their helpful suggestion. Unfortunately, all diagnostic 
labels were clinically-determined rather than pathologically. Additionally, we indeed applied 
from GAAIN, and therefore we did not obtain educational data by applying directly to AIBL.  

Comment 12: The missing data seems to be related directly to AD vs nonAD diagnosis, for e.g., 
APOE is unavailable for nonAD cohorts. How was missing data handled in the model? 
Response 12: We agree with the reviewer that there are systematic differences in data availability 
between cohorts, and we have now elected to demonstrate this graphically in Fig. S12. However, 
as we note above, we only compared non-imaging and fusion models in NACC and OASIS-3. 
Missing data in non-AD cohorts (PPMI, NIFD, LBDSU) therefore played no role in biasing 
model predictions, as non-imaging data from these sources was not used in our work. In the case 
of APOE, we report this genotype only for demographic purposes and do not include it as a 
feature in any of our models.  

In both the NACC and OASIS studies, missing non-imaging data was simulated with the k-
nearest neighbor (kNN) feature imputation method provided from the Scikit Learn package with 
default settings. Of note, kNN imputation was in no way dependent on disease label, and we 
therefore feel this procedure was unlikely to have biased disease predictions in either of these 
datasets as well.  



Reviewer #2: 

Comment 1: This manuscript has looked at a combination of datasets consisting of more than 
8,000 patients with dementia symptoms and sought to differentiate Alzheimer's disease diagnosis 
from other dementia causing disorders. The manuscript has performed in-depth analysis, with 
several layers of validation, including technical, clinical, and neuropathological. There are many 
similar studies using machine learning methods in the literature; therefore, while this study 
confirms previous studies, it brings extra validation and new insights by combining data sets at 
much larger scales than previous studies and with several different modalities (as mentioned 
above). I therefore believe this study is highly novel. The methods are clearly reported and 
meticulously designed.  
Response 1: We greatly appreciate the reviewer for providing a nice summary of our manuscript, 
and for noting that our manuscript is highly novel, and the methods were clearly reported and 
meticulously designed. We are grateful for the reviewer’s appreciation that our manuscript has 
performed an in-depth analysis with several layers of validation. 

Comment 2: It was unclear how the external validation data set was chosen to report AUC. The 
manuscript mentions splitting the dataset into folds, but the explanation is vague in reporting 
results. Is it an average across folds? Did the manuscript choose an external validation data set 
from the beginning to prevent bias? Related to the point above, it remains unclear how reporting 
AUC, and other metrics are independent of tuning and training models.
Response 2: We thank the reviewer for the opportunity to clarify this point. During the course of 
training, we attempted various groupings of hyperparameters. For each, we utilized 5-fold cross 
validation using the NACC dataset for development. In each iteration of cross-validation, we 
utilized 3 folds for model training, 1-fold for selection of the optimal performance epoch, and 1-
fold for testing of the model at the selected epoch. In addition to the hold-out test fold from 
NACC, the selected model was also tested on our external cohorts. Our overall training process 
is summarized graphically in Fig. S13. In our manuscript, we report mean, standard deviation, 
and 95% confidence intervals of all performance metrics (including AUC) across these five 
folds. To minimize confusion, we have also added an additional sentence within our Methods 
section to describe our cross-validation strategy, which now reads:  

“We trained all models on the NACC dataset using cross validation. NACC was 
randomly divided into 5 folds of equal size with constant ratios of NC, MCI, AD, 
and nADD cases. We trained the model on 3 of the 5 folds and used the remaining 
two folds for validation and testing, respectively. Each tuned model was also 
tested on the full set of available cases from external datasets. Performance 
metrics for all models were reported as a mean across five folds of cross 
validation along with standard deviations and 95% confident intervals. A 
graphical summary of our cross-validation strategy may be found within Fig. 
S13.”  

Comment 3: The network analysis is not motivated enough and feels separated from the rest of 
the work. 
Response 4: We appreciate the reviewer’s concern in this regard. We agree that the certain 
network analyses may be reasonably viewed as orthogonal to the overall aim of our work. 



Specifically, we feel that this is particularly true of the text-based network currently presented in 
our original submission as Figures 5c and 5d. To this end, we have elected to remove these 
figures from our paper.   

Conversely, we do believe that the network analysis originally included as Figures 3d and 3e 
presents useful information regarding global differences in SHAP scoring (and thus, model 
inference) between AD and non-AD populations. Therefore, we hope to keep this aspect of our 
work in the main body of the manuscript, and have presented them within our updated Figure 4d 
and 4e.  

Comment 4: Can the manuscript discuss the utility of the model in a real-world setting? The 
quality of real-world data is likely to differ from research data and may benefit from the 
discussion for deployment in future. 
Response 4: The reviewer insightfully notes that clinical translation of an academic model is 
likely to encounter challenges, and we are happy to expand upon this aspect. Ultimately, we hope 
that this paper will serve as an exemplary study from which to start prospective testing of 
automated systems in dementia diagnosis. Therefore, we have now included the following within 
the Discussion section: 

“Our work builds on prior efforts to construct automated systems for the 
diagnosis of dementia. Previously, we developed and externally validated an 
interpretable deep learning approach to classify AD using multimodal inputs of 
MRI and clinical variables.17 This approach relied on a contrived scenario of 
discriminating individuals into binary outcomes, which simplified the complexity 
of a real-world setting. Our current work extends this framework by mimicking a 
memory clinic setting that accounts for cases along the entire cognitive spectrum. 
Though numerous groups have taken on the challenge of nADD diagnosis using 
deep learning,18,19,26-28 even these tasks were constructed as simple binary 
classifications between disease subtypes. Given that the clinical practice of 
medicine rarely reduces to a choice between two pathologies, integrated models 
with the capability to more fully replicate the differential diagnosis process of 
experts are needed before deep learning models can be touted as assistive tools 
for clinical-decision support. Our results demonstrate a strategy for expanding 
the scope of diagnostic tasks using deep learning, while also ensuring that the 
predictions of automated systems remain grounded in established medical 
knowledge.” 

Functionally, we also contend that the flexibility of inputs afforded by our 
approach is a necessary precursor to clinical adoption at multiple stages of 
dementia. Given that subgroup analyses suggested significant 4-way diagnostic 
capacity on multiple combinations of training data (i.e., demographics, clinical 
variables, and neuropsychological tests), our overall framework is likely 
adaptable to many variations of clinical practice without requiring providers to 
significantly alter their typical workflows. For example, general practitioners 
(GPs) frequently perform cognitive screening with or without directly ordering 
MRI tests, whereas memory specialists typically expand testing batteries to 
include imaging and advanced neuropsychological testing. This ability to 



integrate along the clinical care continuum, from primary to tertiary care allows 
our deep learning solution to address a two-tiered problem within integrated 
dementia care by providing a tool for both screening and downstream diagnosis. 

Comment 5: I suggest changing the labels in the figure to spell out the full words for readability. 
Response 5: We thank the reviewer for suggesting this as an improvement. We have now made 
sure to fully list all abbreviated terms in figure captions in our revised manuscript. 

Comment 6: Please report the confidence intervals for AUC measures in the results. 
Response 6: We share the reviewer’s opinion that reporting of confidence intervals improves the 
strength of our results. 95% confidence intervals are now included with all AUC and AP 
measures. 

Comment 7: Do MRI data need harmonizations? There is a mention of harmonizing clinical data 
but not imaging. How can the effects of centers be adjusted for? 
Response 7: We indeed took steps to harmonize imaging data using a common FSL pipeline 
described within our Methods section and illustrated in Figure S11. Steps of this process 
included standardization of MRI studies to standard MNI-152 space and applying bias field 
corrections. We also shared the reviewer’s concern that “effects of centers” must be excluded as 
biasing factors in our analysis. Therefore, we have now included a series of tSNE plots as an 
additional figure (Figure 2) within our main manuscript to exclude systematic biases in raw data 
and internal network representations alike. A full discussion of this figure and its corresponding 
subplots may be found in Response 8 to Reviewer 1 above, and we feel that these analyses 
effectively rule-out cohort-, site-, and scanner-specific biases for disease prediction tasks. 
Similarly, we note that additional description of our MRI harmonization pipeline has been added 
to our revised Methods, with specific wording that may once again be found in Response 8 to 
Reviewer 1.  

Comment 8: It seems some disorders are likely to be drawn from specific data sets only (e.g., 
FTD). I wonder whether this may introduce bias in results (mixing effects of interest with 
confounders). 
Response 8: We thank the reviewer for noting this potential bias, and for the opportunity to 
address this important concern. Following from our results referenced above, we note that our 
new Figure 2a and Figure 2d illustrate a lack of tSNE clustering based on specific cohorts. The 
absence of cohort-specific aggregations extends to both MRI data and hidden layer activations 
within our deep learning framework, thus indicating that raw input data and learned 
representations of disease state were unbiased by dataset-specific effects.  

Furthermore, in the development of all non-imaging models, we made sure to only use 
variables that were shared between NACC and OASIS-3. Similarly, to our efforts in harmonizing 
MRI data, we feel that this approach allowed us to avoid dataset-specific variables that a model 
could unfairly use for inferring classification labels.  



Reviewer #3: 

Comment 1: Qiu et al presented deep learning models trained from clinical information and brain 
MRI to perform 3 classification tasks: 1) cognitively normal individuals vs cognitively impaired 
individuals (COGnc), 2) patients with dementia vs individuals without dementia (COGde), 3) 
Alzheimer’s disease (AD) dementia cases vs non-AD dementia cases (AD vs non-ADD). For 
each task, the authors trained models with 3 different combinations of features: 1) MRI only, 2) 
non-imaging features only, 3) a “fusion” model that included both MRI and non-imaging 
features. The authors also presented “neuroimaging signatures' ' of AD and non-AD dementia via 
feature interpretation of brain regions that were implicated in the AD vs non-ADD task. The 
authors investigated correlations between their models’ predictions and AD neuropathology. 
Finally, the authors compared the performance of their models against the diagnostic accuracy of 
neurologists and neuroradiologists. The authors presented a very dense manuscript with lots of 
material. The comparisons between their models and the clinicians were particularly interesting, 
and this aspect of the paper will likely draw in a wide readership. I have some comments for the 
authors that are aimed at clarifying their results and improving the readability of their 
manuscript. 
Response 1: We thank the reviewer for nicely summarizing our work, and for noting that the task 
related to model comparison with the clinicians will likely draw in a wide readership. We also 
appreciate the reviewer for their comments to improve the readability of our manuscript.

Comment 2: The results section was quite hard to follow. A lot of core ideas/terms are presented 
without enough context or explanation in this section. I had to jump back and forth between the 
methods and supplementary information sections a lot to understand the results. I get the 
impression that the authors may have originally structured the paper with the methods section 
presented before the results section. If the results are to be presented before the methods (as in 
the current form), it would be helpful to readers if the authors could briefly define their tasks 
(e.g. COGnc, COGde, COG-3way, etc) and models (e.g. MRI-only, fusion, etc) and indicate 
which datasets were used for training and testing in a short summary paragraph at the beginning 
of the results section. In its current shape, the results don’t stand alone as its own section without 
the reader being required to read the methods section first.
Response 2: We thank the reader for helpful suggestions which will help to improve the 
readability of our work. We have made extensive revisions to our Results section which include 
an initial “Overview” section that introduces our models, tasks, and general training strategy. In 
addition, we have also organized a glossary of terms that will assist readers with the terminology 
we make use of in our paper. This reference may be found as Box 1 within the Results section of 
our revised manuscript, and is included for the Reviewer’s convenience below: 



Comment 3: Can the authors expand Supplementary Table S8 to include the counts of AD and 
Parkinson’s disease dementia (PDD) cases? The authors looked at PDD as part of their nADD 
subgroup analyses (for example in Supplementary Figures S1 and S2), but it’s not described 
which datasets contain PDD or how many cases of PDD there were in each dataset.
Response 3: We thank the reviewer for this helpful suggestion, which will help to improve the 
transparency of our methods. We have now expanded our Supplementary Table S8 (now 
Supplementary Table S7) to include counts of PDD cases. These are included along with counts 
of Dementia with Lewy Bodies (DLB) cases, under the larger class of Lewy Body Dementia 
(LBD).  

Comment 4: The authors repeatedly claim throughout their manuscript that they used data from 8 
separate cohorts. This is slightly misleading because the majority of the datasets (ADNI, AIBL, 
PPMI, NIFD, LBDSU, FHS) were used only in validation for one model (MRI-only). While this 
is revealed in Supplementary Table S1 and Supplementary Figure S9, this should be stated more 
explicitly in the main text of the manuscript. 
Response 4: We agree that a more explicit acknowledgement of how datasets were used for 
validation would both enhance readability and dispel concerns about transparency. To this end, 

Box 1. Glossary of Terms

Diagnostic Tasks: 

COG task: Multiclass prediction of NC, MCI, and DE categories. May be further subdivided 

into the following subtasks: 

COGNC: The separation of persons with NC from those with MCI or DE. 

COGMCI: The separation of persons with MCI from those with NC or DE.

COGDE: The separation of persons with DE from those with NC or MCI.

ADD task: Separation of persons with AD from those with nADD given an initial diagnosis 

of DE. 

4-way task: Complete separation of NC, MCI, AD, and nADD cases. Accomplished by 

successive completion of the COG and ADD tasks. 

Model-Derived Cognitive Metrics 

DEMO score: “DEmentia MOdel” score. A continuous measure for overall cognitive status 

ranging from 0 (NC) to 1 (MCI) to 2 (DE). DEMO score thresholding enables completion of 

the COG task and its subtasks. 

ALZ score: “ALZheimer’s” score. A continuous measure from 0 (nADD) to 1 (AD) that 

corresponds with the probability that a person has Alzheimer’s disease dementia. ALZ 

score thresholding enables completion of the ADD task. 

Model Types: 

MRI-only model: A convolutional neural network (CNN) that uses MRI scans and no other 

information to complete the COG and ADD tasks. 

Non-imaging model: A traditional machine learning classifier that uses demographics, past 

medical history, neuropsychological testing, and functional assessments to complete the 

COG and ADD tasks. 

Fusion model: A hybrid model composed of a CNN linked to a CatBoost classifier. The 

CNN portion computes DEMO and ALZ scores from MRI which are concatenated with 

non-imaging clinical variables. The CatBoost model then successively completes COG and 

ADD tasks.



we have adjusted the manuscript to reflect a more precise specification of the fact that OASIS 
was the only external cohort used for fusion model validation, whereas the “full” 8-cohort 
collection was available for MRI model validation. In our Methods section, under the description 
of each model and its development, we now explicitly state which datasets were used for training 
and external testing. For our MRI-only model, this reads:  

The MRI-only model was trained using the NACC dataset and validated on all the 
other cohorts. To facilitate presentation of results, we pooled data from all the 
external cohorts (ADNI, AIBL, FHS, LBDSU, NIFD, OASIS and PPMI), and 
computed all the model performance metrics. 

For our non-imaging model, we state:  

In addition to an MRI-only model, we developed a range of traditional machine 
learning classifiers using all available non-imaging variables shared between the 
NACC and the OASIS datasets.  

For our fusion model, we state:  

As with our non-imaging model, development and validation of fusion models was 
limited to NACC and OASIS only given limited availability of non-imaging data in 
other cohorts.  

Comment 5: Can the authors please clarify the caption of Figure 2? Are each of the rows in (a) 
and (b) representing results from the fusion models? The caption also states that (b) contains 
results for external datasets that include ones that were only used for the MRI-only model 
validation - so this simply cannot be correct for the top row, the COGnc task, because the caption 
says it is the fusion model.
Response 5: Indeed, as the reviewer points out, each row in this figure corresponds to fusion 
models. Furthermore, we regrettably acknowledge that the caption refers to all external datasets 
when the result in actuality corresponds only to OASIS. We thank the reviewer for their close 
reading, which has now allowed us to correct this error. The caption of the new figure (now 
updated as Figure 3) will read as follows: 

Figure 3: Fusion model performance. (a-b) The receiver operating 
characteristic (ROC) curves showing the true positive rate versus the false 
positive rate and the precision-recall (PR) curves showing the positive predictive 
value versus sensitivity on the (a) the National Alzheimer’s Coordinating Center 
(NACC) test set and (b) OASIS external validation set, respectively. The first 
row in (a) and (b) denotes the performance of the fusion model (CNN + 
CatBoost) on the COGNC task. The second row shows ROC and PR curves for 
the COGDE task. The third row illustrates model performance for the 
classification task focused on discriminating Alzheimer’s disease dementia (ADD) 
from dementia cases with other etiologies (nADD). For each curve, the mean area 
under the curve (AUC) was computed. In each plot, the mean ROC/PR curve and 
the standard deviation are shown as the bold line and shaded region, respectively. 



The dotted lines in each plot indicate the classifier with the random performance 
level. (c-d) Fifteen features with highest mean absolute SHAP values from the 
fusion model are shown for the COG and ADD tasks, respectively. For each of 
these tasks, the MRI scans, demographic information, medical history, functional 
assessments, and neuropsychological test results were used as inputs to the deep 
learning model. The left plots in (c) and (d) illustrate the distribution of SHAP 
values and the right plots show the mean absolute SHAP values. All the plots in 
(c) and (d) are organized in decreasing order of mean absolute SHAP values. (e-
f) For comparison, we also constructed traditional machine learning models to 
predict cognitive status and ADD status using the same set of features used for the 
deep learning model, and the results are presented in (e) and (f), respectively. The 
heat maps show fifteen features with the highest mean absolute SHAP values 
obtained for each model. 

Comment 6: The authors state on lines 213-215, “On visual inspection of the individual case, 
there was notable similarity between areas of high SHAP scores for the COG 3-way task and 
region-specific semiquantitative neuropathological scores obtained from autopsy”. What is 
considered “notable similarity”? For example, I see a lot of differences between the distribution 
of the SHAP values and the neuropathological scores among the parietal and frontal lobes of the 
brain.
Response 6: We share the reviewer’s view that “notable [visual] similarity” is a subjective 
standard by which to judge correlation between our deep learning predictions and 
neuropathology data. To this end, we have removed this remark from our Results section and 
instead focus on the remainder of our statistical analysis (i.e., Pearson correlations and ANOVA 
with Tukey-Kramer testing). 

Comment 7: Since the neurologists and neuroradiologists were asked to perform different tasks 
(neurologists did the COGnc and COGde tasks, while the neuroradiologists did the AD vs nADD 
task), and they were provided different data (the neuroradiologists only received MRI, age and 
gender, while the neurologists also received information from clinical assessments), the text-
based analysis seems biased so that the clustering would inherently result in the separation of the 
two types of clinicians. Because of these confounding factors, I’m not convinced that this 
analysis revealed patterns that were truly distinct to each of these clinicians’ expertise as the 
authors suggest in lines 252-259.
Response 7: We agree that the differing tasks given to clinicians may introduce bias in textual 
analysis. Upon much discussion since our initial submission, we have elected to remove all text-
based analyses from this manuscript.  

Comment 8: Figure 4a is missing the scale for SHAP value.
Response 8: We thank the reviewer for noting this important detail. We have included a SHAP 
scale in our former Figure 4a (now revised Figure 5a).  

Comment 9: Is PET imaging of amyloid or quantifying amyloid or tau by CSF a part of the 
standard of care for clinicians who specialize in dementia? There are studies that have shown 
that clinicians’ diagnoses or subsequent care management can change after receiving information 
about a patient’s amyloid status (see Rabinovici et al 2019 JAMA 



https://jamanetwork.com/journals/jama/fullarticle/2729371, for example). How do the authors 
think the lack of information regarding amyloid may have impacted the diagnostic accuracy of 
the clinicians in their study?  
Response 9: We thank the reviewer for sharing this fascinating article from Rabinovici and 
colleagues demonstrating changes in patient management after amyloid PET. This work was 
conducted as part of the Imaging Dementia-Evidence for Amyloid Scanning (IDEAS) study, 
which is a research initiative to assess the impact of PET scans on AD care and outcomes.  
To our knowledge, however, neither PET imaging nor quantification of CSF markers are part of 
standard of care for AD diagnosis outside of research settings. Recently, a consensus of the 
Amyloid Imaging Task Force, the Society of Nuclear Medicine, and the Alzheimer’s Association 
concluded that amyloid imaging is not appropriate for patients meeting core clinical criteria for 
probable AD with a typical age of onset [1]. Furthermore, the most recent National Institute on 
Aging/Alzheimer’s Association diagnostic guidelines for Alzheimer’s diagnosis explicitly do not 
advocate the use of biomarkers such as CSF tau [2]. The lack of endorsement for biomarkers 
stems from several factors, including the limited availability of these studies in community 
settings, evidence of insufficient standardization of measurements between locales, and the 
strong performance of clinical criteria for diagnosis. Therefore, we believe that the lack of 
amyloid markers (either from PET or CSF) played little or no role in impacting the diagnostic 
accuracy of clinicians, as most of the trained neurologists and neuroradiologists participating in 
our study practice without this information in most suspected dementia cases.  

[1] Johnson, Keith A., et al. "Appropriate use criteria for amyloid PET: a report of the Amyloid 
Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the 
Alzheimer's Association." Alzheimer's & Dementia 9.1 (2013): E1-E16. 

[2] McKhann, Guy M., et al. "The diagnosis of dementia due to Alzheimer's disease: 
recommendations from the National Institute on Aging‐Alzheimer's Association workgroups on 
diagnostic guidelines for Alzheimer's disease." Alzheimer's & dementia 7.3 (2011): 263-269. 



Reviewer #4: 

Comment 1: This is a well-designed study presenting a novel deep learning framework able to 
differentiate normal cognition, MCI, Alzheimer’s disease and other dementias leveraging on a 
large multi-study cohort. The study reports superior performance for the developed framework 
compared to experienced radiographers and radiologists. One of the main advantages of the 
study is that a comprehensive evaluation of the cases by neurologists and neuroradiologists is 
reported and was used for comparisons. Four categories were classified: normal cognition, MCI, 
AD, non-AD dementia. Two tasks were evaluated first was cognition based on MRI – 3 class and 
then given dementia, AD or non-AD. Results are interpretable due to the use of SHAP. Overall 
conclusions are supported by the presented data.
Response 1: We sincerely thank the reviewer for noting that our study was well-designed and 
that we presented a novel deep learning framework. We also appreciate the reviewer for 
recognizing the value and advantages of our work.  

Comment 2: It appears the authors have relied on normalisation to MNI space as a step for 
harmonization however, this might not be enough. Methods such as ComBat (Fortin et al. 2018 ) 
have been developed and applied for multi-site data harmonisation. This would be particularly 
important since it needs to be ruled out that the observed performance might be driven partly by 
site differences.
Response 2: We thank the reviewer for sharing the concern on MRI harmonization across 
multiple cohorts and suggesting the ComBat method to further reduce the effect of site/scanner 
difference. Fortin et al. demonstrated that the ComBat method is essential and vital to remove 
scanner effects in brain MRI radiomic study. However, in our study, we didn’t use any radiomic-
level features, for example, cortical thickness, as inputs to the model. To our best knowledge, the 
ComBat method is not suitable to harmonize the raw image modality.  

The major variance of MRI scans comes from various voxel intensity distribution and 
geometric alignment. The intensities of voxels in MRI don’t have clear physical meaning and 
thus make it intractable to compare 2 MRIs. Unifying the intensity of white matter, gray matter 
and cerebrospinal fluid to the same reference scan and removing the background noise thus 
became a critical step when processing MRIs collected with different scanners and from multiple 
cohorts. The skull removal step removed all background signals and set all background voxels to 
value zero. Then the FAST [1] approach from FSL was used to adjust the contrast across 
different tissue types and correct spatial intensity variation (i.e., bias-field). After the FAST step, 
a final z-score normalization was applied to eliminate the global intensity bias. The geometric 
variance was unified using a set of registration steps which were discussed in the Methods 
section in detail. Furthermore, in our response to subsequent comments from the reviewer, we 
demonstrate clustering analyses that we feel exclude the influence of site differences (see 
Response 3 below).  

[1]: Zhang, Y. and Brady, M. and Smith, S. Segmentation of brain MR images through a hidden 
Markov random field model and the expectation-maximization algorithm. IEEE Trans Med 
Imag, 20(1):45-57, 2001. 

[2]: Li, Yingping, et al. "Impact of Preprocessing and Harmonization Methods on the Removal 
of Scanner Effects in Brain MRI Radiomic Features." Cancers 13.12 (2021): 3000.



Comment 3: Though in figure SF11 the authors demonstrate no clear clustering, they should also 
demonstrate that the deep learning scheme is not sensitive to study/site effects. Hence, I suggest 
a further exploratory analysis where study ID will be included as a feature in the applied machine 
learning pipelines, especially when imaging data are included. 
Response 3: We thank the reviewer for well-thought questions into whether cohort-specific 
information is unduly informing model predictions. We felt that it was critical in our work to 
include a comprehensive set of analyses aimed at excluding site-, cohort-, and scanner-specific 
biases in our overall training pipeline. Similarly, we believe it is important to exclude the 
possibility that the deep learning model is unduly learning confounding signatures instead of 
useful, disease-specific information. Therefore, we have expanded our tSNE analysis to include 
both raw MRIs and hidden layer activations from the penultimate layer of our CNN. We felt that 
this was important enough to be included as its own fig 
ure within the main manuscript; we now include three separate tSNE plots colored by i) cohort 
label ii) NACC ADRC ID and iii) scanner manufacturer. Further details may be found in 
Response 8 to Reviewer 1 within this document, and we also kindly ask the reviewer to see our 
updated Figure 2 with all tSNE plots on raw scans and hidden layer values alike. Overall, we 
have found that the sort of exploratory analysis suggested by the reviewer has yielded strong 
evidence that our deep learning model did not learn study or site effects, but rather kept its 
predictions to the clinical outcomes in question.   
        We also thank the reviewer for suggesting including the study ID as a non-imaging feature. 
We want to mention that the model was trained solely on the NACC cohort and tested on other 
cohorts. If study ID was included as a feature, the feature value within the training set will only 
contain a constant entity value, i.e., NACC. It is also difficult for the model to generalize well on 
the never seen cohorts IDs during the testing stages.    

Comment 4: Line 42: There is a discordance in the number of regions reported here and in the 
caption of figure 3 (95 vs 57). 
Response 4: We apologize for the confusion regarding this mismatch. To clarify, there are a total 
of 95 regions in the brain atlas that we used in this study. This corresponds to the number of 
regions used for graphical analysis of regional SHAP values with Pearson correlations. In Figure 
4d-4e, we presented the networks of brain regions, where nodes represent regions and edges 
represent correlation between nodes, in both axial and sagittal projections. Because projecting a 
3D structure into a plane causes nodes to overlap, we selectively presented some of the regions 
(nodes) in each view. In the sagittal view, we focused on visualizing the correlation between the 
temporal lobe, frontal lobe, parietal lobe, occipital lobe, cerebellum, and brainstem. More 
specifically, we merged the same structures from the left and right hemisphere as a single node 
in the sagittal projection, thus ending up with a total of 33 final nodes as defined in the Table S5. 
In the axial view, we excluded some of the structures that have been already shown in the sagittal 
view, for example, insula, the third ventricle etc. The focus of the axial view is to reveal the 
correlation between cerebrum structures from the left and right hemispheres. Our selection of the 
axial nodes yielded a total 57 regions as defined in the Table S9. We have clarified the region 
definitions in both the figure captions and the method section and thus resolved the discordance. 
Specifically, our updated Figure caption for this plot now contains the following:  



Comment 5: Line 94: It is unclear what imaging data have gone in the models 
Response 5: We apologize for confusion regarding the input imaging data to our models. We 
adjusted the Methods section so that readers can clearly identify the input for each model. 
Overall, volumetric MRIs preprocessed according to our harmonization protocol (see Methods 
and Fig. S11) were sent into the 3D convolutional neural network. No other imaging data was 
used. 

Comment 6: Lines 142-144. More details are needed about the manual alignment step in order 
for it to be reproducible.
Response 6: We appreciate the opportunity to provide further information about our MRI 
preprocessing pipeline. We have now adjusted our Methods section with an updated description, 
which reads as follows: 

“To harmonize neuroimaging data between cohorts, we developed a pipeline of 
preprocessing operations (Fig. S11) that was applied in identical fashion to all MRIs 
used in our study. This pipeline broadly consisted of two phases of registration to a 
standard MNI-152 template. We describe Phase 1 as follows: 
 Scan axes were reconfigured to match the standard orientation of MNI-152 

space.  
 Using an automated thresholding technique, a 3D volume-of-interest within the 

original MRI was identified containing only areas with brain tissue. 
 The volume-of-interest was skull-stripped to isolate brain pixels.  



 A preliminary linear registration of the skull-stripped brain to a standard MNI-
152 template was performed. This step approximated a linear transformation 
matrix from the original MRI space to the MNI-152 space. 

Phase 2 was designed to fine-tune the quality of linear registration and parcellate the 
brain into discrete regions. These goals were accomplished by the following steps:  
 The transformation matrix computed from linear registration in Phase 1 was 

applied to the original MRI scan.  
 Skull stripping was once again performed after applying the linear registration 

computed from the initial volume of interest to isolate brain tissue from the full 
registered MRI scan. 

 Linear registration was applied again to alleviate any misalignments to MNI-152 
space. 

 Bias field correction was applied to account for magnetic field inhomogeneities. 
 The brain was parcellated by applying a nonlinear warp of the Hammersmith 

Adult brain atlas to the postprocessed MRI. 
All steps of our MRI-processing pipeline were conducted using FMRIB Software 
Library v6.0 (FSL) (Analysis Group, Oxford University). The overall preprocessing 
workflow was inspired by the harmonization protocols of the UK Biobank 
(https://git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1). We manually 
inspected the outcome of the MRI pipeline on each scan to filter out cases with poor 
quality or significant processing artifacts.” 

Comment 7: Since interpretability of the results following deep learning is a key issue, more 
methodological details are needed about SHAP.
Response 7: We thank the reviewer for the opportunity to expand our explanation of the SHAP 
methodology. We have now added in a paragraph to our Methods section that reads as follows: 

“SHAP is a unified framework for interpreting machine learning models which 
estimates the contribution of each feature by averaging over all possible marginal 
contributions to a prediction task.19 Though initially developed for game theory 
applications,20 this approach may be used in deep learning-based computer vision 
by considering each image voxel or a network node as a unique feature. By 
assigning SHAP values to specific voxels or by mapping internal network nodes 
back to the native imaging space, heatmaps may be constructed over input MRIs. 

Though a variety of methods exist for estimating SHAP values, we implemented a 
modified version of the DeepLIFT algorithm,21 which computes SHAP by 
estimating differences in model activations during backpropagation relative to a 
standard reference. We established this reference by integrating over a 
“background” of training MRIs to estimate a dataset-wide expected value. For 
each testing example, we then calculated SHAP values for the overall CNN model 
as well as for specific internal layers. Two sets of SHAP values were estimated for 
the COG and ADD tasks, respectively. SHAP values calculated over the full 
model were directly mapped back to native MRI pixels whereas those derived for 
internal layers were translated to the native imaging space via nearest neighbor 
interpolation.”  



Comment 8: Results. The number of excluded scans due to the applied QC should be reported.
Response 8: We thank the reviewer for pointing out the unreported number of excluded scans 
and we added more details of the data inclusion criterions that we followed in this study in the 
beginning of the method section which reads as below: 

“Subjects from each cohort were eligible for study inclusion if they had at least 
one T1-weighted volumetric MRI scan within 6 months of an officially 
documented diagnosis. We additionally excluded all MRI scans with fewer than 
60 slices. For subjects with multiple MRIs and diagnosis records within a 6-
month period, we selected the closest pairing of neuroimaging and diagnostic 
label. Therefore, only one MRI per subject was used. For the NACC and the 
OASIS cohorts, we further queried all available variables relating to 
demographics, past medical history, neuropsychological testing, and functional 
assessments. We did not use the availability of non-imaging features to exclude 
individuals in these cohorts and used k-nearest neighbor imputation for any 
missing data fields. Our overall data inclusion workflow may be found in Fig. 
S10, where we reported the total number of subjects from each cohort before and 
after application of the inclusion criterion.”  

Comment 9: Though the fusion model improves performance on the non-parkinsonian 
dementias, there is no mention or explanation about a slightly worse performance in VD and 
FTD (Figures 1 and 2 - Lines 139-141)
Response 9: We added the relevant discussion on the comparison between the MRI model and 
the fusion model’s performance in the Discussion section. Please see below. 

“Interestingly, it should be noted that the performance of a non-imaging model 
alone approached that of the fusion model. However, the inclusion of 
neuroimaging data was critical to enable verification of our modeling results by 
clinical criteria (e.g., cross-correlation with post-mortem neuropathology 
reports). Such confirmatory data sources cannot be readily assimilated to non-
imaging models, thus limiting the ability to independently ground their 
performance in non-computational standards. Therefore, rather than viewing the 
modest contribution of neuroimaging to diagnostic accuracy as a drawback, we 
argue that our results suggest a path towards balancing demands for 
transparency with the need to build models using routinely collected clinical data. 
Models such as ours may be validated in high-resource areas where the 
availability of advanced neuroimaging aids interpretability; however, the set of 
non-imaging models that we developed can be easily used to perform diagnosis 
when only limited amounts of “traditional” clinical data are available.” 

Comment 10: Discussion. As neuroradiologist 1 points, there wasn’t a consensus approach 
between radiologists. This should be reported as a limitation.
Response 10: We acknowledge that a consensus approach was not employed among radiologists 
According to the work of Rosenkrantz [1] secondary interpretation of radiologic scans may 
indeed improve disease detection. However, we also feel that comparison to individual 



practitioners may be viewed as a strength, given that consensus review may be less reflective of 
the unique approaches used by different neuroradiologists. Indeed, a key promise of deep 
learning within radiology is the chance to improve diagnosis in settings where significant 
variability may persist among experienced clinicians. Nevertheless, we have included the 
following prose within our Discussion: 

“Lastly, although we have compared our model to the performance of individual 
neurologists and neuroradiologists, future studies may consider comparison to 
consensus reviews by teams of collaborating clinicians.” 

[1] Rosenkrantz, Andrew B., et al. "Discrepancy rates and clinical impact of imaging secondary 
interpretations: a systematic review and meta-analysis." Journal of the American College of 
Radiology 15.9 (2018): 1222-1231. 

Comment 11: It is unclear whether atypical AD cases existed in any of the cohorts, if this 
information is available it should be included and discussed in relation to the findings. This 
should also be discussed in the limitations.
Response 11: We thank the reviewer for their detailed comment. The data across the various 
studies that we utilized did not have atypical AD cases. We have updated the manuscript and 
included the comment as a limitation. Specifically, we cite Graff-Radford and colleagues [1] 
who note the epidemiology of atypical AD.  

“Our cohorts also did not contain any confirmed cases of atypical AD, which is 
estimated to affect approximately 6% of elderly-onset cases and one-third of 
patients with early-onset disease [1].” 

[1] Graff-Radford, Jonathan, et al. "New insights into atypical Alzheimer's disease in the era of 
biomarkers." The Lancet Neurology 20.3 (2021): 222-234. 

Comment 12: The achieved performance and importance of the framework are discussed, 
however the discussion would benefit from an additional paragraph discussing the observed 
findings in figures 3 and 4.
Response 12: We thank the reviewer for inviting the opportunity for further elaboration upon 
Figures 3 and 4. Given that we have now submitted an additional figure with our revision, the 
original Figures 3 and 4 now correspond to updated Figures 4 and 5. We describe the findings in 
these visuals with the following additional material in the Discussion, making specific reference 
to recent concerns about explainability in AI:  

“Furthermore, post-hoc analyses demonstrated that the performance of our 
machine learning models was grounded in well-established patterns of dementia-
related neurodegeneration. Notably, network analyses evinced differing regional 
distributions of SHAP values between AD and nADD populations, which were 
most pronounced in areas such as the hippocampus, amygdala, and temporal 
lobes. The SHAP values in these regions also exhibited a strong correlation with 
atrophy ratings from neuroradiologists. Although recent work has shown that 
explainable machine learning methods may identify spurious correlations in 



imaging data [1] we feel that our ability to link regional SHAP distributions to 
both anatomic atrophy and also semi-quantitative scores of A amyloid, 
neurofibrillary tangles, and neuritic plaques links our modeling results to a gold-
standard of postmortem diagnosis. More generally, our approach demonstrates a 
means by which to assimilate deep learning methodologies with validated clinical 
evidence in health care.”

[1] DeGrave, Alex J., Joseph D. Janizek, and Su-In Lee. "AI for radiographic COVID-19 

detection selects shortcuts over signal." Nature Machine Intelligence (2021): 1-10. 



Reviewers' comments:

Reviewer #1 not re-engaged (re-review performed by Reviewer #3): 

I appreciated the authors’ efforts in responding to Reviewer 1, and I think they adequately responded 
to much of Reviewer 1’s feedback. The following are some remaining points that the authors can 
improve upon. 

1. Response to Reviewer 1, Comment 2: The main results of the paper are centered around the 

fusion model though, which relies heavily on MRI. While GPs have some experience with ordering 
MRIs, MRI is typically not the standard of care when it comes to diagnosing dementia within the 

primary care setting, and even if imaging is requested, CT is often more widely available. I understand 
the authors want to present their highest performing results in the main parts of the paper, but it’s 
quite difficult to imagine deploying their fusion model in any clinical setting other than a specialist’s 

practice. Maybe the authors can put more emphasis on using the non-imaging model in primary care 
settings in the discussion. 

2. Response to Reviewer 1, Comment 8: The labels in the rebuttal that are given for the revised 
Figure 2 don’t seem to match the figure, but I think the version in the manuscript and its associated 

figure caption are correct. It would be good for the authors to double check. 

3. Response to Reviewer 1, Comment 9 & 12: I think a lot of readers would assume, like Reviewer 1 
did, that APOE genotype would have been a feature that the authors would have included, so maybe 
explicitly listing the chosen features for the non-imaging model in the main text will clear that up. For 

example, in the Methods section, under Harmonization of non-imaging data, lines 507-508, the 
authors could include the variables there, like “demographics (e.g. age, sex), past medical history, 

neuropsychological test results (e.g. digit span, NPIQ, MMSE), and functional assessments (e.g. 
FAQ)”. It’s a bit interesting actually that APOE was not used as an input feature, when it is a common 

feature across similar work in the literature, so perhaps this will present an opportunity for the authors 
to provide an explanation for their choice. 

4. Response to Reviewer 1, Comment 10: Can the authors please add a legend to explain the symbol 
markers in Figure 5c? 

5. Response to Reviewer 1, Comment 11: The entire OASIS cohort is missing education. Did the 
authors impute education levels for each individual in OASIS? Are there any caveats to this, given 

that OASIS was the main test dataset, and especially given that education ranks quite high in the 
SHAP plots as an important feature for the predictions? 

Reviewer #2 (Remarks to the Author): 

I was Reviewer 2 in prior submission. The manuscript has addressed all my comments and I have no 
further comments. 

Arman Eshaghi 

Reviewer #3 (Remarks to the Author): 

The manuscript by Qiu et al has appreciably improved, and the authors thoughtfully considered the 
reviewers’ suggestions. I have some points that I’d like the authors to consider (and I would like to 

apologize to the authors for neglecting to mention some of them in the previous round of review). 



Major comments: 

1) It would have been helpful to have a figure that puts the ROC curves of the three different models 
together (MRI-only, non-imaging, fusion) in one plot for each task to make it easier for readers to 

compare the performance. The A panels of Figure 3 and supplementary figures S3 and S4 could have 
been combined into one, and same with the B panels of those same figures. 
2) The performance metrics of the non-imaging and fusion models are very similar, where the fusion 

model (confidence intervals of AUCs ranged from 0.941 to 0.975 across COGnc and COGde for 
example) is only marginally better than the non-imaging model (confidence intervals of AUCs ranged 

from 0.931 to 0.973 across COGnc and COGde). Is there much added value in including the MRI, 
given how much it costs relative to neuropsychological testing? Since the authors mentioned that one 

motivation for having machine learning models is to aid neurological diagnoses in settings with low 
resources (e.g. remote or developing regions with few dementia specialists) in their introduction, it 
seems counter-intuitive to rely heavily on a relatively expensive modality like MRI. I did appreciate 

that the authors mentioned that any gains from the addition of the MRI were modest in the discussion. 
However, I wonder if the authors can expand their justification of including MRI as a critical modality 

for an Alzheimer’s disease diagnostic tool when the majority of patients will be seen in low-resource 
settings, like in primary care, where MRI is not often considered. 
3) Is it clinically useful, especially in a low-resource setting, to deploy a machine learning model (with 

or without MRI inputs) to classify cognitively normal vs impaired (COGnc task) when a brief screening 
test like the MMSE alone can do that? How do the COGnc models compare against simply 

thresholding scores on a cognitive test to classify cognitively normal vs impaired? 
4) In the methods section, non-imaging model subsection, lines 552-554: “Like the MRI-only model, 
each non-imaging model was sequentially trained to complete the COG and the ADD tasks by 

calculating the DEMO and the ALZ scores, respectively.” This phrase suggests that the non-imaging 
model produces ALZ and DEMO scores. However, in the Results section, lines 134-141 (“(i) MRI-only 

model: A convolutional neural network (CNN) that internally computed a continuous DEmentia MOdel 
(“DEMO”) score to complete the COG task, as well as an ALZheimer’s (“ALZ”) score to complete the 

ADD task.”) explains that the ALZ and DEMO scores are generated from the CNN of the MRI-only 
model. Please clarify this potential discrepancy. 

Minor comments: 
5) Figure 6, panel D: It would be nice to have a legend to show that the blue and red designate 

different hemispheres. 
6) Supplementary Figure S5: Panels A and B are not labeled in the figure caption. 
7) Results section, Deep learning model performance subsection, line 199: There seems to be a typo 

in the lower bound of the AUC confidence intervals for the COGde task of the non-imaging model for 
the NACC dataset: “COGde task, with AUC/PR pairs of 0.963 [CI: 0.9955, 0.971]/0.905 [0.888, 0.922] 

(NACC)”. 
8) Response to Reviewer 3, Comment 6: The authors stated that they removed the remark about 
visual similarity between SHAP values and neuropathological scores, but it is still present in the 

manuscript in lines 251-253.



Multimodal deep learning for Alzheimer’s disease dementia assessment

Reviewer 1 (Re-Review Performed by Reviewer 3): 

Comment 1: The main results of the paper are centered around the fusion model though, which 

relies heavily on MRI. While GPs have some experience with ordering MRIs, MRI is typically 

not the standard of care when it comes to diagnosing dementia within the primary care setting, 

and even if imaging is requested, CT is often more widely available. I understand the authors 

want to present their highest performing results in the main parts of the paper, but it’s quite 

difficult to imagine deploying their fusion model in any clinical setting other than a specialist’s 

practice. Maybe the authors can put more emphasis on using the non-imaging model in primary 

care settings in the discussion.

Response 1: We thank the reviewer for carefully considering the clinical implications of our 

modeling approach. While the proliferation of free-standing imaging centers and the 

strengthening of regional referral networks have facilitated the ability of GPs to order imaging 

studies for their patients, we certainly acknowledge that primary care providers may be less 

confident in interpreting the results of neuroimaging and are less likely than specialists to order 

these tests [1]. To this end, we appreciate the opportunity to point out the non-imaging model’s 

utility in primary care settings and have taken the reviewer’s suggestion to specifically mention it 

in our Discussion section. Therefore, we now include the following sentences within our main 

manuscript: 

Interestingly, it should be noted that the performance of a non-imaging model 

alone approached that of the fusion model. However, the inclusion of 

neuroimaging data was critical to enable verification of our modeling results by 

clinical criteria (e.g., cross-correlation with post-mortem neuropathology 

reports). Such confirmatory data sources cannot be readily assimilated to non-

imaging models, thus limiting the ability to independently ground their 

performance in non-computational standards. Therefore, rather than viewing the 

modest contribution of neuroimaging to diagnostic accuracy as a drawback, we 

argue that our results suggest a path towards balancing demands for 

transparency with the need to build models using routinely collected clinical data. 

Models such as ours may be validated in high-resource areas where the 

availability of advanced neuroimaging aids interpretability. Given that many 

physicians have difficulty entrusting medical decision-making to black box model 

in artificial intelligence,28 grounding our machine learning results in the 

established neuroscience of dementia may help to facilitate clinical uptake. 

Nevertheless, we do note that our non-imaging model may be best suited for 

deployment among general practitioners (GPs) and in low-resource settings.



Comment 2: The labels in the rebuttal that are given for the revised Figure 2 don’t seem to 

match the figure, but I think the version in the manuscript and its associated figure caption are 

correct. It would be good for the authors to double check. 

Response 2: We thank the reviewer for pointing out the inconsistency between the figure and 

captions from the rebuttal version. We have double checked the correct correspondence between 

all figures and captions in the revised manuscript.  

Comment 3: I think a lot of readers would assume, like Reviewer 1 did, that APOE genotype 

would have been a feature that the authors would have included, so maybe explicitly listing the 

chosen features for the non-imaging model in the main text will clear that up. For example, in the 

Methods section, under Harmonization of non-imaging data, lines 507-508, the authors could 

include the variables there, like “demographics (e.g. age, sex), past medical history, 

neuropsychological test results (e.g. digit span, NPIQ, MMSE), and functional assessments (e.g. 

FAQ)”. It’s a bit interesting actually that APOE was not used as an input feature, when it is a 

common feature across similar work in the literature, so perhaps this will present an opportunity 

for the authors to provide an explanation for their choice.  

Response 3: We appreciate the reviewer’s suggestion to explicitly state which non-imaging 

features have been incorporated into our modeling approaches. With regards to our decision to 

not include APOE genotype as an input feature, we made this decision out of concern that APOE 

genotyping is not part of the standard clinical work-up for patients presenting with cognitive 

dysfunction. Although direct-to-consumer genetic screening services may provide this 

information to patients willing to pay for this information, its scope in clinical practice is 

currently limited [1]. Given that our goal in this work is to create a model that can be flexibly 

scaled to many different clinical practices and settings, we felt that this type of genetic 

information could be outside the current standard of practice among neurologists and GPs. We 

have clarified this point (along with the additional non-imaging features used in our modeling) 

with a sentence in the Methods section that reads as follows: 

To mimic a clinical neurology setting, we developed a non-imaging model using 

data that is routinely collected for dementia diagnosis. A full listing of these 

variables used as input may be found in Box 2. While some features such as 

genetic status (APOE e4 allele),51 or cerebrospinal fluid measures have great 

predictive value, we have purposefully not included them for model development 

because they are not part of the standard clinical work-up of dementia. 

Additionally, we feel that it would be in the best interest of this work to include an easily-

accessible table in which readers can review all non-imaging variables used for modeling 

purposes. We have compiled these into a glossary box (Box 2), which we hope to include within 

the body of our main manuscript.  



Box 2. Non-Imaging Features Used in Model Development 

Demographics 

Age 

Gender 

Education 

Medical History 

Family history of cognitive impairment 

History of heart attack/cardiac arrest 

History of atrial fibrillation 

History of angioplasty/endarterectomy/cardiac stenting 

History of cardiac bypass procedure 

History of pacemaker 

History of hypertension 

History of hypercholesterolemia 

History of heart failure 

History of other cardiovascular disease 

History of stroke 

History of transient ischemic attack 

History of seizures 

History of traumatic brain injury 

History of diabetes 

History of vitamin B12 deficiency 

History of thyroid disease 

History of urinary incontinence 

History of bowel incontinence 

History of depression within preceding two years 

History of depression greater than two years ago 

History of other psychiatric disorder 

History of alcohol use disorder 

Has smoked >100 cigarettes in life 

Total years smoking cigarettes 

Packets of cigarettes smoked per day  

History of other drug use 

Neuropsychiatric Inventory 

Delusions  

Hallucinations 

Agitation/Aggression 

Dysphoria/Depression 

Anxiety 

Euphoria/Elation 

Apathy/Indifference 

Disinhibition 

Irritability/Lability 

Aberrant Motor Activity 

Nighttime Behavior 

Appetite/Eating 

Neuropsychological Testing 

Trail Making Test Part A/B 

Boston Naming Test 

Digit span backward trials correct 

Digit span backward length 

Digit span forward trials correct 

Digit span forward length 

Animals 

Geriatric Depression Scale (GDS) 

Logical memory immediate recall 

Logical memory delayed recall 

Mini Mental State Exam (MMSE) 

Functional Activities 

Paying Bills 

Assembling tax records 

Shopping alone 



Playing a game 

Meal preparation 

Keeping track of current events 

Paying attention to TV, books, or magazines 

Remembering dates 

[1] Choudhury, Parichita, Vijay K. Ramanan, and Bradley F. Boeve. "APOE ɛ4 Allele Testing 

and Risk of Alzheimer Disease." JAMA 325.5 (2021): 484-485. 

Comment 4: Can the authors please add a legend to explain the symbol markers in Figure 5c? 



Response 4: We thank the reviewer for this suggestion, which will certainly improve the clarity 

of this figure. We added a legend to Figure 5c. The full Figure 5 may be found as belo

Comment 5: The entire OASIS cohort is missing education. Did the authors impute education 

levels for each individual in OASIS? Are there any caveats to this, given that OASIS was the 

main test dataset, and especially given that education ranks quite high in the SHAP plots as an 

important feature for the predictions?



Response 5: We thank the reviewer for this astute observation regarding our imputation strategy 

and appreciate the opportunity to address this point. Indeed, given the extensive degree to which 

educational data in OASIS was missing, we elected to impute these values using a k-nearest 

neighbors approach. Certainly, this may be viewed as a limitation of our external validation 

strategy, and we are happy to acknowledge it as such within our Discussion if the reviewer 

wishes. However, we have also taken efforts to run additional non-imaging and fusion models in 

the OASIS cohort without education as an input variable in order to assess the degree to which 

our imputation impacted external performance. These results may be summarized in the ROC 

and PR curves below, which contrast the performance of our (a) non-imaging model with

education included (b) non-imaging model without education (c) fusion model with education 

included (d) fusion model without education included. As in our original submission, Rows 1-3 

in each subsection represent performance on the COGNC, COGDE, and ADD tasks, respectively.  

We have chosen to include these curves as our new Supplementary Figure S4, which covers both 

fusion and non-imaging models. Within the body of our Results section, we also now include the 

following text: 

Additionally, we demonstrate the performance of non-imaging and fusion models 

in the OASIS cohort (Fig. S4), both with and without education as an imputed 

variable. Given that education information was unavailable from OASIS, these 

results demonstrate negligible impact on external performance due to our data 

imputation strategy. 

With our imputation strategy, it was certainly conceivable that our adjustment could have led to 

an underestimation of external performance by estimating missing information from one dataset 

(OASIS) on the basis of covariates in another (NACC). As may be observed, however, our 

imputation of education makes only a minimal impact on the model’s performance in the OASIS 

test set. Therefore, we feel that this caveat of imputation is unlikely to have impacted the results 

that we have reported within the submitted manuscript. 

Although our initial SHAP analyses from the NACC test set identified education as one of the 

important features, we feel that the continued strong performance of our model without this 

information speaks to its ability to derive accurate diagnostic information from a diffuse set of 

imaging and non-imaging data. In other words, despite an individual feature’s importance 

relative to others, our framework remains capable of strong performance by harnessing the 

collective data available to it rather than relying upon a sub-selection of important information. 

Given that missing patient data is an omnipresent complication of patient care, we therefore feel 

that this ablation study demonstrates the power of our approach to flexibly adjust to a variety 

clinical scenarios; patients with differing information availability may be easily accommodated, 



saving clinicians the difficult and possibly error-prone task of divining key information from a 

complicated assortment of past medical records.  



Reviewer 2:

Comment 1: The manuscript has addressed all my comments and I have no further comments.  

Response 1: We thank the reviewer for their insightful comments on our original submission, 

and we are pleased to have met their expectations.



Reviewer 3:  

Comment 1: The manuscript by Qiu et al has appreciably improved, and the authors 

thoughtfully considered the reviewers’ suggestions. I have some points that I’d like the authors 

to consider (and I would like to apologize to the authors for neglecting to mention some of them 

in the previous round of review).

Response 1: We greatly appreciate the reviewer’s assessment, and for suggesting additional 

points to further improve our manuscript. Not many note an apology for suggesting additional 

comments in the advanced rounds of the review process. This speaks to the generosity of the 

reviewer and we sincerely appreciate their time. 

Comment 2: It would have been helpful to have a figure that puts the ROC curves of the three 

different models together (MRI-only, non-imaging, fusion) in one plot for each task to make it 

easier for readers to compare the performance. The A panels of Figure 3 and supplementary 

figures S3 and S4 could have been combined into one, and same with the B panels of those same 

figures.

Response 2: We thank the reviewer for this suggestion, which will certainly improve the visual 

and informational aesthetic of Figure 3. The revised A and B panels are now displayed as below: 

Comment 3: The performance metrics of the non-imaging and fusion models are very similar, 

where the fusion model (confidence intervals of AUCs ranged from 0.941 to 0.975 across 

COGnc and COGde for example) is only marginally better than the non-imaging model 

(confidence intervals of AUCs ranged from 0.931 to 0.973 across COGnc and COGde). Is there 

much added value in including the MRI, given how much it costs relative to neuropsychological 

testing? Since the authors mentioned that one motivation for having machine learning models is 

to aid neurological diagnoses in settings with low resources (e.g., remote or developing regions 

with few dementia specialists) in their introduction, it seems counter-intuitive to rely heavily on 



a relatively expensive modality like MRI. I did appreciate that the authors mentioned that any 

gains from the addition of the MRI were modest in the discussion. However, I wonder if the 

authors can expand their justification of including MRI as a critical modality for 

an Alzheimer’s disease diagnostic tool when the majority of patients will be seen in low-resource 

settings, like in primary care, where MRI is not often considered. 

Response 3: We very much appreciate the reviewer’s perspective regarding the performance 

impact of MRI and its implications for clinical deployment. We feel that it is crucial to develop 

diagnostic tools that are capable of interfacing with all steps of standard clinical practice, from 

the primary care setting to specialized neurologists. Therefore, we feel that inclusion of MRI 

enables our framework to be a truly universal tool for clinicians across specialties-adapting to 

both the often-limited resources available to GPs, as well as the radiologic information that is 

central to specialist practice. In the case of the latter, we particularly note that the American 

Academy of Neurology [1] recommends MRI in the standard workup of patients with dementia; 

therefore, we believed that we would be remiss to create models without neuroimaging 

information. 

Additionally, a key aspect of our study is the ability to provide interpretability in our deep 

learning models. In our view, a central piece of this aim (as well as a significant source of 

innovation and contribution to the literature from this work) is the ability to map 

computationally-derived predictions to established anatomic (e.g., atrophic) and histologic 

markers of neurodegenerative change. Without the inclusion of MRI data, these tasks become 

impossible. As currently stands, many physicians have difficulty entrusting medical decision-

making to black box models in artificial intelligence [2]; consequently, we believe that the ability 

to ground our framework’s predictions in the established neuroscience of dementia makes our 

work well-positioned to earn the confidence of clinician stakeholders across a variety of 

specialists.  

Further, we thank the reviewer for the opportunity to expound upon these points beyond what 

was originally written in our Discussion section. We have elected to include additional writing 

about the necessity of including MRI in this work. Our writing is as follows. 

Interestingly, it should be noted that the performance of a non-imaging model 

alone approached that of the fusion model. However, the inclusion of 

neuroimaging data was critical to enable verification of our modeling results by 

clinical criteria (e.g., cross-correlation with post-mortem neuropathology 

reports). Such confirmatory data sources cannot be readily assimilated to non-

imaging models, thus limiting the ability to independently ground their 

performance in non-computational standards. Therefore, rather than viewing the 

modest contribution of neuroimaging to diagnostic accuracy as a drawback, we 



argue that our results suggest a path towards balancing demands for 

transparency with the need to build models using routinely collected clinical data. 

Models such as ours may be validated in high-resource areas where the 

availability of advanced neuroimaging aids interpretability. Given that many 

physicians have difficulty entrusting medical decision-making to black box model 

in artificial intelligence,28 grounding our machine learning results in the 

established neuroscience of dementia may help to facilitate clinical uptake. 

Nevertheless, we do note that our non-imaging model may be best suited for 

deployment among general practitioners (GPs) and in low-resource settings.

Comment 4: Is it clinically useful, especially in a low-resource setting, to deploy a machine 

learning model (with or without MRI inputs) to classify cognitively normal vs impaired (COGnc 

task) when a brief screening test like the MMSE alone can do that? How do the COGnc models 

compare against simply thresholding scores on a cognitive test to classify cognitively normal vs 

impaired? 

Response 4: We thank the reviewer for posing the valuable question of this model’s necessity in 

low-resource settings given the availability of in-office neuropsychiatric testing. While screening 

tests such as the MMSE are capable of delineating NC, MCI, and AD patients, we do note that 

their usage by PCPs remains highly variable according to nationwide surveys of US physicians 

[1,2] and that even “low tech” cognitive batteries often require specialized neuropsychiatric 

clinicians to perform properly. Moreover, these preliminary tests are unable to infer the etiology 

of a major neurocognitive disorder, thus requiring transfers of care from generalist to specialist 

clinics that often delay timely access to care [3]. Conversely, our system provides strong 

performance in identifying both AD and non-AD causes of dementia after performing the initial 

COGNC task, thereby providing an all-in-one solution that could help to alleviate inefficiencies in 

referral pipelines. For these reasons, we still believe that having a system that can quickly 

perform a reasonably-accurate differential diagnosis regardless of clinical expertise would be a 

significant benefit to primary care physicians in low-resource areas.  

Nevertheless, we value the reviewer’s suggestion to compare our various machine learning 

models to simple thresholding of common neuropsychological tests, and we agree that it is 

important to address this point. Therefore, for the COGNC, COGDE, and ADD tasks, we 

calculated the area under ROC (AUC) and area under precision-recall curve (AP) that would 

result from testing all possible numerical thresholds of MMSE. We compared these results to the 

values obtained from our non-imaging, MRI-only, and fusion models respectively, and 

summarized these metrics in the table below. Red text indicates instances in which simple 

MMSE thresholding exceeded the diagnostic performance of the deep learning model.  

Model 
COGNC task

AUC 

COGNC task

AP 

COGDE task

AUC 

COGDE task

AP 

ADD task

AUC 

ADD task

AP 



MMSE Threshold 0.881 0.848 0.931 0.814 0.616 0.896 

Non-Imaging Model 0.936 0.936 0.963 0.905 0.717 0.926 

MRI-Only 0.844 0.830 0.869 0.712 0.766 0.934 

Fusion Model 0.945 0..946 0.971 0.917 0.773 0.938 

The reviewer may note that the thresholding approach outperforms an MRI-only model on the 

COGNC and COGDE task. Overall, we anticipated this result given that focused neurocognitive 

testing such as the MMSE is specifically designed to separate NC, MCI, and DE cases. However, 

we would also like to point out that simple thresholding was otherwise unable to match the 

performance of any other models on these three tasks, and that the MRI-only still outperformed 

the MMSE in classifying AD vs. nADD etiologies.  

Lastly, we felt that it would be in the best interest of the manuscript to compare our deep 

learning models to simple thresholding of all available neuropsychological testing available in 

the NACC cohort. To this end, we have repeated simple thresholding with 33 additional tests. 

The results from these experiments are summarized below, and we now wish to include these 

numbers as our new Supplementary Table S8. We thank the reviewer for bringing up this 

important point, which will once again help to highlight the potential of our deep learning 

approaches in the context of current clinical standards.  

Lastly, we have included a brief summary of our simple thresholding experiments within the 

Methods section. Specifically, we have now added the following: 

Additionally, to compare our machine learning models to routine 

neuropsychological assessments, we performed the COGNC, COGDE, and ADD 

tasks using all possible whole number cutoffs of neuropsychiatric test scores 

available in the NACC dataset. Following this approach, we performed simple 

thresholding for binary classifications. 

Supplementary Table S8

Variable 
COGNC task 

AUC 

COGNC task 

AP 

COGDE task 

AUC 

COGDE task 

AP 

ADD task 

AUC 

ADD task 

AP 

trailA 0.783 0.79 0.817 0.587 0.52 0.877 

trailB 0.818 0.839 0.853 0.564 0.532 0.869 



boston 0.791 0.762 0.825 0.59 0.569 0.887 

digitB 0.725 0.719 0.753 0.458 0.533 0.891 

digitBL 0.704 0.69 0.735 0.413 0.522 0.884 

digitF 0.66 0.649 0.684 0.383 0.528 0.881 

digitFL 0.632 0.624 0.654 0.329 0.54 0.885 

animal 0.839 0.824 0.878 0.702 0.501 0.869 

gds 0.647 0.633 0.6 0.275 0.608 0.895 

lm_imm 0.872 0.86 0.907 0.722 0.638 0.913 

lm_del 0.895 0.886 0.916 0.706 0.713 0.93 

mmse 0.881 0.848 0.931 0.814 0.616 0.896 

npiq_DEL 0.545 0.543 0.58 0.339 0.522 0.871 

npiq_HALL 0.526 0.533 0.544 0.294 0.55 0.878 

npiq_AGIT 0.597 0.574 0.628 0.357 0.501 0.86 

npiq_DEPD 0.588 0.57 0.6 0.301 0.523 0.872 

npiq_ANX 0.608 0.582 0.642 0.348 0.539 0.877 

npiq_ELAT 0.513 0.527 0.516 0.246 0.508 0.868 

npiq_APA 0.623 0.59 0.67 0.417 0.58 0.887 



npiq_DISN 0.556 0.55 0.569 0.299 0.566 0.882 

npiq_IRR 0.603 0.578 0.607 0.321 0.52 0.87 

npiq_MOT 0.559 0.551 0.589 0.338 0.528 0.873 

npiq_NITE 0.567 0.554 0.577 0.307 0.552 0.878 

npiq_APP 0.575 0.561 0.595 0.32 0.541 0.875 

faq_BILLS 0.794 0.742 0.928 0.79 0.511 0.859 

faq_TAXES 0.807 0.762 0.936 0.801 0.522 0.872 

faq_SHOPPING 0.733 0.676 0.88 0.752 0.538 0.875 

faq_GAMES 0.706 0.673 0.841 0.689 0.571 0.879 

faq_STOVE 0.632 0.602 0.73 0.55 0.53 0.878 

faq_MEALPREP 0.709 0.677 0.853 0.71 0.521 0.885 

faq_EVENTS 0.75 0.687 0.867 0.723 0.54 0.874 

faq_PAYATTN 0.736 0.674 0.846 0.684 0.518 0.872 

faq_REMDATES 0.82 0.756 0.925 0.776 0.527 0.871 

faq_TRAVEL 0.781 0.716 0.908 0.766 0.501 0.864 

Comment 5: In the methods section, non-imaging model subsection, lines 552-554: “Like the 

MRI-only model, each non-imaging model was sequentially trained to complete the COG and 

the ADD tasks by calculating the DEMO and the ALZ scores, respectively.” This phrase 

suggests that the non-imaging model produces ALZ and DEMO scores. However, in the Results 

section, lines 134-141 (“(i) MRI-only model: A convolutional neural network (CNN) that 



internally computed a continuous DEmentia MOdel (“DEMO”) score to complete the COG task, 

as well as an ALZheimer’s (“ALZ”) score to complete the ADD task.”) explains that the ALZ 

and DEMO scores are generated from the CNN of the MRI-only model. Please clarify this 

potential discrepancy. 

Response 5: We very much appreciate the reviewer’s attention to this aspect of our methodology 

which, upon further consideration, will benefit from additional clarification. Both the MRI-only 

and non-imaging models compute respective versions of the DEMO/ALZ scores. In isolation, 

these respective versions can be used for all classification tasks. In the fusion model, however, 

the MRI-only DEMO/ALZ scores (derived from the CNN) are recycled as a feature to be used 

alongside non-imaging variables. In order to clarify these points, we have added the following 

text to our manuscript: 

We also created three separate models: (i) MRI-only model: A convolutional 

neural network (CNN) that internally computed a continuous DEmentia MOdel 

(“DEMO”) score to complete the COG task, as well as an ALZheimer’s (“ALZ”) 

score to complete the ADD task. (ii) Non-imaging model: A traditional machine 

learning classifier that took as input only scalar-valued clinical variables from 

demographics, past medical history, neuropsychological testing, and functional 

assessments. As in the MRI-only model, the non-imaging model also computed the 

DEMO and the ALZ scores from which the COG and the ADD tasks could be 

completed. We tested multiple machine learning architectures for these purposes 

and ultimately selected a CatBoost model as our final non-imaging model 

architecture. (iii) Fusion model: This framework linked a CNN to a CatBoost 

model. With this approach, the DEMO and the ALZ scores computed by the CNN 

were recycled and used alongside available clinical variables. The CatBoost 

model then recalculated these scores in the context of the additional non-imaging 

information. We provide definitions of our various prediction tasks, cognitive 

metrics, and model types within Box 1. Further details of model design may be 

found within the Methods. 

Comment 6: Figure 6, panel D: It would be nice to have a legend to show that the blue and red 

designate different hemispheres. 

Response 6: We thank the reviewer for pointing out the missing legend for different 

hemispheres. The adjust Figure 6 now looks as below: 



Comment 6: Supplementary Figure S5: Panels A and B are not labeled in the figure caption. 

Response 6: We thank the reviewer for this attention to detail. We made these changes.

Comment 7: Results section, Deep learning model performance subsection, line 199: There 

seems to be a typo in the lower bound of the AUC confidence intervals for the COGde task of 



the non-imaging model for the NACC dataset: “COGde task, with AUC/PR pairs of 0.963 [CI: 

0.9955, 0.971]/0.905 [0.888, 0.922] (NACC)”. 

Response 7: We thank the reviewer for pointing out this typo. After carefully reexamining the 

script that was used for generating confidence intervals, we found a mistake in the degree of 

freedom that should be used and made a correction on the confidence intervals formula. All 

confidence intervals reported in the manuscript or tables have now been corrected. Additionally, 

we also added a brief description on how we estimated the confidence intervals within the 

methods section which reads as below: 

All statistical analyses were conducted at a significance level of 0.05. Confidence 

intervals for model performance were calculated by assuming a normal 

distribution of AUC and AP values across cross-validation experiments. 

Comment 8: Response to Reviewer 3, Comment 6: The authors stated that they removed the 

remark about visual similarity between SHAP values and neuropathological scores, but it is still 

present in the manuscript in lines 251-253.

Response 8: We thank the reviewer for noting this and apologize that the change was not made. 

We have double-checked our reference to visual similarity in our updated submission, and it has 

now been removed. 



Reviewers' comments:

Reviewer #3 (Remarks to the Author): 

Reviewer 1 (Re-review by Reviewer 3): 

The authors have addressed my comments, and the paper is much improved, but I have one 

outstanding concern. 

1. Re: Education in OASIS. I appreciate the additional analyses that the authors presented where 
they evaluated their models on OASIS with and without the imputed education levels. I have to note 

that, as a researcher who has personally performed analyses on OASIS, education is a variable that 
is publicly available from this dataset, so the imputation was not necessary. Furthermore, the preprint 
describing the release of the OASIS-3 cohort explicitly mentions education as a demographic variable 

that is available for download 
(https://www.medrxiv.org/content/medrxiv/early/2019/12/15/2019.12.13.19014902.full.pdf). In previous 

rounds of review, the authors mentioned that they obtained OASIS through GAAIN, which may 
explain our different experiences, because I obtained access and downloaded the OASIS-3 dataset 
from https://www.oasis-brains.org/ and the CENTRAL XNAT platform (https://central.xnat.org/). I 

understand that it takes a lot of effort to aggregate all these different datasets together and perhaps 
there were unfortunate mistakes along the way, especially if multiple team members were involved in 

the curation. Given that the authors reported they were missing education in this dataset and they 
imputed that feature, I’m worried that readers who have also worked with OASIS may question the 
validity of the current paper’s analyses on OASIS or that readers may develop even worse 

uncharitable opinions (e.g. academic misconduct). 

Reviewer 3: 

The authors have addressed all of my comments and I have no further comments.



Response to Reviewers: 

In this document, we address a remaining question relating to our usage of education information from 

the OASIS-3 dataset. Our steps to address this matter have resulted in only minor adjustments to our 

results and have not altered the overall conclusions drawn in the remainder of our manuscript. We are 

otherwise pleased to see that the rest of our Reviewers’ concerns have been addressed.  

Below, we detail the exact steps that we have taken to meet the Reviewer’s recommendations with 

regards to OASIS-3, and present updated figures and tables with the updated performance of our machine 

learning models. 

Reviewer 1 (Re-review by Reviewer 3): 

Comment: I appreciate the additional analyses that the authors presented where they evaluated their 

models on OASIS with and without the imputed education levels. I must note that, as a researcher who 

has personally performed analyses on OASIS, education is a variable that is publicly available from this 

dataset, so the imputation was not necessary. Furthermore, the preprint describing the release of the 

OASIS-3 cohort explicitly mentions education as a demographic variable that is available for download 

(https://www.medrxiv.org/content/medrxiv/early/2019/12/15/2019.12.13.19014902.full.pdf). In previous 

rounds of review, the authors mentioned that they obtained OASIS through GAAIN, which may explain 

our different experiences, because I obtained access and downloaded the OASIS-3 dataset from 

https://www.oasis-brains.org/ and the CENTRAL XNAT platform (https://central.xnat.org/). 

Response: We are greatly appreciative that the Reviewer has lent their personal perspective in working 

with the OASIS-3 dataset to our work, thereby empowering us to fully address the question of imputing 

education. Following the data access instructions in the links below, we have indeed found that education 

information is available from OASIS-3 data when accessed via the CENTRAL XNAT platform. We 

sincerely apologize that our unfamiliarity with this portal led us to initially report this variable as missing; 

indeed, we must acknowledge that this was an error within our initial submission because we focused on 

other publicly available sources to collect OASIS data (i.e., GAAIN). 

In response to the Reviewer’s helpful guidance, we acquired education data from OASIS-3 and repeated 

all runs of the fusion- and non-imaging models that previously made use of this variable in imputed form. 

The results of these experiments are further detailed below.  

Comment: Given that the authors reported they were missing education in this dataset, and they imputed 

that feature, I’m worried that readers who have also worked with OASIS may question the validity of the 

current paper’s analyses on OASIS or that readers may develop even worse uncharitable opinions (e.g., 

academic misconduct). 

Response: We are thankful that the Reviewer has the best interests of our work in mind when anticipating 

the way in which it will be received by readers of Nature Communications. It is of the utmost importance 



to us that there be no questions regarding our academic integrity in conducting these studies, and we feel 

grateful for the chance to revise our manuscript with this issue addressed with all required seriousness.  

With these considerations in mind, we have now used the education information from the CENTRAL 

XNAT platform to repeat all external validation experiments with the fusion and non-imaging models in 

the OASIS-3 dataset. Inclusion of this data has fortunately not impacted our results in a major way and 

our overall conclusions remain intact. However, we have revised a few figures and tables to transparently 

report the updated performance. Below, we include the Tables and Figures that required updating. All 

necessary metrics (e.g., AUC and AP values) have been adjusted as appropriate when mentioned within 

the body of the manuscript as well.  

======================================================================== 

Table 1: We have updated Table 1 to reflect the mean and distribution of education in years from the 

OASIS-3 dataset. An excerpted version of our updated table, reflecting this change, is supplied below 

with the adjusted column highlighted in red. The full table including other datasets is supplied in the 

updated version of our manuscript with this submission. 



Table 2: We have adjusted Table 2b to reflect update Fusion model performance in the OASIS-3 dataset.

Table S2: We have adjusted Table S2b to reflect the performance of a non-imaging CatBoost model in 

OASIS-3 with Education data.   



Table S4: We have adjusted all constituent tables within Table S4 to demonstrate the performance of 

fusion models with a variety of CNN-classifier combinations in the OASIS-3 dataset. 



Figure 3: We have adjusted Figure 3b to demonstrate model performance across our various 

classification tasks using the OASIS-3 education data.  



Figure S2: We have adjusted the Figure S2b, which demonstrates the performance of the fusion model in 

the OASIS-3 dataset.   

Figure S4: We have adjusted Figure S4b (previously this was Fig. S5), which assesses the performance 

of the non-imaging and fusion models with various feature combinations in the OASIS-3 dataset. 



Figure S11: We have updated this figure (previously this was Fig. S12) to show the true missingness rate 

of education data in the OASIS-3 dataset. As is highlighted in the red box below, this information is 

indeed available for all cases through the CENTRAL XNAT platform. 



Reviewers' comments:

Reviewer #3 (Remarks to the Author): 

The authors have adequately addressed my previous comments and I have no further comments.


